第11章 配合物结构

合集下载

第十一章:配位化合物介绍

第十一章:配位化合物介绍

配合物中直接与中心原子结合成键的配位原子的总数目。 单齿配体 配位数等于 配体数 如[Fe(CN)6]3多齿配体 配位数不等于配体数 如[Pt(en)2]2+ 表11-1 常见金属离子的配位数 配 位 数 2 4 离 子 Ag+,Cu+,Au+ Zn2+,Cu2+,Hg2+,Ni2+,Co2+,Pd2+, Si4+,Ba2+ Fe2+,Fe3+,Co2+,Co3+,Cr3+,Pt4+, Pd4+,Al3+,Si4+,Ca2+,Ir3+
26Fe 3+ 2+ +

例如:
[Ar] 3d54s04p0 [Ar] 3d84s24p0 [Ar] 4d105s05p0 [Ar] 3d84s24p0
26Si
4+
[SiF6]2-
27Co 47Ag 28Ni
2 配位体 ( ligand ): 在中心原子周围以一定的空间 构型排列的阴离子或 分子(以配位键结合),它 们能给出孤对电子或电子
[Ni(CO)4]
配合物 [Cu(NH3)4]SO4
内层
[ Cu ( NH 3 ) 4 ] 2+ 中 心 原 子 配配 配 配 位位 位 离 原体 数 子 子 电 荷
外层
S O4 2 外 界 离 子
1 中心原子(central atom )

位于配离子中心的离子或原子 具有空的价电子轨道(通常指(n-1)d,ns,np,nd轨 道)能接受孤对电子 一般是金属离子,大多是过度金属,Ⅷ及其附近副族 元素,少数高氧化值的主族元素离子

第十一章配合物图片2003-12-8 AND12-11

第十一章配合物图片2003-12-8 AND12-11
第十一章
配位化合物
祖母绿(翡翠)
3BeO·Al2O3 ·6SiO2 + Cr3+ in Al3+ sites
绿宝石
CuAl6(PO4)4(OH)8⋅4H2O
配位化合物的基本概念
CuSO4 + 4NH3 === [Cu(NH3)4]SO4 AgCl + 2NH3 === [Ag(NH3)2]Cl PtCl4 + 2KCl === K2[PtCl6] 3NaF + AlF3 === Na3[AlF6]
MX5Y MX4Y2 MX3Y3 MX4YZ MX3Y2Z
MX2Y2Z2
1 2 2 2 3 5
[PtCl(NH3)5]Cl3,K[PtCl5(NH3)] [PtCl2(NH3)4]Cl2,[PtCl4(NH3)2] [PtCl3(NH3)3]Cl [PtCl(NO2)(NH3)4]Cl2 [PtCl3(OH)(NH3)2] [PtCl2(OH)2(NH3)2]
配位化合物 —— 由简单化合物之间进一步反应形成的含有 复杂离子的分子间化合物。不同于“复盐”,但并无绝对的界限,在它
之间存在大量的处于中间状态的复杂化合物。
配离子 —— 配位化合物的复杂离子称为配离子。是一种较 为稳定的结构单元,既可存在于晶体中,也可存在于溶液中。 可以是阳离子、阴离子或中性分子。通常用[ ]标出。 内界和外界 —— 内界由中心离子和配位体构成,如 [Ag(NH3)2],放在[ ]内。[ ]以外部分称为外界,如 [Ag(NH3)2]Cl中的Cl-。 中心离子或中心原子 —— 亦称为配合物的形成体,位于配 离子(或分子)的中心。绝大多数是带正电的金属离子。许 多过渡金属离子是较强的配合物形成体。如[Ag(NH3)2]-中 Ag+离子,Ni(CO)4中的中性原子Ni,SiF62-中的高氧化态非金 属元素Si(IV)等。

无机化学 第十一章 配合物

无机化学 第十一章 配合物

有环状结构,被称为螯合物或内配合物。

2+同一配体的两个或两个以上的配位原子间有一个原子,这样才能形成比较配位化合物金属有机配合物SO4科学家鲍林CN -为强配体,使Co 3个d 电子重排中心采取d 2sp 3 杂化,配离子Co(CN)为正八面体构型。

3d4s4p d 2sp 3杂化过渡金属Ni 的d轨道与CO的π*能量相近,对称性一致,可以成键。

按重叠后的(C2H4) ]·H2Oσ配键d-pπ配键在八面体场中,六个配体沿x,y,z轴的个方向分布,以形成八面体场。

正八面体场中配体与d z2 轨道的相对位置,轨道的波瓣与六个配体正相对,d x 2-y 2d z 2球形场正八面体场中配体与d xy 轨道的相对位置,,轨道的波瓣不与配体相对,能量升高的少,低于球形场。

d xy d xz d yz 球形场坐标原点为正六面体的中心,三轴分别沿与三边平行的方向伸展。

4 个配体的位置如图所示,形成四面体场。

正四面体场中配体与d x 2-y 2 轨道的相对位置正四面体场中配体与d xy 轨道的相对位置d d d 球形场(d )球形场(d )坐标原点位于正方形中心,坐标轴沿正方形对角线方向伸展。

4个配位原子位于正方形的顶点,形成正方形电场。

yx-++--y 2d x 2-y 2轨道的波瓣与配体一一相对,受电场作用最大,能量最高。

d xy 轨道处于y 平面内,受电场作用较大,能量居第二位。

++--d xy yx轨道的环形波瓣在x O y 平面内,列第三位。

d z 2yx能量最低的是轨道和轨道d xz d yz ++--z d yzyz++--d xzxz2.影响分裂能大小的因素弱场强场 小大-----光谱化学序列弱场强场 小大X -,OH -等弱场配体△小,常有△< P ,取高自旋光谱化学序列中NO 2-,CN -,CO 等强场配体△大,常导致△> P ,取低自旋方式,强场低自旋。

高自旋排布(dε)4 (dγ)2 低自旋排布(dε)6 (dγ)05个d轨道的能量为零点。

化学课后答案11

化学课后答案11

强/弱场 强场 弱场 弱场 强场 强场
电子排布 式 t2g6eg0 t2g3eg2 t2g3eg2 t2g3eg0 t2g6eg0
未成对电 子数 0 5 5 3 0
CFSE -24Dq+2P 0 0 -12Dq -24Dq+2P
2+ 解: [Co(NH3)6] : 由于 P>△0, Co2+的 d 电子采取高自旋排布,Co2+
为 d7 ∴ 电子分布为 ↑ ↑
eg t 2g
↓ ↑ ↓ ↑ ↑
不成对电子数为 3 ∴μ≈ n (n + 2) =3.87B.M. [Fe(H2O)6]2+:由于 P>△0,Fe2+的 d 电子采取高自旋排布,Fe2+ 为 d6 ∴ 电子分布为 ↑ ↑ eg
无未成对电子∴ μ≈ n (n + 2) =0B・M [Zn(NH3)4]2+:Zn2+的价层电子分布为: 3d 4s 4p ↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ [Zn(NH3)4]2+的价层电子分布为: 3d 4s [↓ ↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ 为 sp3 杂化,无未成对电子∴ 4p ↓ ↑↓ ↑↓ ↑]
- -
解:[Co(en)3] :Co (d ),μ=3.82B.M.,由μ≈ n (n + 2) 可知不成 对电子数 n=3,而由于每个 en 有两个配位原子,故 Co 的配位数为 6。 ∴[Co(en)3]2+的价层电子分布为: 3d ↓ ↑↓ ↑ ↑ ↑ ↑ 4s [ ↓ ↑ 4p ↓ ↑↓ ↑↓ ↑ ↓ ↑↓ ↑] 4d
(a)cis- [PtCl( NO 2 )( NH 3 ) 2 ] (3)
(b)trans- [PtCl( NO 2 )( NH 3 ) 2 ] (a)面式- [IrCl 3 ( NH 3 ) 3 ] (b)经式- [IrCl 3 ( NH 3 ) 3 ]

第十一章配合物

第十一章配合物

Cl
Cl
2. 配合物的异构现象
1) 结构异构——包括解离异构、配位异构和键合异构
解离异构----配合物内外界完全解离,内外界交换成分。 配位异构----内界之间交换配体, 如[Co(NH3)6][Cr(CN)6]与[Cr(NH3)6][Co(CN)6] 键合异构现象----同种配体采取不同的配位原子与中心金属原子键合而产生的异 构体,如:SCN− (硫配位) (硫氰酸根) , NCS− (氮配位) (异硫氰酸根);NO2-(氮配位) ( 硝基) , ONO−(氧配位) (亚硝酸根)
三、配合物的命名
1、习惯名称
K4[Fe(CN)6]: 黄血盐 K3[Fe(CN)6]: 红血盐
2、系统名称
Fe(C5H5)2: 二茂铁
配合物的命名遵循无机化合物命名原则:
阴离子在先,阳离子在后
若配合物含有配阴离子时,则在配阴离子与外界 阳离子之间用“酸”字连接(相当于含氧酸) 例:K[PtCl3(NH3)] 三氯·氨合铂(II)酸钾
O
CO
C、 特殊配合物
金属羰基配合物 Ni(CO)4 簇状配合 有机金属配合物 大环配合物 多酸配合物
5). 按抗衡离子分类
a、 配离子与抗衡离子组成的配合物: 分为:配酸、配碱、配盐 抗衡离子为H+ →配酸 抗衡离子为OH-→配碱 抗衡离子为其它离子→配盐 配离子为内界,抗衡离子为外界。
b、 中性配合物: 如[PtCl2(NH3)2]
H3N
Cu NH3
NH3 ]
配离子[Cu(NH3)4]2+ 是由一个Cu2+ 和四个NH3分子组成的独立基团, 由NH3分子提供孤对电子, Cu2+ 提供空轨道,形成特殊的共价键----配位键.

宋天佑版无机化学 第11章配位化学基础

宋天佑版无机化学 第11章配位化学基础
F
-
F
-
F
-
F
-
F
-
3.内轨型与外轨型配合物
内轨型配合物
中心离子或原子以部分次外层轨道(n-1)d 参与组成杂化轨道,接受配体的孤电子对形成 内轨型配合物。如: d2sp3、dsp2、dsp3等。 特点:由于配体影响,形成体的电子重新 分布,未成对电子数减少。
成对能P:在形成内轨型配合物时,要违反 洪特规则,使原来的成单电子强行在同一d轨道 中配对,在同一轨道中电子配对时所需要的能 量叫做成对能(用P表示)。
11.1.3 配合物的命名
基本遵循一般无机化合物的命名原 则 1.整体命名:先阴离子,后阳离子 配离子为阳离子 外界是简单阴离子(OH-、Cl-), “某化某” [Ag(NH3)2]OH [Pt(NH3)6]Cl4 外界是复杂阴离子,“某酸某”
配离子为阴离子 外界为氢离子 “某酸” H2[PtCl6]
F HCI Br I
配体类型 单齿配体:一个配体中只含一个配位原子 NH3、OH-、X-、CN-、CO、SCN-等 多齿配体:一个配体中含2个或2个以上配位原子 草酸根(C2O42-) -OOC-COO- 双齿 乙二胺(en) NH2-CH2-CH2-NH2 双齿 乙二胺四乙酸根(EDTA或Y) 六齿 P862-863 部分配体名称: 硝基:NO2;亚硝酸根:ONO-;硫氰酸根:SCN-;异 硫氰酸根:NCS-;羰基:CO;羟基:-OH
MA2B2C2—正八面体的异构体。
平面偏振光
当平面偏振光通过某种介质时,有的介质对偏 振光没有作用,即透过介质的偏振光的偏振面 保持不变。而有的介质却能使偏振光的偏振面 发生旋转。这种能旋转偏振光的偏振面的性质 叫做旋光性。具有旋光性的物质叫做旋光性物 质或光活性物质。

大连理工大学无机化学教研室《无机化学》笔记和课后习题(含考研真题)详解(配合物结构)【圣才出品】

大连理工大学无机化学教研室《无机化学》笔记和课后习题(含考研真题)详解(配合物结构)【圣才出品】

第11章配合物结构11.1 复习笔记一、配合物的空间构型、异构现象和磁性1.配合物的空间结构(1)定义配合物:提供孤电子对的配体与接受孤电子对的中心离子(或原子)以配位键结合形成的化合物。

配合物的空间结构:围绕着中心离子(或原子)的配体排布的几何构型。

(2)影响因素①配位数的多少;配合物的空间构型与配位数间的关系如表11-1-1所示。

表11-1-1 配合物的空间构型与配位数②中心离子、配体种类。

示例:[Ni(CN)4]2-为平面正方形构型,而[Ni(Cl)4]2-是四面体构型。

(3)配合物的空间构型的规律①形成体在中间,配体围绕中心离子排布;②配体间倾向于尽可能远离,能量低,配合物稳定。

2.配合物的异构现象(1)定义配合物的异构现象:两种或两种以上配合物的化学组成相同而结构、性质不同的现象。

(2)分类配合物的异构现象可分为:键合异构、配位异构、几何异构和旋光异构。

在这里主要介绍后两种异构现象。

①几何异构:根据配体相对于中心离子的排列位置可分为顺式异构体和反式异构体两类。

配位数为4的平面正方形和配位数为6的八面体构型的配合物会发生顺、反异构。

配位数为4的四面体配合物以及配位数为2和3的配合物不存在几何异构体。

②旋光异构(光学异构):由分子的特殊对称性(无对称面和对称中心)形成的两种异构体而引起旋光性相反的现象。

两种旋光异构体互成镜像关系。

配位数为4的平面正方形构型的配合物一般无旋光性,而四面体构型则存在旋光性。

3.配合物的磁性(1)定义配合物的磁性:配合物在磁场中所表现出来的相关特性。

(2)分类: ①顺磁性物质:含有未成对电子的配合物;②反磁性物质:不含有未成对电子的配合物。

(3)表示方法配合物磁性可用磁矩(µ)进行表示。

磁矩µ与配合物中的未成对电子数n 间的关系为式中,µB 为磁矩单位,玻尔磁子,1µB =9.274×10-24J ·T -1。

第11章配合物

第11章配合物
17
四氨合铜 (Ⅱ)配离子 [Cu(NH3)4]2+ 三氯化三(乙二胺)合铁(Ⅲ) [Fe(en)3]Cl3 氢氧化二氨合银(I) [Ag(NH3)2]OH 六氯合铂(Ⅳ)酸 H2[PtCl6] [Co(ONO)(NH3)5]SO4 硫酸亚硝酸根· 五氨合钴(Ⅲ) [Co(NH3)5(H2O)]2(SO4)3 硫酸五氨· 水合钴(Ⅲ) [Co(NH3)2(en)2]Cl3 三氯化二氨· 二(乙二胺)合钴(Ⅲ)
第十一章
第一节 第二节
配 位 化 合 物
Coordination Compound
配合物的基本概念 配合物的化学键理论
第三节
第四节 第五节
配位平衡
螯合物 螯合滴定
1
配合物与医学关系 (1)生物体微量元素以配合物形式存在,参与生 物体的生理活动: 如 维生素B12 Co 3 +的配合物
血红蛋白
叶绿素

怎么知道[Fe(H2O)6]3+是外轨型配合物, [Fe(CN)6]3-是内轨型配合物? 通过测定配合物的磁矩µ ,并将其与理论值对 比来确定配合物是属于外轨型还是内轨型的。 µ≈ [n(n+2)]1/2 B

1.配合物磁矩µ 的理论近似计算公式:
B = 9.27×10-24 A· 2(J· -1) m T
14
常见配合物的中心原子、配体、配位原子、配位数 配合物 中心 原子 配 体 配位 原子 配 位 数
[Ag(NH3)2]+ [HgI4]2[Fe(CN)6]3[Co(NH3)5Cl]2+ [Fe(en)3]Cl3
Ag+ Hg2+ Fe3+ Co3+ Fe3+
:NH3 :I:CN:NH3、:Clen
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章配合物结构
& 主要内容:
q 配合物的空间构型和磁性
q 配合物的化学键理论
& 重点难点:
q 配合物的结构理论,包括价键理论、晶体场理论和分子轨道理论。

并根据这些理论解释配合物的有关性质。

q 由试验测得的磁矩算出未成对电子数;推测中心离子的价电子的分布情况和中心离子采取的杂化方式;确定配合物是内轨型还是外轨型,来解释配合物的相对稳定性。

q 根据晶体场分裂能与电子成对能的相对大小,判断在晶体场中中心离子的价电子在不同轨道中的分布,推论配合物类型,确定配合物的磁性,估算出配合物磁矩数值,进一步可计算晶体场稳定化能,说明配合物的相对稳定性。

& 教学目的:
q 熟悉配合物价键理论的基本要点、配合物的几何构型与中心离子杂化轨道的关系。

q 了解内轨型、外轨型配合物的概念、中心离子价电子排布与配离子稳定性、磁性的关系q 了解配合物晶体场理论的基本要点;了解八面体场中d电子的分布和高、低自旋的概念,推测配合物的稳定性、磁性;了解配合物的颜色与d-d跃迁的关系。

& 授课学时
4学时
§11.1配合物空间构型和磁性
11.1.1 配合物的空间构型
配合物分子或离子的空间构型与配位数的多少密切相关。

由图可见,配合物的空间构型除了与配位数密切相关外,还与配体种类有关,例如,配位数
同样是4,但为四面体构型,而则为平面正方形。

11.1.2 配合物的磁性
磁性:物质在磁场中表现出来的性质。

顺磁性:被磁场吸引的性质。

例如:O
2,NO,NO
2
等物质具有顺磁性。

反磁性:被磁场排斥的性质。

大多数物质具有反磁性。

铁磁性:被磁场强烈吸引的性质。

例如:Fe,Co,Ni属于铁磁性物质。

物质的磁性与内部的电子自旋有关。

若电子都是偶合的,由电子自旋产生的磁效应彼此抵消,这
种物质在磁场中表现反磁性;反之,有未成对电子存在时,才会在磁场中显示磁效应,可用磁矩(μ)。

式中,μ为磁矩,单位是B.M.(玻尔磁子), n为未成对电子数。

可用未成对电子数目n估算磁矩μ。

n 0 1 2 3 4 5 μ/B.M. 0 1.73 2.83 3.87 4.90 5.92 物质的磁性亦可用磁天平测定。

实验测得的磁矩与估算值略有出入,总趋势比较吻合。

§11.2配合物的化学键理论
11.2.1 价键理论
要点:
●形成体(M)提供空轨道,配位体(L)提供孤对电子,二者形成配位键 M←L
●形成体采用杂化轨道成键
●空间构型与杂化方式有关
1.配位数为2的配合物
氧化值为+1的离子常形成配位数为2的配合物,如[Ag(NH
3)
2
]+,[AgCl
2
]-和[AgI
2
]-等。

Ag+与NH
3形成配合物时,Ag+与5s,5p轨道杂化接受2个NH
3
的孤对电子成键:
直线型结构
2.配位数为4的配合物
空间构型两种:四面体与平面正方形,这取决于形成体的价层电子结构和配体的性质。

例如:Be2+采用sp3杂化轨道与配体成键形成四面体构型的配合
物。

Ni2+形成配位数为4的配合物时,既有四面体构型,也有平面正方形构型的,前者,Ni2+采用的
是sp3杂化,后者,Ni2+采用的是dsp2杂化。

3.配位数为6的配合物
配位数为6的配合物大大数是八面体构型,但是中心离子采用的杂化轨道有区别,一种是sp3d2杂化,另一种是d2sp3杂化。

前者用的是d轨道,其配合物称为外轨型配合物,后者用的是内层d轨道,
其配合物属于内轨型配合物。

内轨型配合物比相应的外轨型的配合物稳定。

例如:
小结:
价键理论的优势:直观明了,使用方便,很好地解释了配合物的空间构型、磁性、稳定性。

局限性:无法定量地说明配合物的性质,无法解释配合物的颜色(吸收光谱)。

11.2.2 晶体场理论
要点:
●在配合物中,中心离子M处于带负电荷的配位体形成的静电场中,二者完全靠静电作用结合一起;
●晶体场对M的 d 电子产生排斥作用,引起M的d轨道发生能级分裂;
●在空间构型不同的配合场中,配位体形成不同的晶体场,对中心离子 d 轨道的影响不相同。

1.八面体场
在八面体配合物中,6个配位体分别占据八面体的6个顶点。

由此产生的静电场叫做八面体场。

以[Ti(H
2O)
6
]3+为例。

★自由离子Ti3+,外层电子3d1,该电子在d轨道出现的机会相等,5个d轨道能量相等;
★设想6个H
2
O分子的负电荷形成一个球形场,对Ti3+的d电子排斥,5个d轨道能量等同地升高;
★实际上6个H
2O形成的是把八面体场,d轨道受到不同程度的排斥:d
z
2,d
x
2
-y
2轨道与
轴上的配体迎头相碰,能量比球形场高,d
xy ,d
xz
,d
yz
轨道因自身伸展方向不是在轴上,而是
在轴间,受到配体排斥力小一些,其能量比球形低,如图所示。

八面体场,d轨道分裂成 eg 轨道(d
z 2,d
x
2
-y
2),t
2g
轨道(d
xy
,d
xz
,d
yz
)。

t
2g 轨道与e
g
轨道的能量差叫做晶体场分裂能。

用Δ
或10Dq表示,
即E ( e g ) - E ( t2g ) = 10 Dq = Δ0
E ( e g ) = 6 Dq
E ( t2g ) = - 4 Dq
分裂能可以cm-1或J(kJ·mol-1)表示,例
Δ
= 20300 cm-1
= 20300 cm-1 × 1.986×1023 J·cm-1=4.03×10-19 J
= 4.03×10-19×10-3×6.022×1023kJ·mol-1
影响Δ
的因素
①中心离子:电荷Z愈大、Δ
愈大
Δ
/cm-1 17600 14000 13700 10400
同族过渡金属相同电荷的金属离子:主量子数n大,Δ0大
[Cr(H
2O)
6
]3+ [MoCl
6
]3-
Δ
/cm-1 13600 19200 ②配体:配合物构型相同条件下,各种配体对同一中心离子产生的分裂能值由小到大的顺序(光谱
化学序列):
I- < Br- < Cl-~SCN- < F- < OH- < C
2O
4
2-< H
2
O < NCS-< EDTA < NH
3
< en < bipy
< phen < SO
32- < NO
2
-
< CN-,CO
引起分裂能小的配体称为弱场配体(H
2
O以前的),引起分裂能大的配体称为强场配体(如CN-,CO)。

H
2
O与CN-之间的配体是强场还是弱场,取决于中心离子,可以结合配合物的磁矩来确定。

③晶体场类型:不同晶体场引起的分裂能大小不同。

八面体场Δ
=10Dq
四面体场Δ
t
=4.45Dq
平面正方形Δ
s
=17.42Dq
2.八面体场中中心离子的d电子分布
电子排布原则:
★能量最低原理
★ Hund规则
★ Pauli不相容原理
当电子数多于3个时,通常考虑电子对能与分裂能的相对大小。

电子对能(P):两个电子进入同一轨道所消耗的能量。

> P;弱场Δ0 < P
强场Δ
八面体场中电子在t
和eg轨道中的分布:
2g
实例:
⑴定义:d 电子从未分裂的d 轨道进入分裂后的d 轨道,所产生的总能量下降值。

⑵计算
CFSE = n 1E (t 2g ) + n 2E (e g ) 式中 n 1:t 2g 轨道中的电子数 n 2: e g 轨道中的电子数 若以Dq 为单位:
CFSE= n 1×(-4Dq ) + n 2 × 6Dq 例如:[Cr(H 2O)6]3+
CFSE=3×(-4Dq )=-12Dq
因为电子优先进入能量低的t 2g 轨道,所以额外获得-12Dq 的稳定化能。

※ 严格来说,在强场中的稳定化能还应扣除电子成对能: CFSE=(-4n 1+6n 2)Dq + (m 1 - m 2)P 式中
m 1:八面体场中,d 轨道中的成对电子数; m 2:球形场中,d 轨道中的成对电子数。

表11-2 八面体场的CSFE Dq
1
2 3
3 Dq 3
4 4 10
5 5
● d电子数目
● 配位体的强弱
● 晶体场的类型。

相关文档
最新文档