核弹与核反应堆的原理与发展
核反应堆工作原理

核反应堆工作原理核反应堆是一种产生和控制核裂变反应的设备,是核能利用的关键组成部分。
它通过裂变核燃料中的核素,释放出巨大能量,用于发电或其他应用。
一、核反应堆的基本构造核反应堆主要由以下部分组成:燃料棒、冷却剂、控制杆和反应堆压力壳。
1. 燃料棒燃料棒是装载核燃料的圆柱形结构,通常由浓缩铀或钚等可裂变材料制成。
燃料棒中的裂变核素在受到中子轰击时发生核裂变,产生能量和额外的中子,维持连续的链式反应。
2. 冷却剂冷却剂是用于带走核反应堆中产生的热量的介质,可以是水、重水、液态金属或气体。
冷却剂通过循环在燃料棒附近流动,吸收燃料棒释放的热量,同时保持核反应堆的温度稳定。
3. 控制杆控制杆用于调节核反应堆中的裂变反应速率。
控制杆通常由吸收中子的材料制成,如硼化硼。
当控制杆插入核反应堆时,它吸收了部分中子,减慢了反应速率;当控制杆抬起时,反应速率增加。
4. 反应堆压力壳反应堆压力壳是一个密封的容器,用于保护核反应堆内部免受外部环境的影响,并防止辐射泄漏。
它通常由厚实的钢制成,能够承受高压和高温。
二、核反应堆的工作原理核反应堆的工作原理是基于核裂变和中子链式反应。
1. 核裂变核裂变是指重核(如铀-235)被中子轰击后分裂成两个更轻的核碎片的过程,并释放出大量的能量和中子。
裂变反应是连锁反应,每一次裂变都会释放出2-3个中子,进而引发周围其他核燃料材料的裂变。
2. 中子链式反应核反应堆中的裂变释放的中子可以引发其他核燃料的裂变,形成中子链式反应。
中子链式反应是自持续的,只要提供足够的核燃料和恰当的条件,反应就可以持续进行。
在核反应堆中,裂变反应迅速释放出大量热能,增加燃料棒温度。
冷却剂通过燃料棒的表面流过,并吸收热能,随后经过热交换装置将热能传递给工质,如水或蒸汽。
工质的温度升高,通过涡轮机驱动发电机,将热能转化为电能。
同时,控制杆的调节可以控制核反应堆的反应速率。
当控制杆插入核反应堆时,它吸收了中子,减慢了反应速率。
核能:利用核反应产生巨大能量转化为电能

核能:利用核反应产生巨大能量转化为电能引言核能是一种利用核反应产生巨大能量并将其转化为电能的技术。
随着能源需求的不断增长和对环境友好能源的需求,核能作为清洁、高效、可持续的能源选择越来越受到关注。
本文将介绍核能的基本原理、发展历程、优势与挑战以及未来发展方向。
第一章:核能的基本原理核能是利用核反应中发生的核裂变或核聚变来产生能量的过程。
核裂变是指重核裂变成两个中子和两个中子,同时释放出大量的能量。
核聚变是指轻核融合成更重的核,同样也伴随着能量释放。
核能技术主要利用核裂变的过程来产生能量。
核能的基本原理是通过控制一系列核反应来释放能量。
核反应发生在核反应堆中的燃料元素中,例如铀或钚。
当燃料元素被控制地用中子轰击时,核反应发生,放出大量的能量。
这些能量被用来加热水,产生蒸汽,并驱动涡轮机转动发电机,最终将能量转化为电能。
第二章:核能的发展历程核能的发展历程可以追溯到20世纪40年代的第二次世界大战期间。
当时,核能作为一种潜在的能源选择被科学家们广泛研究。
1945年,世界上第一颗原子弹在美国爆炸,这标志着核能的成功应用。
随后,核能逐渐被用于发电方面的研究。
1954年,苏联建成了第一座核能发电厂,标志着核能的商业化应用。
此后,核能发电厂开始在世界各地建设,成为一种主要的能源来源。
到20世纪70年代,世界上有数百座核电站投入运营,核能成为主要的电力供应方式之一。
第三章:核能的优势核能作为一种能源选择,具有许多优势。
首先,核能是一种清洁能源,不会产生二氧化碳等温室气体,对环境污染较小。
其次,核能的能量密度非常高,一小部分燃料就可以产生大量的能量,相比之下,传统的化石燃料要多消耗大量的资源。
另外,核能可以持续供应能源,核燃料的储备量非常丰富。
相对于化石燃料,核燃料更加稳定和可持续。
此外,核能发电厂的运营成本相对较低,因为燃料成本低廉且寿命较长。
第四章:核能的挑战尽管核能具有许多优势,但也面临一些挑战。
首先,核能的安全性是一个重要问题。
核反应堆的原理与工程应用

核反应堆的原理与工程应用核反应堆是人们利用核能进行能源开发的重要设备。
它利用分裂核反应或者核聚变反应来释放能量,从而发电或者提供热能。
本文将介绍核反应堆的原理和工程应用。
一、核反应堆的原理核反应堆的核心是燃料元件,其中填充着丰度不同的核燃料。
核燃料中的原子核能够被中子轰击,产生裂变反应或聚变反应。
当裂变反应发生时,一个高速中子撞击核燃料中的核子,使得该核子的能量变得很高,发生裂变的同时还释放出更多的中子。
这些中子会继续撞击其他核燃料,形成可持续的链式反应。
这种反应释放的能量可以被吸收和利用,从而产生能量。
而聚变反应指的是两个原子核碰撞,粘合在一起形成一个更重的原子核。
这种反应需要非常高的温度和压力,只有太阳等高能环境才能发生。
因此,目前在核反应堆中主要运用核裂变反应。
核反应堆的反应堆芯中有一个反应控制系统,用来控制反应堆的中子流。
在反应堆中,中子流太多容易导致反应过度,发生核事故;反之,则会导致核反应堆的功率不足,影响其使用。
因此,反应控制系统通过控制聚变反应的速率,来保证反应堆的安全运行。
二、核反应堆的工程应用核反应堆主要用于发电、推进动力和核技术研究等方面。
(一)核电站核电站是应用核反应堆进行能源利用的典型工程应用。
核电站利用核反应堆产生的热能,驱动蒸汽涡轮发电机组,产生电能。
核电站具有高效稳定的特点,且发电过程中无排放污染物,因此在现代工业中发挥着重要作用。
但核电站安全问题也受到人们的普遍关注。
因此,在设计和运营过程中,必须制定一系列的措施保证核反应堆的安全,同时还要在核事故发生时能够采取快速有效的应变措施,减少事故带来的影响。
(二)核燃料加工核燃料的加工是指将天然铀提纯成可用于核反应堆的核燃料。
目前主要采用的方法是铀浓缩和浸出。
(三)核推进技术核推进技术是指利用核反应堆的热能或电能,提供足够的推进动力,从而实现飞行器等的航天应用。
它主要利用核反应堆的高能量密度,实现对于电子器件过于脆弱的导电线路的最小化限制。
核弹与核反应堆的原理与发展1

核弹与核反应堆的原理与发展摘要:核弹是指利用爆炸性核反应释放出的巨大能量对目标造成杀伤破坏作用的武器。
爆炸性核反应是利用能自持快速进行的原子核裂变或聚变反应,瞬间释放出巨大能量产生的核反应爆炸而形成巨大杀伤破坏效应。
核反应堆(Nuclear Reactor)是一种启动、控制并维持核裂变或核聚变链式反应的装置。
相对于核武爆炸瞬间所发生的失控链式反应,在反应堆之中,核变的速率可以得到精确的控制,其能量能够以较慢的速度向外释放,供人们利用。
核弹的用途分为战术核弹、战略核弹和战区核武器,而核能则在推进动力和功能等方面起重要作用。
关键词:核弹核反应堆裂变聚变核武器供能引言:核能可谓一把双刃剑,利弊共存,推进人类科技发展的同时,也对人类生存环境造成了一定的威胁,更好的掌握其原理,规范其发展,才能为人类谋福利。
正文:一、核弹核弹头的基本结构:不管核武器样式多么繁多,核弹头的基本构造通常由壳体、核装药和热核装药、引爆控制系统(引信)和电源等组成。
其中壳体用于盛装核弹的各种装置并能防止其机械损坏。
在弹道导弹核弹头壳体外壳还涂有特殊涂料或隔热层,以防弹头再入大气层时受高速气动加热使弹头壳体及内部装置因过热而烧毁。
核装药和热核装药,由裂变和聚变材料构成,以氢弹为例:核装药(裂变装药)置于由普通炸药构成的球形装药的中央部位,在球形装药外面四周安装了许多电雷管。
引信传来的敏感信号通过引爆控制系统产生的高压电起爆各电雷管,使普通炸药以“枪法”或“内爆法”使裂变材料迅即达到最大超临界质量而实施核裂变爆炸,并使爆炸产生的部分辐射能量转换用以加热和点燃(高能中子的轰击)热核装药产生聚变反应,形成整个氢弹的核爆炸。
引控系统是保证核弹到达预定炸点时发出起爆核装药指令并可靠起爆的装置。
电源是给弹头各组件提供能源的小型一次性使用的蓄电池,在导弹发射准备时激活蓄电池,导弹发射起飞时才能用弹上蓄电池供电。
核弹的分类及其原理:核弹可分为原子弹、氢弹、氢铀弹、特殊性能核武器(如中子弹、核同质异能武器、反物质武器等)1.原子弹原子弹主要是利用核裂变释放出来的巨大能量来起杀伤作用的一种武器。
核弹与核反应堆的原理与发展

核弹与核反应堆的原理与发展摘要:核能在军事和能源方面有着重要的应用,本文简述了核反应在军事和能源方面的应用于发展。
主要包括三种众所周知的的核弹,以及核能发电的原理和展望。
关键词:原子弹氢弹中子弹核反应堆一、核弹:一般将核裂变武器称为第一代核武器,实际上就是原子弹;将核聚变武器称为第二代核武器,实际上就是氢弹;将以调整和控制核爆炸能为特点的新一代核武器称为第三代核武器,主要包括增强某一破坏因素的核武器,如中子弹、冲击波弹、感生辐射弹、光辐射弹、电磁脉冲弹以及核定向能武器等。
作为增强的辐射武器,中子弹是目前世界上唯一已实现生产和部署的一种第三代核武器。
1、原子弹是利用原子核裂变反应释放出大量能量的原理制成的一种核武器,核装药一般为钚-239、铀-235。
这些物质的原子核在热中子轰击下,分裂为两个或若干个裂片和若干个中子,同时释放出巨大的能量。
新产生的中子又去轰击其它原子核,如此连续发展下去,核分裂的数量就会急剧增加,形成链式反应,仅在百分之几秒内就会出现猛烈爆炸,并放出非常大的能量。
1公斤铀释放出的能量相当于2万吨梯恩梯炸药爆炸时释放出的能量。
原子弹装药分为两块,每块都小于临界质量,因此平时不会发生核反应。
当引爆装置点燃普通炸药时,将两块装药推挤到一起,整体质量便大于临界质量,在中子的轰击下,产生原子核裂变链式反应,随即出现核爆炸。
目前原子弹的威力可达到几万吨到几百万吨梯恩梯当量。
2、氢弹是利用轻原子核聚合成较重原子核过程中释放出大量能量的原理制成的核武器。
这种核聚变反应要在数千万度高温和超高压条件下才能进行,单位质量所释放出来的能量一般为核裂变反应的4倍以上,能产生更大的破坏作用,通常又称这种聚变反应为热核反应。
原子核越轻,所带电荷越少,产生聚变反应所需的能量也越低。
因此,一般都用氢的同位素氘、氚和氘化锂等物质作为核装药,故将这种核武器称为氢弹。
热核反应就是氘和氚的原子核在超高温和超高压的情况下彼此结合成为氦原子核并释放出巨大的能量的过程。
沙皇核弹内部原理

沙皇核弹内部原理沙皇核弹内部原理沙皇核弹是一种庞大的核武器,它的核心是核反应堆,通过核反应堆放出的能量来引爆核弹,从而将威力释放出来。
它的内部原理包括以下几个方面。
核反应堆核反应堆是沙皇核弹的核心,它是一种能够控制核反应的装置,能够通过核反应产生高热和放射性的能量。
核反应堆的内部结构包括反应堆芯和反应控制装置。
反应堆芯反应堆芯是核反应堆中最重要的部分,它是用来储存核燃料的地方,核燃料经由反应堆芯进行控制。
反应堆芯是一个非常小的矩形盒子,由厚重的钢材制成,内部填充许多的燃料棒。
燃料棒里的核燃料一般是铀-235或是钚-239等,核燃料在燃烧的时候释放能量,这种能量是用来驱动核反应堆的。
反应控制装置反应控制装置是用来控制核反应堆的,里面包含控制棒和反应控制器。
控制棒是一种用来调节核反应的器具,它被插入反应堆芯内部,当需要调节核反应的时候,控制棒就会从反应堆芯中排出或插入。
核弹头核弹头是沙皇核弹中最重要的部分,它是整个核弹的心脏,核弹头需要通过核反应堆来储存能量,当核反应堆释放足够的能量时,核弹头将被引爆。
核弹头内部结构核弹头的内部结构包括引爆器、发射剂和核裂变物。
这三个部分是相互联接的,并能够完成核弹头的引爆和能量释放。
引爆器引爆器是核弹头的关键部分之一,它通常由两个部分组成。
一个部分由高压电容器组成,这些电容器可以将电压提高到10^10伏特以上,另一个部分是雷管,它能够在电容器电压达到最大值时激发构成裂变链反应的核裂变物。
发射剂发射剂是核弹头中储存能量的部分,它通常由氢气和氦气等可压缩气体组成,这些气体被压缩后能够储存能量。
当核反应堆释放大量的能量时,这些气体就会被加热并膨胀,将储存在其中的能量释放出来。
核裂变物核裂变物是核弹头中重要的部分之一,它通常由铀或钚等物质组成,这种物质的核反应会使得其变得更不稳定,并且释放大量的能量。
一旦引爆器将能量释放出来,核裂变物就会开始发生裂变反应,这将释放出大量的能量,从而产生沙皇核弹的威力。
核反应堆技术简介
核反应堆技术简介核反应堆技术是一种利用核裂变或核聚变反应产生能量的技术。
核反应堆是核能发电的核心设备,它能够将核能转化为热能,再通过热能转换为电能。
本文将对核反应堆技术进行简要介绍。
一、核反应堆的基本原理核反应堆利用核裂变或核聚变反应释放出的能量来产生热能,进而驱动发电机发电。
核裂变是指重核(如铀、钚等)被中子轰击后分裂成两个或多个轻核的过程,同时释放出大量的能量和中子。
核聚变是指轻核(如氢、氦等)在高温和高压条件下融合成重核的过程,同样也会释放出巨大的能量。
核反应堆中的燃料一般采用铀、钚等重核,通过控制中子的速度和密度,使其与燃料发生核裂变反应。
核裂变反应产生的中子会继续与其他燃料发生反应,形成连锁反应。
为了控制连锁反应的速度,核反应堆中通常会加入一种称为“控制棒”的装置,通过调整控制棒的位置来控制中子的密度,从而控制反应的速度。
核反应堆中的燃料棒是核反应堆的核心部件,它是由燃料和包覆材料组成的。
燃料一般采用铀-235或钚-239等可裂变核素,包覆材料则是用来保护燃料,防止辐射泄漏和燃料损耗。
燃料棒的排列形式有很多种,常见的有方形排列和六边形排列。
二、核反应堆的类型核反应堆根据使用的燃料和工作原理的不同,可以分为多种类型。
常见的核反应堆类型包括压水堆(PWR)、沸水堆(BWR)、重水堆(CANDU)、气冷堆(AGR)等。
1. 压水堆(PWR)压水堆是目前最常见的核反应堆类型,它使用普通水作为冷却剂和减速剂。
核反应堆中的燃料棒被放置在压力容器中,水通过燃料棒周围的管道,吸收燃料产生的热量,然后通过蒸汽发生器转化为蒸汽,驱动涡轮发电机组发电。
2. 沸水堆(BWR)沸水堆也使用普通水作为冷却剂和减速剂,但与压水堆不同的是,沸水堆中的水直接与燃料棒接触,燃料产生的热量直接将水加热为蒸汽,然后通过蒸汽发生器转化为蒸汽,驱动涡轮发电机组发电。
3. 重水堆(CANDU)重水堆使用重水(氘氧化物)作为冷却剂和减速剂。
核反应堆工作原理
核反应堆工作原理
核反应堆工作原理是利用核裂变或核聚变产生能量的一种装置。
核裂变是指重核(如铀、钚等)在受到中子撞击后发生裂变,产生大量的能量和中子。
而核聚变是指轻核(如氢、氦等)在高温和高压条件下融合成更重的核,同样释放出巨大的能量。
在核反应堆中,裂变物质(如铀)被放置在称为燃料棒的管状结构中。
这些燃料棒排列成一个核燃料组件。
当中子以适当的速度和适当的能量撞击燃料棒时,裂变反应会发生,释放出大量的能量。
同时,裂变反应还会产生额外的中子,这些中子可以继续撞击其他燃料棒,引发更多的裂变反应,形成连锁反应。
为了控制核反应的速率,核反应堆内通常会添加称为反应控制棒的装置。
这些控制棒由吸中子材料(如硼、银等)制成,可以吸收中子,从而减慢反应速率。
通过调整控制棒的位置和数量,可以控制核反应的强度和稳定性。
核反应堆内还需要冷却系统来控制温度。
一般情况下,水或重水被用作冷却剂,通过冷却剂将核反应释放的能量带走,同时产生蒸汽。
蒸汽可以驱动涡轮机转动,从而产生电能。
此外,核反应堆还需要辐射防护系统来保护工作人员和环境免受辐射的危害。
防护层和多层设计可以有效地阻挡和吸收大部分辐射。
总而言之,核反应堆是利用裂变或聚变反应产生能量的装置,
通过控制裂变反应速率和利用冷却系统来实现能量的控制和利用。
同时,辐射防护系统也是核反应堆必不可少的组成部分。
核反应堆原理
核反应堆原理核反应堆是现代工业上最重要的能源技术之一,它可以将核裂变所释放的能量转换成可以使用的电能。
它被广泛用于动力发电、研究和航天活动。
核反应堆也是用来研究核材料物理性质的重要工具。
本文将介绍核反应堆的基本原理,其中包括它的发展历史和结构,以及它如何实现可持续核裂变和产生电能的必要条件。
核反应堆的发展历史核反应堆由爱因斯坦和费曼在20世纪30年代设计,但当时还不能进行实验,因为核燃料只在20世纪40年代才可供使用。
在1941年,美国科学家莱纳韦伯利曾率先设计了一个封闭式核反应堆。
1943年,美国科学家艾克瑟格拉斯(Eckert)完成了第一个可持续运行的核反应堆,其运作温度达到了2250华氏度,大大超过了火花塞发动机的最低温度。
现在,核反应堆的发展令人惊叹,它可以以非常高的温度运转,可以控制其温度,并且可以运转很多小时后进行调整,以维持它的性能。
核反应堆的结构核反应堆是由几个部分组成的,其中包括燃料棒、冷却剂、弹体、控制杆、活塞和壳体。
燃料棒由核反应所需要的各种元素组成,通常是铀(U)、钚(Pu)或其他核燃料。
冷却剂是冷却燃料棒的物质,主要是水、汽油或石油。
弹体被用于维持控制杆和活塞的位置,以控制核反应堆的性能。
活塞可以调整控制杆,以控制燃料棒的裂变反应,控制杆可以调节核反应的强度。
壳体是将所有部件封装起来的结构,可以起到防止核反应带来的放射性污染的作用。
实现可持续核裂变反应和产生电能的必要条件要实现可持续核裂变并产生电能,核反应堆必须具备特定的条件。
首先,必须有足够的燃料,以便可以长期进行反应。
其次,燃料温度必须在一定的范围内,以保证燃料可以安全地产生能量,而不会受到过热的影响。
此外,燃料棒的浓度也是必须满足的条件,因为当浓度太低时,燃料的裂变反应就会减弱,导致发电效率降低。
最后,燃料棒周围的屏障必须充足,以防止放射性材料外泄。
综上,核反应堆是一种用于发电、研究和航天活动的重要技术,它具有许多优点,例如它可以高效地转换核裂变能量,可以满足多种具体需求。
核反应堆原理
核反应堆原理核反应堆原理原子由原子核与核外电子组成。
原子核由质子与中子组成。
当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。
这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。
如此持续进行就是裂变的链式反应。
链式反应产生大量热能。
用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。
导出的热量可以使水变成水蒸气,推动气轮机发电。
由此可知,核反应堆最基本的组成是裂变原子核+热载体。
但是只有这两项是不能工作的。
因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施综上所述:核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。
还需要说明的是,铀矿石不能直接做核燃料。
铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。
热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。
这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。
堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。
热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。
由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。
慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核弹与核反应堆的原理与发展
摘要:核能在军事和能源方面有着重要的应用,本文简述了核反应在军事和能源方面的应用于发展。
主要包括三种众所周知的的核弹,以及核能发电的原理和展望。
关键词:原子弹氢弹中子弹核反应堆
一、核弹:
一般将核裂变武器称为第一代核武器,实际上就是原子弹;将核聚变武器称为第二代核武器,实际上就是氢弹;将以调整和控制核爆炸能为特点的新一代核武器称为第三代核武器,主要包括增强某一破坏因素的核武器,如中子弹、冲击波弹、感生辐射弹、光辐射弹、电磁脉冲弹以及核定向能武器等。
作为增强的辐射武器,中子弹是目前世界上唯一已实现生产和部署的一种第三代核武器。
1、原子弹是利用原子核裂变反应释放出大量能量的原理制成的一种核武器,核装药一般为钚-239、铀-235。
这些物质的原子核在热中子轰击下,分裂为两个或若干个裂片和若干个中子,同时释放出巨大的能量。
新产生的中子又去轰击其它原子核,如此连续发展下去,核分裂的数量就会急剧增加,形成链式反应,仅在百分之几秒内就会出现猛烈爆炸,并放出非常大的能量。
1公斤铀释放出的能量相当于2万吨梯恩梯炸药爆炸时释放出的能量。
原子弹装药分为两块,每块都小于临界质量,因此平时不会发生核反应。
当引爆装置点燃普通炸药时,将两块装药推挤到一起,整体质量便大于临界质量,在中子的轰击下,产生原子核裂变链式反应,随即出现核爆炸。
目前原子弹的威力可达到几万吨到几百万吨梯恩梯当量。
2、氢弹是利用轻原子核聚合成较重原子核过程中释放出大量能量的原理制成的核武器。
这种核聚变反应要在数千万度高温和超高压条件下才能进行,单位质量所释放出来的能量一般为核裂变反应的4倍以上,能产生更大的破坏作用,通常又称这种聚变反应为热核反应。
原子核越轻,所带电荷越少,产生聚变反应所需的能量也越低。
因此,一般都用氢的同位素氘、氚和氘化锂等物质作为核装药,故将这种核武器称为氢弹。
热核反应就是氘和氚的原子核在超高温和超高压的情况下彼此
结合成为氦原子核并释放出巨大的能量的过程。
为什么用氘化锂也可以进行热核反应呢?这是因为中子打在锂上就会产生氚,同时氘化锂中的氘和氘发生反应也可产生氚和中子。
氢弹的结构比原子弹复杂得多,它要装一个小型原子弹做引爆装置。
小原子弹引爆后释放出中子流并形成超高温、超高压环境,中子流与热核材料作用使氘和氚原子核结合成氦原子核,并释放出巨大能量和新的中子,继而又产生新的聚变反应,如此连续发展下去,直至产生热核爆炸。
由于热核材料不受临界质量限制,氢弹可以制成比原
子弹威力大得多的核武器。
现代氢弹威力可以做到几万吨、几百万吨和几千万吨梯恩梯当量。
3、中子弹也是一种利用核材料聚变反应放出巨大能量的原理制成的核武器,因此又被称为特殊的氢弹。
由于它是利用轻核聚变时产生的大量高能中子进行杀伤破坏的一种小型核武器,故又被称为以高能中子辐射为主要杀伤力的小型氢弹。
在中子弹中,引爆用的原子弹更小,只有几百吨梯恩梯当量。
这种原子弹是用钚-239制成的,因其比铀装药能释放更多的中子,可使中子弹小型化。
中子弹主要核装药是氘和氚的混合物,而不是氘化锂。
因为氘和氚聚变反应所放出的中子比裂变反应所放出的中子多得多,而锂可以吸收大部分中子。
中子弹的外壳一般不用铀-238制作,而是采用铍和铍合金做成,这样高能中子可以自由逸出,同时使放射性污染的范围比较小。
中子弹的当量较小,一般威力为1千吨梯恩梯当量,要求引爆用的原子弹更小,使其制造难度增大。
中子弹的爆炸能由聚变反应产生,并主要以快中子流的形式向四周释放。
它的核辐射效应特别大,因此其正确名称应是增强的辐射武器。
凡是核武器都具有核辐射、冲击波、光辐射、放射性污染和电磁脉冲等杀伤力,但对三种核弹来说,这五种因素各自体现的比例都是不同的。
同时在不同的爆炸方式下,各种杀伤破坏因素在释放的总能
量中所占的比例也不完全相同。
大体来说,原子弹爆炸时,冲击波和光辐射占能量的85%,其它3种因素占15%;氢弹爆炸时,冲击波和
光辐射占能量的65%,其它3种因素占35%;中子弹爆炸时,核辐射
和电磁脉冲占能量的70%以上,其它3种因素占30%以下。
由此可见,氢弹和中子弹虽然都属核聚变武器,但它们的杀伤形式是不同的。
氢弹是以冲击波和光辐射为主来杀伤生命和破坏设施的,而中子弹是以中子辐射为主来杀伤生命的,电磁脉冲是随着中子辐射而出现的占能量较小部分的强脉冲信号。
1千吨梯恩梯当量的中子弹,在距地面90米的低空爆炸时,其冲击波、光辐射和放射性污染的毁
坏作用只限在爆心投影点周围180米的范围之内,而快中子流以及中子流贯穿辐射与周围介质原子互相作用产生的电磁脉冲的杀伤半径
却可达800米的距离。
中子的贯穿作用很强,它可以穿透坦克、掩体和砖墙去杀伤人员,而武器和建设物却能完好的保存下来。
由于中子弹放射性污染比较低,因而被称为“清洁的”核弹。
此外,中子流作用的时间很短,在中子弹袭击之后,军队能很快进入目标区作战。
这些特点,决定了中子弹可作为战术核武器使用。
二、核反应堆
核电站是利用在动力反应堆中进行的核裂变反应所产生的热能
来发电的动力设施。
目前世界上核电站采用的反应堆有压水堆、沸水堆、重水堆、快堆以及高温气冷堆等,但比较广泛使用的是压水反应
堆,约占核电总装机容量的70%。
压水反应堆是以普通水作冷却剂和慢化剂,它是从军用堆基础上发展起来的最成熟、最成功的动力堆堆型。
原子世界上一切物质都由原子构成。
原子由带正电的原子核和围绕它高速旋转的带负电的电子构成,原子核由质子和中子构成。
链式核裂变反应中子撞击原子核引起原子核裂变,裂变的过程释放出能量,同时又产生了新的中子。
新产生的中子引起新的原子核裂变,裂变反应连续不断地进行下去,同时不断产生能量。
这个过程就是链式核裂变反应。
核能铀-235原子核在中子的轰击下可以发生核裂
变并同时放出能量,此外,铀-233、钚-239等也能产生核裂变反应,核裂变反应放出的能量就是核能。
经济上有竞争力,基础价(电功率)比投资小于每千瓦1000美元,
发电成本低于3美分每千瓦时;能长期持续提供清洁能源,确保燃料得到充分利用;更高的安全性和可靠性,堆芯熔化概率很小,发生严重事
故时,无需厂外应急计划,可通过核电厂整体实验向公众证明其安全性。