钢结构设计(3)-檩条设计[最新]
檩条设计文档

檩条设计1. 引言檩条是一种用于支撑屋顶、悬挑、天花板等建筑结构的重要构件。
它通常由木材或钢材制成,承担着承重和稳定的功能。
在进行檩条设计时,我们需要考虑到一系列因素,如荷载条件、材料选择、檩条间距等。
本文将介绍檩条设计的关键考虑因素,并提供一些实用的设计准则。
2. 荷载条件在进行檩条设计前,我们需要确定檩条将承受的荷载条件。
这包括静态荷载和动态荷载。
静态荷载是指固定不变的荷载,如屋面的自重、墙体的压力等。
动态荷载是指变化的荷载,如风力、雪载等。
根据不同的荷载条件,我们可以选择不同的檩条截面积和材料。
3. 檩条材料选择檩条的材料选择对其承载能力和耐久性有着重要影响。
常见的材料包括木材和钢材。
3.1 木材木材是传统的檩条材料,其优点包括较低的成本、良好的耐久性和较高的可加工性。
常用的木材有松木、桦木等。
在选择木材时,我们需要考虑到其强度、稳定性和防腐性能。
根据檩条的跨度和荷载条件,可以使用不同尺寸和等级的木材。
3.2 钢材钢材是一种强度较高、耐久性好的檩条材料。
相比于木材,钢材的优点包括更大的承载能力和更小的截面积。
常用的钢材包括角钢、工字钢等。
在选择钢材时,需要考虑到其强度等级和防锈处理。
4. 檩条间距计算檩条间距是指檩条之间的水平距离。
它的大小对整个结构的稳定性和承载能力有着重要影响。
一般来说,檩条间距的计算需要考虑以下因素:•荷载条件:根据不同的荷载条件,需要选择不同的檩条间距。
例如,在受到较大风力荷载的区域,檩条间距可以相对较小,以增强结构的稳定性。
•檩条材料:檩条的材料选择对其承载能力有着重要影响。
根据檩条的材料和强度等级,可以计算出合适的檩条间距。
•檩条截面积:檩条的截面积与其承载能力密切相关。
较大的截面积可以支撑更大的载荷,因此,檩条的间距可以相对较大。
计算檩条间距时,可以采用相关的结构分析和檩条设计软件,以确保结构的稳定性和安全性。
5. 檩条连接方式檩条的连接方式也是檩条设计的重要考虑因素。
檩条设计整理.ppt

因此,为了兼顾两种情况,在风荷载大的地区
或是在屋檐和屋脊处都设置斜拉条,或是把横 拉条和斜拉条都做成可以既承拉力又承压力的 刚性杆。
拉条通常用圆钢做成,圆钢直径不宜小于10mm。
圆钢拉条可设在距檩条上翼缘1/3腹板高度范围 内。
ห้องสมุดไป่ตู้
1 64
q
x
l
2
三分点处各有 一道拉条
拉条处负弯矩
1 90
q
x
l
2
拉条与支座间正弯矩
1 360
q
x
l
2
0.367 qxl
1 8
q
y
l
2
0.5qyl
1.5.4 檩条的截面验算 —强度、整体稳定、变形
强度计算 —按双向受弯构件计算
当屋面能阻止檩条的失稳和扭转时,可按下列强 度公式验算截面:
Mx My f Wenx Weny M x 、 M y ——对截面x轴和y轴的弯距;
1.5.3 檩条的内力分析
设置在刚架斜梁上的檩条在垂直于地面的均布荷
载作用下,沿截面两个形心主轴方向都有弯矩作 用,属于双向受弯构件(与一般受弯构件不同)。
在进行内力分析时,首先要把均布荷载分解为沿
截面形心主轴方向的荷载分量qx 、qy。
C型檩条在荷载作用下计算简图如下:
当屋面坡度 i≤1/3时, qx值较小, 檁条近似为 单向受弯构 件。
的布置有关,当布置一道或两道拉条时,在水 平荷载qx作用下按两跨或三跨连续梁计算。
▪ 3.拉条布置应考虑风荷载影响,按实际受力计
算拉条截面,并满足构造要求。
Y qy
钢结构设计檩条设计

当采用扣合式屋面板时,拉条的设置根据檩条 的稳定计算确定。 刚性撑杆可采用钢管、方钢或角钢做 通常按压杆的刚度要求选择截面: 成,
[λ]≤200
拉条的计算
拉条 斜拉条
拉条 斜拉条
qx
θ
θ
qx
θ
θ
跨中设一道拉条 L≤6米
跨中设二道拉条 L>6米
拉条为檩条的平面外支承点,因此拉条所受拉
力即为檩条承受的水平荷载。拉条支承处支座
强度计算
—按双向受弯构件计算 当屋面能阻止檩条的失稳和扭转时,可按下列强 度公式验算截面:
Mx My f Wenx Weny
ห้องสมุดไป่ตู้Mx 、 My
——对截面x轴和y轴的弯距;
Wenx、Weny ——对两个形心主轴的有效净截面模量
整体稳定计算 当屋面不能阻止檩条的侧向失稳和扭转时(如 采用扣合式屋面板时),应按稳定公式验算截面:
1.5 — 檩条设计
1.5.1 檁条的截面形式
1.5.2 檁条的荷载和荷载组合
1.5.3 檁条的内力分析
1.5.4 檁条的截面选择
1.5.5 檁条的构造要求
返回
1.5.1
檁条的截面形式
热轧型钢
实腹式
截面 形式 格构式
H型钢
冷弯薄壁型钢
下撑式
平面桁架式
空腹式
实腹式檁条的截面形式
热轧型钢
i>1/3 α≈θ
θ
X
檁条近似为沿x 主轴方向单向受 弯。
X X1
α
θ为Z 型檁条两个主轴的夹角;α为屋面坡度。
当跨中设置一道拉条时檁条的计算简图及内力
qy
简支梁的跨中弯矩对X轴:
钢结构基础5.4 钢檩条设计

2、强度计算
My Mx f xWnx y Wny
My Mx f bW x y W y
3、稳定性计算
4、刚度计算
y
5q ky l 4 384EI x
• 钢结构基础
2、檩条与屋架的连接 檩条端部与屋架的连接应能阻止檩条端部截面的扭转, 以增强其整体稳定性。 实腹式和空腹式檩条与屋架的连接宜用檩托,檩条端部 与檩托的连接螺栓应不少于两个,并沿檩条高度方向设置, 见图5.16(a)。当檩条高度较小(小于120㎜),排列两 个螺栓有困难时,也可改为沿檩条长度方向设置,见图 5.16(b)。螺栓直径根据檩条的截面大小,可取M12 ~M16。
(a) (b) (c条的拉条和撑杆 (1) 拉条和撑杆的设置 设置、作用
(a) (b) 图 5.18 拉条和撑杆的布置图
• 钢结构基础
(2)拉条和撑杆与檩条的连接
(3)斜拉条与屋架的连接
• 钢结构基础 5.4.3檩条的计算 实腹式檩条的内力分析、强度、稳定性及刚度计算。 在屋面荷载作用下,实腹式檩条应按在两个主轴平面内 受弯的构件(双向弯曲梁)进行计算。其步骤为: 1 内力计算 (1) 荷载取值 永久荷载主要考虑屋面材料重量(包括防水层、保温层、 隔热层等)、檩条自重等。 可变荷载有屋面均布活荷载、雪荷载、积灰荷载、检修集 中荷载和风荷载等,其值可按《建筑结构荷载规范》或当 地资料取用。
(a) (b) 图 5.16 实腹式檩条端部连接
• 钢结构基础
当屋面坡度与屋面荷载较小时,也可用钢板直接焊于 屋架上弦作为檩托,见图5.17(a)。 轻型H型钢檩条,当截面高度h≤200㎜时,可直接用 螺栓与屋架连接,见图5.17(b);当截面高度h>200㎜时, 需将下翼缘切去半肢设檩托与屋架连接,见图5.17(c)。
2021年-檩条参数设计

-------------------------------|连续檩条设计||||构件: CLT1||日期: 2010/12/21||时间: 09:05:18|------------------------------------ 设计信息-----钢材: Q235檩条间距 (m): 1.500连续檩条跨数: 5 跨及以上边跨跨度 (m): 6.000中间跨跨度 (m) : 6.000设置拉条数:1【一般设置 2 道】拉条作用:约束上翼缘【约束位置取在何处?当采取门规附录 F 时,“约束下翼缘”无效,计算长度取全长。
】屋面倾角 (度 ): 5.711【可以根据建筑图自己去计算】屋面材料:压型钢板屋面(无吊顶 )【铝板怎么选取?按铝的重度乘以铝板的厚度,一般铝板厚度很薄才几毫米。
】验算规范:《门式刚架轻型房屋钢结构技术规程》(CECS102:2002)风吸力作用下翼缘受压稳定验算方法:按附录 E 验算解析:方法一(按门规CECS102:2002 计算 [风吸力作用按附录 E 计算 ])适用于仅在靠近檩条的上翼缘侧(或墙梁的外翼缘侧)单侧设置拉条情况;方法二(按冷弯薄壁型钢规范GB50018-2002 计算)方法三(按门规CECS102:2002 计算 [风吸力作用按式( 6.3.7-2)计算 ])方法二、三:拉条设置在靠近檩条的下翼缘侧(或墙梁的内翼缘侧),或者两侧均设置拉条,方法二与方法三之间的差别主要在薄钢规范与门规在挠度的控制限制不一样。
屋面板惯性矩(mm4) : 200000.000【如何取截面计算?】屋面板跨数:双跨或多跨容许挠度限值[ υ ]: l/150边跨挠度限值: 40.000 (mm)中跨挠度限值: 40.000 (mm)屋面板能否阻止檩条上翼缘受压侧向失稳:能【应该是看屋面材料的吧?比如压型钢板的刚度大可以阻止,而铝板能阻止侧向失稳吗?】是否采用构造保证檩条风吸力下翼缘受压侧向失稳:不采用【什么情况下采用?】计算檩条截面自重作用:计算活荷作用方式: 考虑最不利布置【对于连续跨才有不利布置,单跨是不存在的】强度计算净截面系数: 1.000【如何取值?依据?】建议保留该值搭接双檩刚度折减系数:0.500【如何取值?依据?】建议保留该值支座负弯矩调幅系数:0.900【同混凝土结构0.8~0.9 吗?】有关资料建议可以考虑释放支座弯矩的10%即调幅系数为0.9。
钢结构檩条参数设计

1 钢结构檩条、墙梁工具箱中“屋面板能阻止檩条上翼缘侧向失稳”、“墙板能阻止墙梁外翼缘侧向失稳”的选项何时可以勾选?图1 参数首先勾选了“屋面板能阻止檩条上翼缘侧向失稳”、“墙板能阻止墙梁外翼缘侧向失稳”这个选项之后,程序不会进行檩条、墙梁在上翼缘、外翼缘受压时的整体稳定验算。
根据《冷弯薄壁型钢结构技术规范》GB50018-2002(以下简称薄钢规)中的要求:只有屋面板材与檩条有牢固的连接,即用自攻螺钉、螺栓、拉铆钉和射钉等与檩条牢固连接,且屋面板材有足够的刚度(例如压型钢板),才可认为能阻止檩条侧向失稳和扭转,可不验算其稳定性。
此时可以勾选“屋面板能阻止檩条上翼缘侧向失稳” “墙板能阻止墙梁外翼缘侧向失稳”选项,不验算该稳定应力。
对塑料瓦材料等刚度较弱的瓦材或屋面板材与模条未牢固连接的情况,例如卡固在檩条支架上的压型钢板(扣板),板材在使用状态下可自由滑动,即屋面板材与檩条未牢固连接,如下图[2]所示的连接片连接时,连接片是可滑移的,扭转刚度没有保证,不能阻止檩条侧向失稳和扭转,应按公式8.1.1-2验算檩条的稳定性,此时不能勾选该选项。
墙板能约束墙梁外翼缘与屋面板的要求类似。
图22 钢结构檩条工具箱中的“构造保证下翼缘风吸力作用稳定性”何时勾选?檩条在风吸力作用下处于下翼缘受压的状态,此时需要进行风吸力组合下的稳定。
应按照薄钢规进行验算,而在勾选了“构造保证下翼缘风吸力作用稳定性”后,程序将不再验算风吸力作用下的稳定应力。
根据门式刚架规范中的9.1.5-3条“当受压下翼缘有内衬板约束且能防止檩条扭转时,整体稳定性可不计算”,也就是说在檩条下翼缘位置布置有内衬板,且内衬板与檩条之间是可靠连接时,可以考虑此项。
同时有人提出当设置下层拉条,且拉力位于距离下翼缘1/3腹板高度范围内时,也可以认为构造保证下翼缘稳定,事实是不是这样的呢?笔者认为设置下层拉条后不能保证下翼缘的稳定就不用计算了,此时下翼缘稳定仍然需要进行验算,门式刚架规范中对于内衬板对于檩条下翼缘的约束已经做出了解释,在9.1.5条条文说明中提到“当有内衬板固定在檩条下翼缘时,相当于有密集的小拉条在侧向约束下翼缘,故无需考虑整体稳定性”。
檩条设计方案

檩条设计方案檩条设计方案1. 简介本文档旨在提供一种檩条设计方案,用于搭建建筑物、屋顶或其他结构的檩条支撑系统。
檩条是连接支撑框架和覆盖材料的关键组件,具有承重和支撑作用。
本设计方案将介绍檩条的材料选择、尺寸计算、安装方法等关键要点。
2. 材料选择选择合适的材料对于檩条的强度和耐用性至关重要。
以下是几种常用的檩条材料:•木材:木材是最常见的檩条材料之一,适用于大多数建筑和结构。
常用的木材包括松木、云杉木和橡木等。
选择木材时,需要考虑其强度、耐久性和防腐性能。
•钢材:钢材具有高强度和耐久性,特别适用于需要额外支撑的大型建筑物或特殊结构。
常用的钢材包括角钢、工字钢和方钢等。
使用钢材时,需要注意其防腐性能和防锈处理。
•铝材:铝材具有轻质和耐腐蚀的特点,适用于需要减轻重量的结构。
铝合金檩条可以提供足够的强度和稳定性。
选择铝材时,需要考虑其强度和耐久性。
根据具体的建筑物类型、设计要求和预算限制,选择合适的材料进行檩条制造。
3. 尺寸计算檩条的尺寸应按照结构设计要求和预期荷载进行计算。
以下是一些常见的尺寸计算指导:•横截面尺寸:檩条的横截面尺寸应根据所需的强度和稳定性进行计算。
对于木材檩条,可以使用木材檩条尺寸表进行参考。
对于钢材或铝材檩条,可以根据其强度和承载能力进行计算。
•长度计算:檩条的长度根据具体的建筑尺寸确定。
需要确保檩条能够完全支撑住建筑物或结构的覆盖材料,并具有足够的余量。
•支撑间距:檩条的支撑间距应根据荷载计算和建筑物结构确定。
需要确保檩条均匀分布,能够承受覆盖材料和额外荷载的重量。
通过详细的尺寸计算,可以确保檩条能够满足建筑物结构和荷载要求。
4. 安装方法檩条的安装对于结构的稳定性和安全性至关重要。
以下是一些建议的安装方法:•预制檩条:预制檩条是一种常用的安装方法,通过在工厂中加工和制造好檩条,然后将其运到现场进行安装。
这种方法可以确保檩条的精确尺寸和质量。
•现场制造:对于较大或复杂的檩条,可以选择在现场进行制造。
(整理)檩条设计

6.1檩条设计屋面材料为压型钢板,屋面坡度1/20( 2.86o α=),檩条跨度7.5m,于l/3处各设一道拉条;檩条间距1.50m 。
钢材Q235。
. 6.1.1荷载和内力计算(对水平投影面)(1)永久荷载压型钢板(二层含保温) 0.30 kN/2m 檩条(包括拉条) 0.05 kN/2m(2)可变荷载标准值:屋面均布活荷载0.5 kN/2m ,雪荷载20.25N /k m ,计算时取两者的较大值0.5 kN/2m 。
基本风压=0ω0.55kN/2m 。
(3)永久荷载与屋面活荷载组合:1.2×永久荷载+1.4×活荷载 1)檩条线荷载:标准值:(0.350.50) 1.5 1.275N /k p k m =+⨯= 设计值:(1.20.35 1.40.5) 1.5 1.68N /p k m =⨯+⨯⨯= 则:sin 2.860.084N /o x p p k m == cos2.86 1.678N /o y p p k m ==在刚架最大主平面内(对x 轴)由y p 引起的弯矩设计值(檩条简支):22/81 1.6787.511.862KN ==⨯⨯=⋅x y M p l m在刚架最小主平面内(对y 轴)由x p 引起的弯矩设计值( 3.5<x y p p 采用1/3跨处的负弯矩):22/901900.0847.50.053KN =-=⨯⨯=⋅y x M p l m图6.1 第一种荷载组合下檩条弯矩图2)永久荷载与风荷载组合:1.0×永久荷载+1.4×风荷载 由于房屋总高度为8.4m 可查得其风荷载高度变化系数z μ=1.0。
根据《门式钢架轻型房屋钢结构技术规程》CECS102-2002第58页风荷载体形系数计算方法,取端跨进行计算知s μ=-1.4,垂直屋面的风荷载标准值:20 1.4 1.00.55 1.050.809KN /ωμμω==-⨯⨯⨯=-k s z m 檩条线荷载设计值:1.00.35 1.5sin2.860.0262KN /=⨯⨯⨯=x p m1.40.809 1.50.35 1.5cos2.86 1.175KN /y p m =⨯⨯-⨯⨯= 弯矩设计值(3.5<x y p p 采用1/3跨处的负弯矩):22/818 1.1757.58.262KN ==⨯⨯=⋅x y M p l m 22/9010.02627.50.016KN ==⨯⨯=⋅y x M p l m 按第一种组合为最不利组合计算 6.1.3截面选择与截面特性 (1)选用毛截面的截面尺寸初步选用2507520 2.5C ⨯⨯⨯,查《门式刚架轻型房屋钢结构技术规程》 CECS102-2002附表C 可知其截面特性为:210.48A cm = 8.23/m kg m = 0 1.934=x cm4952.33x I cm = 9.53x i cm = 376.19x W cm =471.31y I cm = 2.69y i cm = 3max 36.86y W cm =3min 12.81y W cm = 0 4.84e cm = 40.2184t I cm = 68415.77w I cm =305.2/75/==t b ,/250/2.5100h t ==, 先按毛截面计算截面的应力(拉为负、压为正)图6.2 檩条在荷载作用下角点编号图662133max 11.862100.05310157.128/76.191036.8610σ⨯-⨯=-=-=⨯⨯y X x y M M N mm W W (压) 662233min 11.862100.05310151.552/76.191012.8110σ⨯⨯=+=-=⨯⨯y X x y M M N mm W W (压) 662333max 11.862100.05310154.252/76.191036.8610σ⨯⨯=+=-=⨯⨯y X x y M M N mm W W (拉) 662433min 11.862100.05310159.817/76.191012.8110σ⨯⨯=-=+=⨯⨯y X x y M M N mm W W (拉) (2)受压杆件稳定系数1)腹板腹板为加劲板件,压力分布不均匀系数: min max 154.252157.1280.9821ψσ==-=->-由《冷弯薄壁型钢结构技术规范》GB50018-2002公式5.6.2查得受压板件的稳定系数:227.8 6.299.787.8 6.29(0.982)9.78(0.982)23.408ψψ=-+=-⨯-+⨯-=k2)上翼缘板上翼缘板为最大压应力作用于部分加劲肋板件的支承力,压力不均匀系数:min max 151.552157.1280.9651ψσ===>-由《冷弯薄壁型钢结构技术规范》GB50018-2002公式5.6.2-3查得受压板件的稳定系数:225.8911.59 6.68 5.8911.590.965 6.680.9650.926ψψ=-+=-⨯+⨯=k(3)受压板件有效宽度1)腹板0.926=c k23.408=k250=b mm75c mm = 2.5t mm =21157.128σ=Nmm1.478 1.1ε===> 其中c k 为邻接板件的受压稳定系数。