量子力学曾谨言第十章第十一章习题答案

合集下载

曾谨言《量子力学导论》第二版的课后答案

曾谨言《量子力学导论》第二版的课后答案

+a
= 2mω a 2 ⋅
得 a2 = (3)
π = mωπ a 2 = n h 2
代入(2) ,解出
E n = nℏω ,
积分公式:
n = 1, 2 , 3 , ⋯ a 2 − u 2 du = u a2 u a2 − u2 + arcsin + c 2 2 a
(4)


1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。 提示:利用
)
[ (
) (
)
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
ℏ2 T= d 3 r∇ψ * ⋅ ∇ψ ∫ 2m
结合式(1) 、 (2)和(3) ,可知能量密度
(3)
w=
且能量平均值
ℏ2 ∇ψ * ⋅ ∇ψ + ψ *Vψ , 2m
(1)
1 mω 2 x 2 。 2
−a
0 a x (2)
a = 2 E / mω 2 ,
x = ± a 即为粒子运动的转折点。有量子化条件
+a
∫ p ⋅ dx = 2 ∫
nh 2ℏn = mωπ mω
−a
1 2m( E − mω 2 x 2 ) dx = 2mω 2 ∫ a 2 − x 2 dx 2 −a
∫= 1, 2 , ⋯ , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量) , pϕ 是运动惯量。按量子化条件


因而平面转子的能量

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-微扰论(圣才出品)

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-微扰论(圣才出品)
8 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

其中 与 a分别表示两个谐振子的坐标,最后一项是刻画两个谐振子相互作用的耦合 项 表示耦合的强度,设 比较小,把 H 中的
看成微扰,而 取为
它表示两个彼此独立的谐振子,它的本征函数及本征能量可分别表为

则能量表示式可改为
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、散射态微扰论 1.散射态的描述 (1)散射(微分)截面、散射总截面和散射振幅的定义
图 10.1 设一束粒子以稳定的入射流密度 (单位时间穿过单位截面的粒子数)入射.由于靶 粒子的作用,设在单位时间内有 个粒子沿 方‘向的立体角 中出射.显然,

3 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)必然有 个实根,记为
.这一系列值即一级修正能量,它相应的
2 / 30
圣才电子书 十万种考研考证电子书、题库视频学习平台

准确到一级微扰修正的能量为
.
(根 代人方程(36),即可求得相应的解,记为

是得出新的零级波函数
如 个根 无重根,则原来的 重简并能级 将完全解除简并,分裂为 条.但如 有部分重根.则能级简尚未完全解除.凡未完全解除简并的能量本征值,相 应的零级波函数仍是不确定的.
由式(6)可以看出,对于 情况,能级是简并的,简并度为(N+1).(为什么?) 以 N=1 为例,能级为二重简并,能量本征值为
相应的本征函数为 记

(或者它们的线性叠加).为表示方便,
并选 与 为基矢,利用谐振子的坐标的矩阵元公式,可以求得微扰 W= 元如下:
的矩阵
可得出能量的一级修正为

量子力学导论答案完整版(下)

量子力学导论答案完整版(下)

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R r μ+= r m R r22μ-= (5)m p +=21μ,m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙(2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p m up m u ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mp p -⨯++⨯= )2)(1(p r P R ⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m u m P m m u m m u m P m m u ⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m mμ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中、和的算术表示式r i p ∇-= R i P ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而xX M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

第11章量子跃迁11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求:(a)跃迁选择定则;(b)设离子原来处于基态,求每秒跃迁到第一激发态的概率.解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为而根据谐振子波函数的递推关系(见习题2.7)可知跃迁选择定则为(b)设初态为谐振子基态(n=0),利用可求出而每秒钟跃迁到第一激发态的概率为11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】10.2 氢原子处于基态,受到脉冲电场作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程如以电场方向作为Z轴,微扰作用势可以表示成在电场作用过程中,波函数满足Schr6dinger方程初始条件为令初始条件(5)亦即以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得以左乘上式两端,并对全空间积分,即得再对t积分,由即得因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为根据选择定则终态量子数必须是即电子只跃迁到各np态(z=1),而且磁量子数m=0.跃迁到各激发态的概率总和为其中a o为Bohr半径.代入式(9)即得电场作用后电子仍留在基态的概率为10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解).解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成以H0表示自由氢原子的Hamilton量,则电场作用过程中总Hamilton量为电子的波函数满足Schr6dinger方程初始条件为为了便于用初等方法求解式(3),我们采取的下列表示形式:的图形如下图所示.注意图11-1式(5)显然也给出同样的结果.利用式(5).,可以将式(1)等价地表示成下面将在相互作用表象中求解方程(3),即令代入式(3),并用算符左乘之,得到其中一般来说,H'和H0不对易,但因H'仅在因此一H',代入式(8)即得再利用式(1'),即得初始条件(4)等价于方程(11)满足初始条件的解显然是代入式(7),即得这是方程(3)的精确解.t>0时(电场作用以后)发现电子仍处于基态的概率为计算中利用了公式利用基态波函数的具体形式容易算出a o为Bohr半径.将上式代入式(15),即得所求概率为这正是上题用微扰论求得的结果,为跃迁到各激发态的概率总和.11.3 考虑一个二能级体系,Hamilton量H0表示为(能量表象)设t=0时刻体系处于基态,后受到微扰H'作用(α,β,γ为实数)求t时刻体系跃迁到激发态的概率.【解答与分析见《量子力学习题精选与剖析》[上],10.4题】10.4 有一个二能级体系,Hamilton量记为H0,能级和能量本征态记为E1,。

量子力学课件(曾谨言)第十章

量子力学课件(曾谨言)第十章
Hnk q xnk (0) (0) (0) k ( x) ( x) (0) (0) n k ( x) (0) (0) n n E n E k En k En
(0) k


(0) k
( x)
( x )+
q


( xk 1,k k 1(0) xk 1,k k 1(0) )
H nk (0) (0) n (0) n E k En

(1)
一级近似波函数
表示对n 求和时, n = k 项必须摒弃. 上式中 n
在一级近似下,能量本征值和本征函数分别为
Ek E
(0) k
E E
(1)
(0) k
Hkk
(0) k
(14a) (14b)
k
(0) k(0)
1.一级近似解
令一级微扰近似波函数表示为 (1) (1) (0) an n
n
(10)
将(10)式代入(6b),得


(0) m
ˆ E 0 H 0 k

1 (1) (0) (0) ˆ a E H n n k
n


ˆ 本征态的正交归一性,得 | 左乘,利用 H 0
此即能量的三级修正.
简并微扰论,对能量的修正,一般则计算到二级:
Ek E
(0) k
E E
(1)
(2)
E
(0) k
| | H nk (0) H kk (0) n E k En
2
对波函数的修正,通常计算到一级:
k
(0) k

(1)

(0) k

量子力学课后习题答案

量子力学课后习题答案

Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2

4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)

k
2
2
(
x)

0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )

1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1

2
[ r
(
r2
ik
) r

r
(
r2
ik
r )]er

k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2

i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为

2
2
d2 dx2

(x) U (x) (x)

E (x)
在各区域的具体形式为:
x0

曾谨言《量子力学教程》(第3版)配套题库【课后习题-微扰论】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-微扰论】

第10章微扰论10.1 设非简谐振子的Hamilton量表示为为实数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似).解:能量的本征值和归一化本征态(无简并)为利用Hermite多项式的递推关系得对于非简并态的微扰论,能量的一级修正为0,因为能量的二级修正值为由式(6)可知,只当m取(n-3),(n-1),(n+1),(n+3)四个值时才有贡献,即由此可得在准确到二级近似下体系能量值为在准确到一级近似下,能量本征函数为10.2 考虑耦合谐振子(λ为实常数,刻画耦合强度).(a)求出的本征值及能级简并度;(b)以第一激发态为例,用简并微扰论计算对能级的影响(一级近似);(c)严格求解H的本征值,并与微扰论计算结果比较,进行讨论,提示作坐标变换,令称为简正坐标,则H可化为两个独立的谐振子。

【详细分析和解答见《量子力学》卷Ⅰ,518~521页】答:Hamilton量为其中与a分别表示两个谐振子的坐标,最后一项是刻画两个谐振子相互作用的耦合项表示耦合的强度,设比较小,把H中的看成微扰,而取为它表示两个彼此独立的谐振子,它的本征函数及本征能量可分别表为令则能量表示式可改为由式(6)可以看出,对于情况,能级是简并的,简并度为(N+1).(为什么?)以N=1为例,能级为二重简并,能量本征值为相应的本征函数为与(或者它们的线性叠加).为表示方便,记并选与为基矢,利用谐振子的坐标的矩阵元公式,可以求得微扰W=的矩阵元如下:可得出能量的一级修正为因此,原来二重简并的能级变成两条,能量分别为能级简并被解除,类似还可以求其他能级的分裂,如下图所示.本题还可以严格求解,作坐标变换,令其逆变换为容易证明因此,Schrodinger方程化为令即于是方程(13)变为是两个彼此独立的谐振子,其解可取为相应的能量为当时,由式(14),得此时例如,N=1的情况,(n1,n2)=(1,O)与(0,1),相应的能量分别为能级分裂这与微扰论计算结果式(8)一致.10.3 一维无限深势阱(0<x<a)中的粒子,受到微扰作用求基态能量的一级修正。

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

《量子力学导论》习题答案(曾谨言版,北京大学)(2)

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章:散射问题[1]用玻恩近似法,求在下列势场中的散射微分截面:(1) ar a r V r V ><⎩⎨⎧-=0)(0(2) 20)(ar e V r V -= )0(>a (3) rer V ar-=β)( )0(>a(4) ar e V r V -=0)( )0(>a (5) 2)(ra r V =(解) (1)先列出玻恩近似法的基本公式。

根据理论,如果散射粒子所在的势场是)(r V 。

粒子质量是μ,粒子的波数是k (因是弹性散射,在散射前后都用此文字表示,它与能量E 的关系是222E kμ=)散射角度是θ,而)(θq 表示以下参数:2sin2)(θθk q = (1)则与散射方向θ对应的散射振幅用下述一维定积分计算⎰∞⋅⋅-=2sin )(2)(dr r qr r V qf μθ (2)是为玻恩的散射振幅公式一般适用于高能量散射,若)()(0a r V r V <-=代入(2):⎰⋅⋅=adr r qr qV f 020sin 2)( μθ利用积分公式qx qx qx qqxdx x cos sin 1sin 2-=⎰于前一式,注意上下限为a 和0。

)c o s s i n (2)(220q qaa qqa q V f --= μθ (3) 微分截面:22242022)c o s s i n (4)()(qqaa qqa qV f -== μθθσ~400~第十一章:量子跃迁[1] 具有电荷q 的离子,在其平衡位置附近作一维简谐振动,在光的照射下发生跃迁,入射光能量密为)(ωρ,波长较长,求:(1)跃迁选择定则。

(2)设离子处于基态,求每秒跃迁到第一激发态的几率。

(解)本题是一维运动,可以假设电磁场力的方向与振动方向一致。

(1)跃迁选择定则:为确定谐振子在光照射下的跃迁选择定则,先计算跃迁速率,因为是随时间作交变的微扰,可以用专门的公式(12)(§11.4,P396))(34//'2222k k k k k k r q W ωρπ→=(1)式中2'→k k r 应理解为谐振子的矢径的矩阵元的平方和,但在一维谐振子情形,→kkr /仅有一项2/kk x )(34//'2222k k k k k k x q W ωρπ= (2)根据谐振子的无微扰能量本征函数来计算这矩阵元 dx x k k k ⎰∞∞-=)0('/ψ (3)式中)(2)(!)0(ax H k ax k kkπψ=,μω=a~446~ 要展开(3)式,可以利用谐振子定态波函数的递推公式: }212{1)0(1)0(1)0(+-++=k k kk k x ψψαψ(4)代入(3),利用波函数的正交归一化关系:mn nxndx δψψ=⎰)0(*)0(dxk k x k k kk k ⎰∞∞-+-++⋅=}212{1)0(1)0(1*)0(''ψψαψ1,1,''21121+-++=k kk kk k δαδα(5)由此知道,对指定的初态k 来说,要使矢径矩阵元(即偶极矩阵元)不为零,末态'k 和初态k 的关系必需是:,1'-=k k 这时21,1'k k x x k k k α==- (6),1'+=k k 这时211,1'+==+k k x x k k k α因得结论:一维谐振子跃迁的选择定则是:初态末态的量子数差数是1。

(2)每秒钟从基态0=k 跃迁到第一激发态的几率可以从(2)式和(7)式得到: )()211(3410222210ωραπq W =)(321010222ωρμωπ q=~447~[2]设有一带电q 的粒子,质量为μ,在宽度为a 的一维无限深势阱中运动,它在入射光照射下发生跃迁,波长a >>λ。

(1)求跃迁的选择定则。

(2)设粒子原来处于基态,求跃迁速率公式。

(解)本题亦是一维运动,并且亦是周期性微扰,故可用前题类似方法。

(1)跃迁选择定则: 按第三章§3.1一维无限深势阱定态波函数是:(原点取在势阱左端)ax k ax k πψsin2)(=(1)根据此式计算矩阵元: dx ax k x ax k ax ax k k ππsinsin2''⋅⋅=⎰=dx axk k axk k x aax ⎰=+--=''])(cos)([cos1ππ利用不定积分公式:2cos sin cos ppx x ppx pxdx x x+⋅=⎰(2)axk k k k ax axk k k k aaxk k k k ax a x k k ππππππ)(sin)()(cos)()(sin )({1'''22'2'''++---+--=~448~aaxk k k k a0'22'2})(cos)(ππ+--222'2')(1)1(4'k kkak kk ---⋅=+π(3)从最后一式知道,要使矩阵元0'≠k k x ,k k +'必需要是奇数。

但这个规律也可以用别种方式叙述,当k k +'是奇数时k k k k k -=-+''2必然也是奇数,因此一维无限深势阱受光照的选择定则是:表示初态和末态的量子数之和(或差)应是个奇数),2,1,0()12('=-=±n n k k因此',k k 二者之中,一个是奇另一个是偶。

(2)跃迁速率:依前题公式(1) )(34'''2222k k kk k k x q W ωρπ=)(]1)1[()(364''2422'22'2222k k kk k kkk q a ωρπ⋅--⋅-⋅=+(4)=±k k '偶数时0'=k k W ,=±k k '奇数时)()(3256''422'22'2222k k k k k kkk hq W ωρππ-⋅=(5)粒子从基态1=k ,跃迁到任何一个偶数态n k 2'=的速率:)()14()(310241,242221,2n n n nqaW ωρπ-=~449~[3]设把处于基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向、电场沿z 轴方向可视作均匀,设电容器突然充电然后放电,电场随时间变化规律是: ⎪⎩⎪⎨⎧><=-)()0()0(0)(10为常数τεετt et t求时间充分长后,氢原子跃迁到2s ,或2p 态的几率。

(解)按照习惯表示法,氢原子的初态(k 态)的波函数是:100ψ,末态('k 态)的波函数是200ψ或m21ψ,它们的显式是如下:1s 态 ar e a -=31001πψ (1)2s 态 ar ear a 23200)2(321--=πψ(2)2p 态 ϕθπψi ar e e a ra ⋅=-s i n )(8123211(3a )ϕθπψi ar ee a ra ---⋅=s i n )(81231,21 (3b )θπψcos )(32123210ar eara-=(3c )~450~这些公式后面都要用来计算几率。

从题意看来,原子所受的微扰是个随时间变化的函数,而且,电场的方向是固定的,与光照射情形不同(光的电磁场是看作各向同性的),因此只能用一般的随时间变化的跃迁振幅公式§ 11-1公式(24)dt eH t C k k i tk k ik k )(0''''1)(ωω-⎰=(4)微扰是指氢原子在此均匀电场中的偶极矩势能:微扰算符Λ'H 在初态k ψ(即100ψ)以及末态(即200ψ或m21ψ)'kψ之间的矩阵元是:将(6)代入(4)先对时间进行积分;并认为充分长时间可以用∞→t 表达:~451~(7)(前式中利用了1)('=-tikkeωω)其次计算偶极矩阵元与无关部分kkez')(,按题意,要求两种跃迁几率,下面分别进行:)21(ss→跃迁,即从态200100ψψ跃迁到的几率:ϕθθπθπϕθddrdreaeraaraezararrsin]1][cos[])2(321[)(2323100,200⋅-=--⎰⎰⎰sincos)2(3212323=⋅-=⎰⎰⎰--∞=ππϕθθθπddrdrearaararr(8)代入(4)中知道ssWC21,0100,200100,200向即自==的跃迁不存在。

再考察)21(ps→的跃迁,由于2p有三种不同态,自1s跃迁到每一态都有一定几率,因而要分别计算再求总和。

ϕθθπθθπϕϕθddrdreaereearaezariarrsin]1][cos[]sin)(81[)(2323100,211⋅=--⎰⎰⎰⎰⎰⎰==-⋅⋅=πθπϕϕϕθθθπ222344cossin8deddreraeiarr(9)~452~ 同理可求 ϕθθπθθπϕϕθd drd r e aer ee ara ez ar i ar rsin ]1][cos []sin )(81[)(2323100,211⋅=---⎰⎰⎰⎰⎰⎰=--⋅⋅=ππϕϕϕθθθπ02022344cos sin 8d ed dre r aei ar (10)ϕθθπθθπd drd r ea er aara ez ar ar sin ]1][cos []cos )(321[)(2323100,200⋅=--⎰⎰⎰⎰⎰⎰∞====-⋅⋅=r r ar d d dr er ae 02022344sin cos 32πθπϕϕθθθπππθπ20)cos 31()32(!432354-⋅-⋅⋅=a aeae 55*732=(11)将三种值分别代入(7),得0,0100,121100,211==-C C相应的跃迁几率(态——态自210100ψψ)因aeE ae E k k 282122'-==-==ωω~453~ 量子力学题解(P454—P473)⋅⋅+=⋅-+=⋅+-==32)83(222222152113215]2)'(21[2220223215]21)'(2[22022|100210|2100210ωωτωωτE ωτωωE τEτa e a e k k a ek a e,C W ,#[4]计算氢原子的第一激发态的自发辐射系数。

(解)按照爱因斯坦辐射理论,这系数是:|34'|2232''r ce A kk kk kk ω=(1) 第一激发态是指E 2的态(四度简并的),从第一激发态只能跃迁到基态E 1。

相关文档
最新文档