【配套K12】度八年级数学上学期期末考试试题(含解析) 新人教版1

合集下载

【配套K12】度八年级数学上学期期末考试试题(A卷,含解析) 新人教版

【配套K12】度八年级数学上学期期末考试试题(A卷,含解析) 新人教版

安徽省阜阳市太和县2015-2016学年度八年级数学上学期期末考试试题(A卷)一、选择题(每题4分,共40分)1.下列计算正确的是()A.2a+3b=5ab B.(﹣1)0=1 C.(ab3)2=ab6D.(x+2)2=x2+42.下面有4个汽车标致图案,其中不是轴对称图形的是()A. B. C. D.3.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣44.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确5.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x6.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形C.十二边形 D.十四边形7.下列语句不正确的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等8.在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定9.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①10.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A. B.C. D.二、填空题(每题4分,共16分)11.计算:a(a+2)﹣(a﹣1)2= .12.如图,已知AB=AD,要使△ABC≌△ADC,那么应添加的一个条件是.13.已知,则的值是.14.如图,在等边△ABC中,AB=6,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是.三、计算题(每题5分,共15分)15.计算:(2﹣1)2﹣(+)(﹣)16.先化简,再求值:,其中.17.解分式方程:=.四、解答题18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.19.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.20.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?21.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为.安徽省阜阳市太和县2015~2016学年度八年级上学期期末数学试卷(A卷)参考答案与试题解析一、选择题(每题4分,共40分)1.下列计算正确的是()A.2a+3b=5ab B.(﹣1)0=1 C.(ab3)2=ab6D.(x+2)2=x2+4【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.【分析】根据同类项合并,0指数幂,幂的乘方和积的乘法法则以及完全平方公式分别计算结果即可判断正误.【解答】解:A、不是同类项,不能合并,错误;B、(﹣1)0=1,正确;C、(ab3)2=a2b6,错误;D、(x+2)2=x2+4x+4,错误;故选B.【点评】此题考查同类项合并,0指数幂,幂的乘方和积的乘法法则以及完全平方公式,涉及的知识点较多.需要一一掌握才能熟练、准确的解题.2.下面有4个汽车标致图案,其中不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念结合4个汽车标志图案的形状求解.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选D.【点评】本题考查了轴对称图形的知识,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【考点】因式分解-提公因式法.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.4.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cm C.63cm或51cm D.以上都不正确【考点】等腰三角形的性质;三角形三边关系.【分析】分别从若腰长为25cm,底边长为13cm与腰长为13cm,底边长为15cm,去分析求解即可求得答案.【解答】解:若腰长为25cm,底边长为13cm,则周长为:25+25+13=63(cm);若腰长为13cm,底边长为15cm,则周长为:25+13+13=51(cm);故它的周长是:63cm或51cm.故选C.【点评】此题考查了等腰三角形的性质.注意分两种情况去分析.5.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.6.若一个多边形的内角和与外角和相加是1800°,则此多边形是()A.八边形B.十边形C.十二边形 D.十四边形【考点】多边形内角与外角.【分析】本题可根据这个多边形的内角和与外角和相加是1800°,列出方程,解出即可.【解答】解:∵一个多边形的内角和与外角和相加是1800°,设这个多边形的边数为n,则依题意可得(n﹣2)×180°+360°=1800°,解得n=10,∴这个多边形是十边形.故选B.【点评】本题主要考查多边形的内角和定理及多边形的外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.7.下列语句不正确的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等【考点】全等三角形的判定.【分析】根据全等形是能够完全重合的两个图形进行分析判断,做题是要对选择项逐个验证,决定取舍.【解答】解:能够完全重合的两个图形叫做全等形.A、根据全等形的定义可知是正确的;B、“两边和一角对应相等的两个三角形”可能是“SSA”,故不正确;C、根据三角形的内、外角的关系可知是正确的;D、根据全等三角形的性质可知是正确的.故选B.【点评】本题考查的是全等图形的判定方法,要认真读题,两边和一角,包括两边的夹角及其中一边的对角,而两边及一边的对角相等是不能判定三角形全等的.8.在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.形状无法确定【考点】三角形内角和定理.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k值,再求出最大的角∠A即可得解.【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【点评】该题主要考查了角形的内角和定理及其应用问题;灵活运用三角形的内角和定理来解题是关键.9.已知∠AOB,求作射线OC,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①【考点】作图—基本作图.【分析】找出依据即可依此画出.【解答】解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD=OE;分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C;作射线OC.故其顺序为②③①.故选C.【点评】本题很简单,只要找出其作图依据便可解答.10.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A. B.C. D.【考点】由实际问题抽象出分式方程.【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.二、填空题(每题4分,共16分)11.计算:a(a+2)﹣(a﹣1)2= 4a﹣1 .【考点】整式的混合运算.【分析】利用整式的混合运算及完全平方公式求解即可.【解答】解:a(a+2)﹣(a﹣1)2=a2+2a﹣a2+2a﹣1,=4a﹣1.故答案为:4a﹣1.【点评】本题主要考查了整式的混合运算,解题的关键是熟记完全平方公式.12.如图,已知AB=AD,要使△ABC≌△ADC,那么应添加的一个条件是答案不唯一,CB=CD,或∠BAC=∠DAC,或∠B=90°、∠D=90°等.【考点】全等三角形的判定.【专题】开放型.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,【解答】解:①添加CB=CD,根据SSS,能判定△ABC≌△ADC;②添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC;③添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC;故答案是:答案不唯一,CB=CD,或∠BAC=∠DAC,或∠B=∠D=90°等.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.已知,则的值是﹣2 .【考点】分式的加减法.【分析】先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=﹣2(a﹣b),再利用等式性质易求的值.【解答】解:∵﹣=,∴=,∴ab=2(b﹣a),∴ab=﹣2(a﹣b),∴=﹣2.故答案是:﹣2.【点评】本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.14.如图,在等边△ABC中,AB=6,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是 3 .【考点】轴对称-最短路线问题.【分析】过C作CN⊥AB于N,交AD于M,连接BM,根据两点之间线段最短和垂线段最短得出此时BM+MN最小,由于C和B关于AD对称,则BM+MN=CN,根据勾股定理求出CN,即可求出答案.【解答】解:过C作CN⊥AB于N,交AD于M,连接BM,则BM+MN最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BM+MN=CN,∵等边△ABC中,AD平分∠CAB,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CM=BM,即BM+MN=CM+MN=CN,∵CN⊥AB,∴∠CNB=90°,CN是∠ACB的平分线,AN=BN(三线合一),∵∠ACB=60°,∴∠BCN=30°,∵AB=6,∴BN=AB=3,在△BCN中,由勾股定理得:CN===3,即BM+MN的最小值是3.故答案为3.【点评】本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.三、计算题(每题5分,共15分)15.计算:(2﹣1)2﹣(+)(﹣)【考点】二次根式的混合运算.【分析】先进行二次根式的乘法运算,然后化简合并.【解答】解:原式=13﹣4﹣(2+2)(﹣)=13﹣4﹣2=11﹣4.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握二次根式的乘法法则和二次根式的化简与合并.16.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣•=3(x+1)﹣(x﹣1)=2x+4,当时,原式=2(﹣2)+4=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.解分式方程:=.【考点】解分式方程.【分析】先去分母,把分式方程转化成整式方程,求出整式方程的解,最后进行检验即可.【解答】解:方程两边都乘以x(x+2)得:2(x+2)=3x,解得:x=4,检验:把x=4代入x(x+2)≠0,所以x=4是原方程的解,即原方程的解为x=4.【点评】本题考查了解分式方程的应用,解此题的关键是能把分式方程转化成整式方程,难度适中.四、解答题18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.19.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.20.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定日期是多少天?【考点】分式方程的应用.【分析】首先设工作总量为1,未知的规定日期为x.则甲单独做需x天,乙队需x+3天.由工作总量=工作时间×工作效率这个公式列方程易求解.【解答】解:设规定日期是x天.则甲单独做需要x天,乙单独做需要(x+3)天,根据题意得:(+)×2+=1,两边同乘经x(x+3),约去分母得,2(x+3)+2x+x(x﹣2)=x(x+3),解这个整式方程,得:x=6,经检验,x=6是原方程的根.答:规定的日期是6天.【点评】考查了分式方程的应用,本题涉及分式方程的应用,难度中等.考生需熟记工作总量=工作时间×工作效率这个公式.21.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是和谐数.(1)36和2016这两个数是和谐数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么?(3)介于1到200之间的所有“和谐数”之和为2500 .【考点】因式分解的应用.【分析】(1)利用36=102﹣82;2016=5052﹣5032说明36是“和谐数”,2016不是“和谐数”;(2)设两个连续偶数为2n,2n+2(n为自然数),则“和谐数”=(2n+2)2﹣(2n)2,利用平方差公式展开得到(2n+2+2n)(2n+2﹣2n)=4(2n+1),然后利用整除性可说明“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”中,最小的为:22﹣02=4,最大的为:502﹣482=196,将它们全部列出不难求出他们的和.【解答】解:(1)36是“和谐数”,2016不是“和谐数”.理由如下:36=102﹣82;2016=5052﹣5032;(2)设两个连续偶数为2k+2和2k(n为自然数),∵(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=(4k+2)×2=4(2k+1),∵4(2k+1)能被4整除,∴“和谐数”一定是4的倍数;(3)介于1到200之间的所有“和谐数”之和,S=(22﹣02)+(42﹣22)+(62﹣42)+…+(502﹣482)=502=2500.故答案是:2500.【点评】本题考查了因式分解的应用:利用因式分解把所求的代数式进行变形,从而达到使计算简化.。

【配套K12】度八年级数学上学期期末考试试题(含解析) 新人教版2

【配套K12】度八年级数学上学期期末考试试题(含解析) 新人教版2

广东省深圳市龙华新区2015-2016学年度八年级数学上学期期末考试试题一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.9的平方根是()A.±3B.3 C.﹣3 D.812.平面直角坐标系内,点A(﹣2,1)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列几组数中不能作为直角三角形的三边长的是()A.,,2 B.9,16,25 C.6,8,10 D.5,12,134.下列各数中,是无理数的是()A. B.﹣2 C.0 D.﹣π5.关于函数y=﹣2x+3,下列说法中不正确的是()A.该函数是一次函数B.该函数的图象经过一、二、四象限C.当x值增大时,函数y值也增大D.当x=﹣1时,y=56.在一次“中华好诗词”比赛中,某参赛小组的得分如下:95,85,95,85,80,95,90.这组数据的众数和中位数分别是()A.95,90 B.95,85 C.90,95 D.80,857.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20° B.40° C.50° D.70°8.如图,已知数轴上的点A、B、O、C、D、E分别表示数﹣3、﹣2、0、1、2、3,则表示数﹣1+的点P应落在线段()A.AB上B.OC上C.CD上D.DE上9.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为510.下列命题中是真命题的是()A.算术平方根等于自身的数只有1B.是最简二次根式C.有一个角等于60°的三角形是等边三角形D.两角及其夹边分别相等的两个三角形全等11.已知函数y=k1x+b1与函数y=k2x+b2的图象如图所示,则方程组的解为()A. B. C. D.12.张老师到文具店购买A、B两种文具,A种文具每件2.5元,B种文具每件1元,共花了30元钱,则可供他选择的购买方案的个数为(两样都买)()A.4 B.5 C.6 D.7二、填空题(每小题3分,共12分)请把答案填在答题卷相应的表格里.13.在平面直角坐标系内,若点A(a,﹣3)与点B(2,b)关于原点对称,则a+b的值为.14.在一次数学单元测试中,A、B两个学习小组成员的成绩如图所示,则在这次测试中,这两个小组的数学成绩较为稳定的一组是(填“A组”、“B组”或“一样”)15.如图是一个棱长为10cm的正方体盒子,现需从底部A点处起,沿盒子的三个表面到顶部的B点处张贴一条彩色纸带(纸带的宽度忽略不计),则所需纸带的最短长度是= cm.16.如图,△ABC中,AB=AC,点D为AC上一点,且BD=BC.将△BCD沿直线BD折叠后,点C落在AB上的点E处,若AE=DE,则∠A的度数为.三、解答题(本题共7小题,共52分)17.计算题(1)+×(+)(2)﹣(﹣)2+|﹣|18.解方程组(1)(2).19.本学期初,我市教育部门对某中学从学生的品德、身心、学习、创新、国际、审美、信息、生活八个方面进行了综合评价,评价小组从2015~2016学年度八年级学生中选取部分学生针对“信息素养”进行测试,并将测试结果绘制成如下统计图(如图).根据图中信息,解答下列问题:(1)本次选取参加测试的学生人数是;(2)学生“信息素养”得分的中位数是;(3)若把每组中各个分数用这组数据的中间值代替(如30﹣40分的中间值为35分),则参加测试的学生的平均分为分.20.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠A CE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.购票人数/人1﹣50 51每人门票价/元80 751)班人数少于50人,(2)班人数有50多人,如果两班都以班为单位单独购票,则一共支付7965元;如果两班联合起来作为一个团体购票,则只需花费7210元.两个班各有多少名学生?22.某食品公司产销一种食品,已知每月的生产成本y1与产量x之间是一次函数关系,函数y1与自(1)求y1与x之间的函数关系式;(2)经过试销发现,这种食品每月的销售收入y2(元)与销量x(kg)之间满足如图所示的函数关系①y2与x之间的函数关系式为;②假设该公司每月生产的该种食品均能全部售出,那么该公司每月至少要生产该种食品多少kg,才不会亏损?23.如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.(1)点A的坐标是,点B的坐标是,点P的坐标是;(2)将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;(3)求△PQR的面积.广东省深圳市龙华新区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.9的平方根是()A.±3B.3 C.﹣3 D.81【考点】平方根.【专题】计算题.【分析】直接根据平方根的定义求解即可.【解答】解:∵(±3)2=9,∴9的平方根为±3.故选A.【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作±(a≥0).2.平面直角坐标系内,点A(﹣2,1)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据点A的横坐标2>0,纵坐标﹣1<0,可判断点A在第四象限.【解答】解:∵点A的横坐标2>0为正,纵坐标﹣1<0为负,∴点A在第四象限.故选D.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.解决本题的关键就是记住个象限内点的坐标的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.下列几组数中不能作为直角三角形的三边长的是()A.,,2 B.9,16,25 C.6,8,10 D.5,12,13【考点】勾股定理的逆定理.【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【解答】解:A、()2+()2=22,能作为直角三角形的三边长,故本选项不符合题意.B、92+162≠252,不能作为直角三角形的三边长,故本选项符合题意.C、62+82=102,能作为直角三角形的三边长,故本选项不符合题意.D、52+122=132,能作为直角三角形的三边长,故本选项不符合题意.故选B.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.4.下列各数中,是无理数的是()A. B.﹣2 C.0 D.﹣π【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=2,﹣π为无理数.故选D.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.关于函数y=﹣2x+3,下列说法中不正确的是()A.该函数是一次函数B.该函数的图象经过一、二、四象限C.当x值增大时,函数y值也增大D.当x=﹣1时,y=5【考点】一次函数的性质.【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:A、函数y=﹣2x+3符合一次函数的一般形式,故本选项正确;B、∵函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴该函数的图象经过一、二、四象限,故本选项正确;C、∵函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴当x值增大时,函数y值减小,故本选项错误;D、当x=﹣1时,y=2+3=5,故本选项正确.故选C.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.6.在一次“中华好诗词”比赛中,某参赛小组的得分如下:95,85,95,85,80,95,90.这组数据的众数和中位数分别是()A.95,90 B.95,85 C.90,95 D.80,85【考点】众数;中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:80,85,85,90,95,95,95,则众数为95,中位数为90.故选A.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=130°,则∠D的度数是()A.20° B.40° C.50° D.70°【考点】平行线的性质;直角三角形的性质.【分析】根据平行线的性质求出∠C,求出∠DEC,根据三角形内角和定理求出即可.【解答】解:∵AB∥CD,∴∠A+∠C=180°,∵∠A=130°,∴∠C=50°,∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=40°,故选B.【点评】本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解此题的关键.8.如图,已知数轴上的点A、B、O、C、D、E分别表示数﹣3、﹣2、0、1、2、3,则表示数﹣1+的点P应落在线段()A.AB上B.OC上C.CD上D.DE上【考点】实数与数轴;估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案.【解答】解:由被开方数越大算术平方根越大,得2<<3.由不等式的性质,得1<﹣1+<2,P点在CD上.故选:C.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.9.某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A.甲、乙两地之间的距离为60kmB.他从甲地到乙地的平均速度为30km/hC.当他离甲地15km时,他骑车的时间为1hD.若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为5【考点】函数的图象.【分析】根据函数图象的纵坐标,可得甲乙两地的距离,根据甲乙两地的路程除以时间,可得答案.【解答】解:A、由纵坐标看出甲、乙两地之间的距离为30km,故A错误;B、他从甲地到乙地的平均速度为30÷2=15千米/小时,故B错误;C、当他离甲地15km时,他骑车的时间为1h,返回时2.5小时,故C错误;D、若他从乙地返回甲地的平均速度为10km/h,返回时30÷10=3小时,2+3=5,则点A表示的数字为5,故D正确;故选:D.【点评】本题考查了函数图象,观察纵坐标得出路程,观察横坐标得出时间是解题关键.10.下列命题中是真命题的是()A.算术平方根等于自身的数只有1B.是最简二次根式C.有一个角等于60°的三角形是等边三角形D.两角及其夹边分别相等的两个三角形全等【考点】命题与定理.【分析】利用算术平均数、最简二次根式、等边三角形的判定及全等三角形的判定分别判断后即可确定正确的选项.【解答】解:A、算术平均数等于自身的数为1和0,故错误,为假命题;B、不是最简二次根式,错误,为假命题;C、有一个角等于60°的等腰三角形是等边三角形,故错误,为假命题;D、两角及其夹边相等的两个三角形全等,故正确,为真命题,故选D.【点评】本题考查了命题与定理的知识,解题的关键是能够了解算术平均数、最简二次根式、等边三角形的判定及全等三角形的判定,难度不大.11.已知函数y=k1x+b1与函数y=k2x+b2的图象如图所示,则方程组的解为()A. B. C. D.【考点】一次函数与二元一次方程(组).【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点就是二元一次方程组的解可直接得到答案.【解答】解:∵函数y=k1x+b1与函数y=k2x+b2的图象交于点(1,4),∴二元一次方程组的解为,故选C.【点评】本题主要考查了一次函数与二元一次方程(组)的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.12.张老师到文具店购买A、B两种文具,A种文具每件2.5元,B种文具每件1元,共花了30元钱,则可供他选择的购买方案的个数为(两样都买)()A.4 B.5 C.6 D.7【考点】二元一次方程的应用.【分析】设买A种文具为x件,B种文具为y件,根据“A种文具每件2.5元,B种文具每件1元,共花了30元钱”列出方程并解答.注意x、y的取值范围.【解答】解:设买A种文具为x件,B种文具为y件,依题意得:2.5x+y=30,则y=30﹣2.5x.∵x、y为正整数,∴当x=2时,y=25;当x=4时,y=20;当x=6时,y=15;当x=8时,y=10;当x=10时,y=5;当x=12时,y=0(舍去);综上所述,共有5种购买方案.故选:B.【点评】此题主要考查了二元一次方程的应用,解题的关键是弄清楚题意,找到题中的等量关系,列出方程解答问题.二、填空题(每小题3分,共12分)请把答案填在答题卷相应的表格里.13.在平面直角坐标系内,若点A(a,﹣3)与点B(2,b)关于原点对称,则a+b的值为 1 .【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,进而可得a+b的值.【解答】解:∵点A(a,﹣3)与点B(2,b)关于原点对称,∴a=﹣2,b=3,故答案为:1.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.14.在一次数学单元测试中,A、B两个学习小组成员的成绩如图所示,则在这次测试中,这两个小组的数学成绩较为稳定的一组是A组(填“A组”、“B组”或“一样”)【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:根据条形统计图可得:A组波动比较小,B组波动比较大,则两个小组的数学成绩较为稳定的一组是A组.故答案为:A组.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.如图是一个棱长为10cm的正方体盒子,现需从底部A点处起,沿盒子的三个表面到顶部的B点处张贴一条彩色纸带(纸带的宽度忽略不计),则所需纸带的最短长度是= 10 cm.【考点】平面展开-最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AB2=102+(10+10+10)2=10×102,故AB=10cm.故答案为.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.16.如图,△ABC中,AB=AC,点D为AC上一点,且BD=BC.将△BCD沿直线BD折叠后,点C落在AB上的点E处,若AE=DE,则∠A的度数为36°.【考点】翻折变换(折叠问题).【分析】设∠A=x°,由AE=DE,根据等腰三角形的性质,可求得∠ADE=x°,然后由三角形的外角的性质,求得∠AED=2x°,再利用折叠的性质与等腰三角形的性质,即可得∠C=∠BDC=2x°,∠CBD=x°,然后由三角形内角和定理,求得方程x+2x+2x=180,继而求得答案.【解答】解:设∠A=x°,∵AE=DE,∴∠ADE=∠A=x°,∴∠BEC=∠A+∠ADE=2x°,由折叠的性质可得:∠C=∠BEC=2x°,∴∠BDC=∠C=2x°,∴∠ABD=∠BD C﹣∠A=x°,∴∠CBD=∠ABD=x°,在△BCD中,∠C+∠CBD+∠BDC=180°,∴x+2x+2x=180,解得:x=36,∴∠A=36°.故答案为:36°.【点评】此题考查了折叠的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.注意根据题意得到方程x+2x+2x=180是关键.三、解答题(本题共7小题,共52分)17.计算题(1)+×(+)(2)﹣(﹣)2+|﹣|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根定义,二次根式乘法法则计算即可得到结果;(2)原式利用二次根式乘除法则,完全平方公式,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式═﹣2++=﹣2+2+2=2;(2)原式=+﹣(3﹣2+2)+=2+3﹣5+3=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程组(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.【解答】解:(1),①+②得:4x=4,即x=1,把x=1代入①得:1+y=6,解得:y=5,则原方程组的解为;(2),①×3﹣②得:7x=﹣14,即x=﹣2,把x=﹣2代入①得:﹣8﹣3y=﹣17,解得:y=3,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.本学期初,我市教育部门对某中学从学生的品德、身心、学习、创新、国际、审美、信息、生活八个方面进行了综合评价,评价小组从2015~2016学年度八年级学生中选取部分学生针对“信息素养”进行测试,并将测试结果绘制成如下统计图(如图).根据图中信息,解答下列问题:(1)本次选取参加测试的学生人数是50 ;(2)学生“信息素养”得分的中位数是70分~80分组;(3)若把每组中各个分数用这组数据的中间值代替(如30﹣40分的中间值为35分),则参加测试的学生的平均分为73.8 分.【考点】频数(率)分布直方图;加权平均数;中位数.【分析】(1)把图中所有各分数段参加测试的学生人数相加即可;(2)根据数据的个数确定中位数即可;(3)利用平均数的计算方法直接计算得出答案即可.【解答】解:(1)8+10+16+12+4=50;(2)学生“信息素养”得分的中位数是70分~80分组;(3)(8×55+10×65+16×75+12×85+4×95)÷50=3690÷50=73.8(分)答:参加测试的学生的平均分为73.8分.故答案为:50;70分~80分组;73.8.【点评】此题考查频数分布直方图,中位数以及加权平均数的计算方法,从图中获取信息,理解题意,正确利用基本概念和基本方法解决问题.20.如图,△A BC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.【考点】等腰三角形的性质;平行线的判定.【分析】(1)根据三角形的性质得到∠B=∠BAC,由三角形外角的性质得到∠ACE=∠B+∠BAC,求得∠BAC=,由角平分线的定义得到∠ACF=∠ECF=,等量代换得到∠BAC=∠ACF,根据平行线的判定定理即可得到结论;(2)由等量代换得到∠ACF=∠ADF,根据三角形的内角和得到∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,由于∠AGD=∠CGF,即可得到结论.【解答】(1)证明:∵AC=BC,∴∠B=∠BAC,∵∠ACE=∠B+∠BAC,∴∠BAC=,∵CF平分∠ACE,∴∠ACF=∠ECF=,∴∠BAC=∠ACF,∴CF∥AB;(2)解:∵∠BAC=∠ACF,∠B=∠BAC,∠ADF=∠B,∴∠ACF=∠ADF,∵∠ADF+∠CAD+∠AGD=180°,∠ACF+∠F+∠CGF=180°,又∵∠AGD=∠CGF,∴∠F=∠CAD=20°.【点评】本题考查了等腰三角形的性质,平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握等腰三角形的性质是解题的关键.某校2015~2016学年度八年级(1)、(2)两班共100多人计划去游览该景点,其中(1)班人数少于50人,(2)班人数有50多人,如果两班都以班为单位单独购票,则一共支付7965元;如果两班联合起来作为一个团体购票,则只需花费7210元.两个班各有多少名学生?【考点】二元一次方程组的应用.【分析】首先设(1)班有x名学生,(2)班有y名学生,结合(1)班人数×80+(2)班人数×75=7965,再利用两班联合起来作为一个团体购票,只需花费7210元,分别得出等式求出答案.【解答】解:设(1)班有x名学生,(2)班有y名学生,由题意得:,解得:,答:(1)班有48名学生,(2)班有55名学生.【点评】此题主要考查了二元一次方程组的应用,根据题意得出正确等量关系是解题关键.22.某食品公司产销一种食品,已知每月的生产成本y1与产量x之间是一次函数关系,函数y1与自1(2)经过试销发现,这种食品每月的销售收入y2(元)与销量x(kg)之间满足如图所示的函数关系①y2与x之间的函数关系式为Y=5X ;②假设该公司每月生产的该种食品均能全部售出,那么该公司每月至少要生产该种食品多少kg,才不会亏损?【考点】一次函数的应用.【专题】常规题型.【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式.(2)利用利润问题中的等量关系解决这个问题.【解答】解:(1)设y1=kx+b,由已知得:,解得:.给所求的函数关系式为y1=3x+3000.(2)y2=5x,(3)由y1=y2得 5x=3x+3000,解得x=1500.答:每月至少要生产该种食品1500kg,才不会亏损.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.23.如图,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,与直线l2:y=﹣x交于点P.直线l3:y=﹣x+4与x轴交于点C,与y轴交于点D,与直线l1交于点Q,与直线l2交于点R.(1)点A的坐标是(﹣3,0),点B的坐标是(0,3),点P的坐标是(﹣2,1);(2)将△POB沿y轴折叠后,点P的对应点为P′,试判断点P′是否在直线l3上,并说明理由;(3)求△PQR的面积.【考点】两条直线相交或平行问题.【分析】(1)直线l1:y=x+3与x轴交于点A,与y轴交于点B,令y=0,求得x=﹣3,令x=0,求得y=3,得到A、B的坐标将直线l1:y=x+3和直线l2:y=﹣x联立组成有关x、y的方程组,解方程就能求出两直线的交点P坐标;(2)求得P′的坐标,代入y=﹣x+4即可判断;(3)求得Q、R、C点的坐标,然后根据即可求得.【解答】解:(1)∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴令y=0,求得x=﹣3,令x=0,求得y=3,∴A(﹣3,0)、B(0,3),∵直线l1与直线l2y=﹣x交于点P.∴解得,∴P(﹣2,1),故答案为:(﹣3,0),(0,3),(﹣2,1);(2)点Pʹ在直线l3上∵P(﹣2,1),且将△POB沿y轴折叠后,点Pʹ与点P关于y轴对称,∴Pʹ(2,1),当x=2时,代入y=﹣x+4得y=﹣×2+4=1,∴点Pʹ在直线l3上;(3)分别过点P作PE⊥x轴于F,过点Q作QF⊥x轴于F,过点R作RG⊥x轴于G,由得,∴Q(,),由得∴R(4,﹣2),对于y=﹣x+4,则y=0得x=,∴C(,0),∴S△AQC=AC×QF=×(+3)×=,S△OCR=OC•GR=××2=,S△AOP=OA•PE=×3×1=,∴S△PQR=S△AQC+S△OCR﹣S△AOP=+﹣=.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.。

上学期期末考试初二数学试卷(含答案)(K12教育文档)

上学期期末考试初二数学试卷(含答案)(K12教育文档)

(直打版)上学期期末考试初二数学试卷(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)上学期期末考试初二数学试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)上学期期末考试初二数学试卷(含答案)(word版可编辑修改)的全部内容。

2013—2014学年上学期期末考试初二数学试卷友情提示:本试卷分为“试题”和“答题卡"两部分,请把答案写在答题卡的相应位置。

一、精心选一选(本大题共8小题,每小题2分,共16分) 1。

在实数0,-3,32-,|-2|中,最小的是( ).A .32-B . -3C .0D .|-2|2. 下列计算正确的是( )(A )32x x x =⋅ (B )2x x x =+(C)532)(x x =(D )236x x x =÷3. 4的平方根是( )A 。

2B 。

2 C 。

16 D 。

164. 当分式21+-x x 的值为0时,x 的值是( ) (A )0 (B)1 (C )-1 (D )-25. 一次函数23y x =-的图象不经过...( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限6。

已知2111=-b a ,则ba ab-的值是( ) A.21 B 。

-21C.2 D 。

-2 7.两直线1:,12:21+=-=x y l x y l 的交点坐标为( )A .(—2,3)B .(2,-3)C .(—2,—3)D .(2,3)8. 某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y (升)与时间x (分)之间的函数关系对应的图象大致为( )二、细心填一填(本大题共8小题,每小题2分,共16分)9. (4ab 3-8a 2b 2)÷4ab=。

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。

八年级上册期末考试数学试题及答案【新课标人教版】(K12教育文档)

八年级上册期末考试数学试题及答案【新课标人教版】(K12教育文档)

八年级上册期末考试数学试题及答案【新课标人教版】(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级上册期末考试数学试题及答案【新课标人教版】(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级上册期末考试数学试题及答案【新课标人教版】(word版可编辑修改)的全部内容。

八年级上册期末考试一、选择题:1. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C 。

7 D 。

92.与3—2相等的是( )A.91 B 。

91- C 。

9 D.-9 3。

当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。

x >2 C.x ≠2 D 。

x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。

1,2,3B.1,5,5 C 。

3,3,6 D 。

4,5,6 5。

下列式子一定成立的是( )A 。

3232a a a =+ B.632a a a =• C. ()623a a = D 。

326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A 。

6 B 。

7 C 。

8 D.97。

空气质量检测数据pm2。

5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0。

000001米,2.5微米用科学记数法可表示为( )米. A 。

2.5×106B 。

2。

5×105C.2.5×10—5D.2.5×10—68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( ). A.50° B 。

【配套K12】八年级数学上学期期末考试试题(含解析) 新人教版5

【配套K12】八年级数学上学期期末考试试题(含解析) 新人教版5

山西省大同市矿区十二校联考2015-2016学年八年级数学上学期期末试题一、选择题(每小题3分,共30分)1.如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为( )A.60° B.40° C.30° D.45°2.如图所示,AB∥DE,CD=BF且D、C、F、B在一条直线上,若要证明△ABC≌△EDF,还需要补充的条件是( )A.AC=EF B.DF=BC C.∠B=∠D D.AB=ED3.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,在△ABC中,AB边的垂直平分线分别交BC、AB于点D、E,AB=7cm,△ADC的周长为9cm,则△ABC的周长为( )A.15cm B.17cm C.16cm D.14cm5.若代数式x2﹣10x+k是一个完全平方式,则k=( )A.25 B.25或﹣25 C.10 D.5或﹣56.化简:(a+2)2﹣(a﹣2)2=( )A.2 B.4 C.8a D.2a2+27.运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是( )A.[x﹣(2y+1)]2B.[x+(2y﹣1)][x﹣(2y﹣1)] C.[(x+2y)﹣1][(x﹣2y)+1] D.[x+(2y+1)]28.若分式的值为0,则x的值是( )A.﹣3 B.3 C.±3D.09.化简的结果为( )A.﹣1 B.1 C.D.10.若分式方程﹣1=无解,则m=( )A.0和3 B.1 C.1和﹣2 D.3二、填空题(每小题3分,共18分)11.把a2(x﹣3)+(3﹣x)分解因式的结果是__________.12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,若∠A=60°,AD=2cm,则AB=__________.13.若等腰三角形中有一个角是30°,则另外两个角的度数分别是__________.14.如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE的长是__________.15.关于整式(x﹣2)(x+n)运算结果中,一次项系数为2,则n=__________.16.已知关于x的分式方程=1的解是非正数,则a的取值范围是__________.三、解答题(共52分)17.(1)计算:(2a+1)2﹣(2a+1)(﹣1+2a)(2)计算:×﹣(3)解方程:+=1.18.已知点A坐标为(﹣2,4),点B坐标为(﹣2,0)点C坐标为(0,1)(1)在平面直角坐标系xOy中描出点A、点B及点C的坐标.(2)作出A、B两点关于y轴对称的对称点A1、B1的坐标,作出C点关于x轴对称的对称点C1的坐标.(3)连接A1B1、B1C1、A1C1,直接写出△A1B1C1的面积.19.阅读并解答在分解因式x2﹣4x﹣5时,李老师讲了如下方法:x2﹣4x﹣5=x2﹣4x+4﹣4﹣5 第一步=x2﹣9 第二步=(x﹣2+3)(x﹣2﹣3)第三步=(x+1)(x﹣5)第四步(1)从第一步到第二步里面运用了什么公式__________.(2)从第二步到第三步运用了什么公式__________.(3)仿照上例分解因式x2+2x﹣3.20.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.21.某校举行迎元旦书法比赛,为奖励获胜学生,购买了一些钢笔和毛笔,毛笔的单价是钢笔单价的2倍,购买毛笔用了2000元,购买钢笔用了1500元,购买的钢笔枝数比毛笔多50,毛笔、钢笔的单价分别为多少元?22.(1)如图(1)在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图(2)当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图(3)当∠ACB≠90°,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段 AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.2015-2016学年山西省大同市矿区十二校联考八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为( )A.60° B.40° C.30° D.45°【考点】三角形的外角性质.【分析】由三角形的外角性质得出∠CAE=∠B+∠C,即可得出结果.【解答】解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE﹣∠C=120°﹣80°=40°;故选:B.【点评】本题考查了三角形的外角性质;熟记三角形的外角性质是解决问题的关键.2.如图所示,AB∥DE,CD=BF且D、C、F、B在一条直线上,若要证明△ABC≌△EDF,还需要补充的条件是( )A.AC=EF B.DF=BC C.∠B=∠D D.AB=ED【考点】全等三角形的判定.【分析】根据平行线的性质推出∠B=∠D,求出DF=BC,根据全等三角形的判定定理逐个判断即可.【解答】解:∵AB∥DE,∴∠B=∠D,∵CD=BF,∵CD+CF=BF+CF,∴DF=BC,A、根据AC=EF,∠B=∠D,BC=DF,不符合全等三角形的判定定理,不能推出△ABC≌△EDF,故本选项错误;B、根据∠B=∠D,BC=DF,不符合全等三角形的判定定理,不能推出△ABC≌△EDF,故本选项错误;C、根据∠B=∠D,BC=DF,不符合全等三角形的判定定理,不能推出△ABC≌△EDF,故本选项错误;DD、根据AB=DE,∠B=∠D,BC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△EDF,故本选项正确;故选D.【点评】本题考查了全等三角形的判定定理的应用,能理解全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.在平面直角坐标系中,点P(﹣2,3)关于x轴的对称点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于x轴、y轴对称的点的坐标.【分析】首先根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得对称点的坐标,再根据坐标符号判断所在象限即可.【解答】解:点P(﹣2,3)关于x轴的对称点为(﹣2,﹣3),(﹣2,﹣3)在第三象限.故选:C.【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化特点.4.如图,在△ABC中,AB边的垂直平分线分别交BC、AB于点D、E,AB=7cm,△ADC的周长为9cm,则△ABC的周长为( )A.15cm B.17cm C.16cm D.14cm【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB边的垂直平分线,∴DA=DB,△ADC的周长=AD+AC+CD=AC+BC=9cm,又AB=7cm,∴△ABC的周长=AC+BC+AB=16cm,故选:C.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.若代数式x2﹣10x+k是一个完全平方式,则k=( )A.25 B.25或﹣25 C.10 D.5或﹣5【考点】完全平方式.【分析】根据乘积二倍项和已知平方项确定出这两个数,然后对另一个数平方即可.完全平方式的形式(a±b)2=a2±2ab+b2.【解答】解:∵10x=2×5•x,∴k=52=25,故选:A.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,确定出另一个数是5是求解的关键,是基础题.6.化简:(a+2)2﹣(a﹣2)2=( )A.2 B.4 C.8a D.2a2+2【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到原式=a2+4a+4﹣(a2﹣4a+4),然后去括号合并即可.【解答】解:原式=a2+4a+4﹣(a2﹣4a+4)=a2+4a+4﹣a2+4a﹣4=8a.故选C.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.7.运用平方差公式计算(x+2y﹣1)(x﹣2y+1),下列变形正确的是( )A.[x﹣(2y+1)]2B.[x+(2y﹣1)][x﹣(2y﹣1)] C.[(x+2y)﹣1][(x﹣2y)+1] D.[x+(2y+1)]2【考点】平方差公式.【专题】计算题;整式.【分析】原式利用平方差公式的结构特征变形即可.【解答】解:运用平方差公式计算(x+2y﹣1)(x﹣2y+1),应变形为[x+(2y﹣1)][x﹣(2y﹣1)],故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.若分式的值为0,则x的值是( )A.﹣3 B.3 C.±3D.0【考点】分式的值为零的条件.【专题】计算题.【分析】分母不为0,分子为0时,分式的值为0.【解答】解:根据题意,得x2﹣9=0且x﹣3≠0,解得,x=﹣3;故选A.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.化简的结果为( )A.﹣1 B.1 C.D.【考点】分式的加减法.【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【解答】解:=﹣==1;故选B.【点评】此题考查了分式的加减,根据在分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减即可.10.若分式方程﹣1=无解,则m=( )A.0和3 B.1 C.1和﹣2 D.3【考点】分式方程的解.【分析】方程两边同时乘以(x﹣1)(x+2)即可化成整式方程,然后把能使方程的分母等于0的x的值代入求得m的值即可.【解答】解:方程两边同时乘以(x﹣1)(x+2)得x(x+2)﹣(x﹣1)(x+2)=m.当x=1时,代入x(x+2)﹣(x﹣1)(x+2)=m得m=3;把x=﹣2代入x(x+2)﹣(x﹣1)(x+2)=m得:m=0.总之,m的值是0或3.故选A.【点评】本题考查了分式方程无解的条件,注意分式方程的增根是整式方程化成整式方程以后整式方程的解,是能使分式方程的分母等于0的未知数的值.二、填空题(每小题3分,共18分)11.把a2(x﹣3)+(3﹣x)分解因式的结果是(x﹣3)(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式(x﹣3),进而利用平方差公式分解因式即可.【解答】解:原式=(x﹣3)(a2﹣1)=(x﹣3)(a+1)(a﹣1).故答案为:(x﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,若∠A=60°,AD=2cm,则AB=8cm.【考点】含30度角的直角三角形.【分析】根据同角的余角相等求出∠ACD=∠B=30°,再根据30°角所对的直角边等于斜边的一半求出AC,再求出AB的长即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠B+∠A=90°,∠A+∠ACD=90°,∴∠ACD=∠B=90°﹣∠A=30°,∵AD=2cm,∴AC=2AD=4cm,∴AB=2AC=8cm,故答案为:8cm.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.13.若等腰三角形中有一个角是30°,则另外两个角的度数分别是75°,75°或120°,30°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是30°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还需用三角形内角和定理去验证每种情况是不是都成立.【解答】解:分情况讨论:(1)若等腰三角形的顶角为30°时,另外两个内角=(180°﹣30°)÷2=75°;(2)若等腰三角形的底角为30°时,它的另外一个底角为30°,顶角为180°﹣30°﹣30°=120°.故答案为:75°,75°或120°,30°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE的长是2cm.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出BD和BE,代入DE=BD﹣BE求出即可.【解答】解:∵△ABD≌△EBC,AB=3cm,BC=5cm,∴BE=AB=3cm,BD=BC=5cm,∴DE=BE﹣BE=2cm,故答案为:2cm.【点评】本题考查了全等三角形的性质的应用,能根据全等三角形的性质求出BD和BE是解此题的关键,注意:全等三角形的对应边相等.15.关于整式(x﹣2)(x+n)运算结果中,一次项系数为2,则n=4.【考点】多项式乘多项式.【专题】计算题;整式.【分析】原式利用多项式乘以多项式法则计算,根据结果中一次项系数为2,确定出n的值即可.【解答】解:原式=x2+(n﹣2)x﹣2n,由结果中一次项系数为2,得到n﹣2=2,解得:n=4.故答案为:4【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.已知关于x的分式方程=1的解是非正数,则a的取值范围是a≤﹣1且a≠﹣2.【考点】分式方程的解.【专题】压轴题.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a 的取值范围.【解答】解:去分母,得a+2=x+1,解得:x=a+1,∵x≤0,x+1≠0,∴a+1≤0,x≠﹣1,∴a≤﹣1,a+1≠﹣1,∴a≠﹣2,∴a≤﹣1且a≠﹣2.故答案为:a≤﹣1且a≠﹣2.【点评】解答本题时,易漏掉a≠﹣2,这是因为忽略了x+1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.三、解答题(共52分)17.(1)计算:(2a+1)2﹣(2a+1)(﹣1+2a)(2)计算:×﹣(3)解方程:+=1.【考点】分式的混合运算;整式的混合运算;解分式方程.【专题】计算题;分式;分式方程及应用.【分析】(1)原式利用完全平方公式及平方差公式化简,去括号合并即可得到结果;(2)原式两项约分后,合并即可得到结果;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4a2+4a+1﹣4a2+1=4a+2;(2)原式=•﹣=a﹣a=0;(3)方程两边都乘以(x+1)(x﹣1)得x(x+1)+1=x2﹣1,整理得:x+1=﹣1,解得:x=﹣2,经检验x=﹣2是原方程的解.【点评】此题考查了分式的混合运算,整式的混合运算,以及解分式方程,熟练掌握运算法则是解本题的关键.18.已知点A坐标为(﹣2,4),点B坐标为(﹣2,0)点C坐标为(0,1)(1)在平面直角坐标系xOy中描出点A、点B及点C的坐标.(2)作出A、B两点关于y轴对称的对称点A1、B1的坐标,作出C点关于x轴对称的对称点C1的坐标.(3)连接A1B1、B1C1、A1C1,直接写出△A1B1C1的面积.【考点】作图-轴对称变换.【分析】(1)根据坐标点结合坐标系确定点A、点B及点C的位置;(2)根据关于x轴对称:横坐标不变,纵坐标相反;关于y轴对称:纵坐标不变,横坐标相反可得点A1、B1的坐标,点C1的坐标,然后再描出点的位置即可;(3)首先画出图形,再利用矩形的面积减去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)A1(2,4),B1(2,0),C1(0,﹣1).(3)△A1B1C1的面积为:5×2﹣2×5﹣×1×2=4.【点评】此题主要考查了作图﹣﹣轴对称变换,关键是掌握关于坐标轴对称的点的坐标规律.19.阅读并解答在分解因式x2﹣4x﹣5时,李老师讲了如下方法:x2﹣4x﹣5=x2﹣4x+4﹣4﹣5 第一步=x2﹣9 第二步=(x﹣2+3)(x﹣2﹣3)第三步=(x+1)(x﹣5)第四步(1)从第一步到第二步里面运用了什么公式完全平方公式.(2)从第二步到第三步运用了什么公式平方差公式.(3)仿照上例分解因式x2+2x﹣3.【考点】因式分解-十字相乘法等.【专题】阅读型;因式分解.【分析】(1)利用完全平方公式的结构特点判断即可;(2)利用平方差公式的结构特点判断即可;(3)仿照以上方法将原式分解即可.【解答】解:(1)从第一步到第二步运用了完全平方公式;(2)从第二步到第三步运用了平方差公式;(3)x2+2x﹣3=x2+2x+1﹣1﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1).故答案为:(1)完全平方公式;(2)平方差公式【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字分解的方法是解本题的关键.20.如图,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度数.(2)若AE=2,BE=1,CD=4.求四边形AECD的面积.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)由角平分线的性质定理证得AE=AF,进而证出△ABE≌△ADF,再得出∠CDA=120°;(2)四边形AECD的面积化为△ABC的面积+△ACD的面积,根据三角形面积公式求出结论.【解答】解:(1)∵AC平分∠BCD,AE⊥BC AF⊥CD,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF,∴∠ADF=∠ABE=60°,∴∠CDA=180°﹣∠ADF=120°;(2)由(1)知:Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,∴BC=CE+BE=6,∴四边形AECD的面积=△ABC的面积+△ACD的面积=+==10.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,三角形的内角计算,熟练掌握全等三角形的性质定理是解题的关键.21.某校举行迎元旦书法比赛,为奖励获胜学生,购买了一些钢笔和毛笔,毛笔的单价是钢笔单价的2倍,购买毛笔用了2000元,购买钢笔用了1500元,购买的钢笔枝数比毛笔多50,毛笔、钢笔的单价分别为多少元?【考点】分式方程的应用.【分析】设钢笔每枝x元,则毛笔为2x元,根据题意列方程求解.【解答】解:设钢笔每枝x元,则毛笔为2x元,依题意得:,解之得x=10,经检验x=10是原方程的解.答:毛笔、钢笔的单价分别为20元,10元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(1)如图(1)在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图(2)当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图(3)当∠ACB≠90°,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段 AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.【考点】全等三角形的判定与性质.【分析】(1)在AB上截取AE=AC,连接DE,根据角平分线的定义得到∠1=∠2.推出△ACD≌△AED(SAS).根据全等三角形的性质得到∠AED=∠C=90,CD=ED,根据已知条件得到∠B=45°.求得∠EDB=∠B=45°.得到DE=BE,等量代换得到CD=BE.即可得到结论;(2)在AC取一点E使AB=AE,连接DE,易证△ABD≌△AED,所以∠B=∠AED,BD=DE,又因为∠B=2∠C,所以∠AED=2∠C,因为∠AED是△EDC的外角,所以∠EDC=∠C,所以ED=EC,BD=EC,进而可证明AB+BD=AE+EC=AC;(3)在AB的延长线AF上取一点E,使得AE=AC,连接DE.证明△ACD≌△AED,根据全等三角形的性质得到DE=BE,BE=CD,即可得出结论.【解答】解:(1)如图1所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵∠ACB=2∠B,∠C=90°,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.(2)证明:在AB取一点E使AC=AE,在△ACD和△AED中,,∴△ACD≌△AED,∴∠C=∠AED,CD=DE,又∵∠C=2∠B,∴∠AED=2∠B,∵∠AED是△EDC的外角,∴∠EDB=∠B,∴ED=EB,∴CD=EB,∴AB=AC+CD;(3)AB=CD﹣AC证明:在BA的延长线AF上取一点E,使得AE=AC,连接DE,在△ACD和△AED中,,∴△ACD≌△AED(SAS),∴∠ACD=∠AED,CD=DE,∴∠ACB=∠FED,又∵∠ACB=2∠B,∴∠FED=2∠B,又∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴DE=BE,∴BE=CD,∴AB=CD﹣AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,作出辅助线构造成全等三角形是解题的关键,也是本题的难点.。

【配套K12】八年级数学上学期期末考试题 新人教版

【配套K12】八年级数学上学期期末考试题 新人教版

广东省肇庆市封开县2015-2016学年度八年级数学第一学期期末考试题(在100分钟内完成,满分120分) 一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中只有一个 是正确的,请把答题卡上相对应的选项涂黑. 1.下列各组图形中,成轴对称的两个图形是A. B. C. D. 2.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示为A.7.7×10-5B.7.7×10-6C.7.7×10-7D.77×10-53.以下列各组线段为边,能组成三角形的是A.1cm ,2cm ,3cmB.2cm ,3cm ,6cmC.8cm ,6cm ,4cmD.12cm ,5cm ,6cm 4.使分式2xx +有意义的x 的取值范围是 A.2x >- B.2x < C.2x ≠ D.2x ≠- 5.下列计算正确的是 A.325a a a += B.54aa a ÷= C.44a a a ⋅= D.236()ab ab =6.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关 系是( )A.∠A >∠2>∠1B.∠A >∠2>∠1C.∠2>∠1>∠AD.∠1>∠2>∠A7.如图,在下列条件中,不能证明△ABD ≌△ACD 的是 A.BD=DC,AB=AC B.∠ADB=∠ADC ,BD=DCC.∠B=∠C ,∠BAD=∠CADD.∠B=∠C,BD=DC 8.下列四个分式中,是最简分时的是A.23ax ayB.2211x x x +++C.22a b a b ++D.22a b a b --A B C D P 12第7题(第6题图) (第7题图)9.要使26x x k ++是完成平方公式,那么k 的值是A.9B.12C.9±D.36 10.若多项式2x +m x +36因式分解的结果是(2)(18)x x --,则m 的值是A.20-B.16-C.16D.20二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡 相对应的位置上.12.点P (1,2)关于x 轴对称的点的坐标是 ▲ .13.一个多边形的内角和是900°,这个多边形的边数是 ▲ . 14.分解因式:25xx -= ▲ .15.如图,已知∠MON=30°,点A 1,A 2,A 3,……在射线ON 上,点B 1,B 2,B 3,……在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,……均为等边三角形,若OA 1=2,则△A 5B 5A 6的边长为 ▲ .16.△ABC 中,D 、E 分别是BC ,AD 的中点,且△ABC 的面积为4,则阴影部分的面积是 ▲ . 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:()2243224a b a b ⋅÷18.解方程:323x x =-19.如图,点D 在△ABC 的AB 边上,且∠ACD=∠A.(1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).(第16题图)O A B 2 B 1 B 3MN(第15题图)四、解答题(二)(本大题3小题,每小题7分,共21分)20.已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.21.先化简,再求值:241(1)32aa a-⋅---,其中3a=-.22.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180 个字所用的时间相等。

初二数学上册期末试题及答案(K12教育文档)

初二数学上册期末试题及答案(K12教育文档)

初二数学上册期末试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初二数学上册期末试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初二数学上册期末试题及答案(word版可编辑修改)的全部内容。

八年级数学上册期末测试一、填空题(每题2分,共32分)1.已知点A (l,2-),若A 、B 两点关于x 轴对称,则B ________.2.计算:233(2)_________x xy ⋅-=;(31)(21)_____________x x -+=.3.分解因式3x 3-12x 2y +12xy 2=__________. 4.若点(3,n )在函数2y x=-的图像上,则n = _________.5.若9x 2-kxy +4y 2是一个完全平方式,则k 的值是_______.6.若点P (a ,b )在第二象限内,则直线y =ax +b 不经过第_______象限.7.把直线y =错误!x +1向上平移3个单位所得到的解析式为_______.8.若等腰三角形的顶角为100°,则它腰上的高与底边的夹角是_______.9.如图,∠BAC =∠CDB =90°,BE =EC ,则图中的全等三角形有_______对.10.如图,已知D 、E 是△ABC 中边上的两点,AB =AC ,请你再加一个条件__________,使△ABE ≌△AC D .11.如图,AB =AC , AC 的垂直平分线DE 交AB 于D ,交AC 于E ,BC =6,△CDB 的周长为15,则AC =__________.12.如图所示,观察规律并填空:13.一次函数y x a =-+与一次函数y x b =+的图像的交点坐标为(m ,8),则a b +=_____.14.观察下列各式12×2=12+2,23×3=23+3,34×4=34+4,45×5=45+5…… 想一想,什么样的两数之积等于这两数之和?设n 表示正整数,用关于n 的等式表示这个规律为:__________ .15.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入_________号球袋.1号袋4号袋16.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1,第9题图 第10题图 第11题图根据前面各式的规律可得(x -1)(x n +x n -1+…+x +1)=_______ _____.(其中n 为整数)二、解答题(共68分)17.(6分)计算:(1))7)(5()1(2+-+-a a a a ;(2)22)5()5(y x y x +--; (3))(]12)1)(1[(22ab b a ab ab -÷+--+.18.(9分)分解因式(1)223242ab b a a +-;(2)44y x -; (3))34(3422y xy x ++.19.(3分)计算:求当75,15a b = =时,22(1)(1)21ab ab a b ⎡⎤+--+⎣⎦÷ab 的值.20.(4分)已知1,5==+xy y x ,求 ①22y x +;②2)(y x -.21.(4分)在一次学校组织的游艺活动中,某同学在玩“碰碰撞”时,想通过击球A , 使撞击桌边MN 后反弹回来击中彩球B ,请在图上标明使主球撞击在MN 上哪一点,才能达到目的?(不写作法,保留作图痕迹)新课标第一网22.(4分)有一块直径为2a + b 的圆形木板,挖去直径分别为2a 和 b 的两个圆,问剩下的木板的面积是多少?23.(4分)已知:如图,在长方形ABCD 中,AB =3,BC =4将△BCD 沿BD 所在直线翻折,使点C 落在点F 上,如果BF 交AD 于E ,求AE 的长.25.(5分)已知AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F 求证:CE =DF .26.(5分)如右图E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .求证:AE =FG .A D CB E G F八年级数学(上)自主学习达标检测(七)一、填空题1.(1,2) 2.3326,61x y x x -+- 3.23(2)x x y - 4.6- 7.243y x =+ 8.50度 9.3 10.AD=DE 11.9 12.正反写的6 13.6 14.111n n n n n n++=++ 15.1 16.11n x +- 二、解答题17.(1)3523-+a a (2)xy 20- (3)ab 18.(1))2(222b ab a a +-;(2)))()((22y x y x y x -++;(3)2)32(y x + 19.73-20.①23;②21 21.略 22.ab π 23.78 24.(1) 1.5 4.5y x =+;(2)21cm 25.略 26.略 27.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 28.(1)描点略.设y kx b =+,用任两点代入求得1005000y x =-+,再用另两点代入解析式验证. (2)农副产品的市场价格是10元/千克,农民的总销售收入是40000元. (3)这时该农副产品的市场价格为18元/千克.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市福田区2015-2016学年度八年级数学上学期期末考试试题一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A. B. C.3.14159 D.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或645.方程组的解是()A. B. C. D.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.57.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4 B.∠2=∠4C.∠3+∠2=∠4 D.∠2+∠3+∠4=180°8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条10.若+=n(n为整数),则m的值可以是()A. B.18 C.24 D.7511.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A. B.C. D.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.14.对顶角相等的逆命题是命题(填写“真”或“假”).15.一副三角板如图所示叠放在一起,则图中∠ABC=.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.18.解方程组:.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析队别平均分学年度八年级成绩的标准差,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= ,n= ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价类型A型B型价格进价(元/件)60 100求这两种服装各购进的件数?22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=cm,甲蚂蚁要吃到食物需爬行的路程长l1= cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是(填“甲”或“乙”),它的表达式是(不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.广东省深圳市福田区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:(本题共12小题,每小题3分,共36分.)1.下列各数是无理数的是()A. B. C.3.14159 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数,故A错误;B、是有理数,故B错误;C、3.14159是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.【点评】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容,比较简单.3.点A(1,y1)、B(2,y2)在直线y=2x+2上,y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2 D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.【解答】解:∵k=2>0,∴y将随x的增大而增大,∵1<2,∴y1<y2.故选B.【点评】本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.4.若直角三角形的三边长分别为6、10、m,则m2的值为()A.8 B.64 C.136 D.136或64【考点】勾股定理.【专题】分类讨论.【分析】分10是直角边和斜边两种情况,利用勾股定理列式计算即可得解.【解答】解:10是直角边时,m2=62+102=136,10是斜边时,m2=102﹣62=64,所以m2的值为136或64.故选D.【点评】本题考查了勾股定理解直角三角形,当已知条件中没有明确哪是斜边时,要注意分类讨论.5.方程组的解是()A. B. C. D.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣1,则方程组的解为,故选A【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.一组数据1,1,2,3,4,4,5,6的众数是()A.1 B.4 C.1和4 D.3.5【考点】众数.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:在这组数据中,1和4都出现了2次,出现次数最多,所以这组数据的众数为:1和4.故选C.【点评】本题考查了众数的知识,属于基础题,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.如图,对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠4B.∠2=∠4C.∠3+∠2=∠4D.∠2+∠3+∠4=180°【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠1=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3+∠2=∠4,因为它们是a、b被截得的同位角或内错角,符合题意;D、∠2+∠3+∠4=180°,因为∠2+∠3与∠4是a、b被截得的同位角,不符合题意.故选:C.【点评】本题考查了平行线的判定方法;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.如图,动点P从(1,2)出发,沿图中箭头所示方向运动,每当碰到长方形的边时反弹(反弹时反射角等于入射角),假设反弹可以无限进行下去,则在点P运动路径上的点是()A.(0,5)B.(5,0)C.(3,3)D.(7,3)【考点】规律型:点的坐标.【分析】根据反射角与入射角的定义作出图形,即可解答.【解答】解:如图,只有(5,0)在点P运动路径上,故选:B.【点评】本题考查了对点的坐标的规律变化的认识,利用反射角与入射角的定义作出图形是解题的关键.9.在坐标平面内有下列三条直线:①经过点(0,2)且平行于x轴的直线;②直线y=2x﹣8;③经过点(0,12)且平行于直线y=﹣2x的直线,其中经过点(5,2)但不经过第三象限的直线共有()A.0条B.1条C.2条D.3条【考点】一次函数的性质.【分析】根据①经过点(0,2)且平行于x轴的直线是y=2,画图可得此直线经过点(5,2)经过第一、二象限;②把(5,2)代入y=2x﹣8,左右相等,因此y=2x﹣8过(5,2),此直线经过一、三、四象限;③经过点(0,12)且平行于直线y=﹣2x的直线是y=﹣2x+12,此直线经过点(5,2),经过第一、二、四象限进行分析即可.【解答】解:①如图,经过点(0,2)且平行于x轴的直线经过点(5,2),但不经过第三象限的直线;②直线y=2x﹣8经过点(5,2),也经过第三象限的直线;③经过点(0,12)且平行于直线y=﹣2x的直线经过点(5,2),但不经过第三象限的直线,共2条,故选:C.【点评】此题主要考查了一次函数的性质,关键是正确判断出一次函数经过的象限,掌握凡是函数图象经过的点必能满足解析式.10.若+=n(n为整数),则m的值可以是()A. B.18 C.24 D.75【考点】二次根式的加减法.【分析】根据二次根式的性质正确化简求出答案.【解答】解:∵+=n(n为整数),∴2+=n,∴化简后被开方数为3,故只有=5符合题意.故选:D.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.11.甘老师将一摞笔记本分给若干同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,若设有x个同学,y本笔记本,则可得方程组()A. B.C. D.【考点】由实际问题抽象出二元一次方程组.【分析】设有x个同学,有y个笔记本,根据若每个同学5本,则剩下8本;每个同学8本,又差了7本,可列出方程组.【解答】解:设有x个同学,有y个笔记本,可得:.故选A【点评】本题考查二元一次方程组的应用,关键是理解题意的能力,设出人数和本数,可以本数的数量作为等量关系列出方程组.12.如图,平行于x轴的直线l与y轴、直线y=3x、直线y=x分别交于点A、B、C.则下列结论正确的个数有()①∠AOB+∠BOC=45°;②BC=2AB;③OB2=10AB2;④OC2=OB2.A.1个B.2个C.3个D.4个【考点】两条直线相交或平行问题.【分析】由直线y=x得出∠AOC=45°,得出①正确;由直线y=3x和y=x得出OA=3AB,OA=AC,因此AC=3AB,BC=2AB,得出②正确;由勾股定理得出③正确,④不正确;即可得出结论.【解答】解:∵直线y=x,∴∠AOC=45°,即∠AOB+∠BOC=45°,∴①正确;∵平行于x轴的直线l与直线y=3x、直线y=x分别交于点B、C,∴OA=3AB,OA=AC,∴AC=3AB,∴BC=2AB,∴②正确;∵OB2=AB2+OA2=AB2+(3AB)2=10AB2,∴③正确;∵OC2=OA2+AC2=(3AB)2+(3AB2)=18AB2=OB2=OB2,∴④不正确;结论正确的有3个,故选:C.【点评】本题考查了两条直线相交或平行问题、直线的特征、勾股定理;熟练掌握两条直线相交或平行特征,得出OA=3AB,OA=AC,AC=3AB是解决问题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.的算术平方根为.【考点】算术平方根.【专题】计算题.【分析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.【解答】解:∵=2,∴的算术平方根为.故答案为:.【点评】此题考查了算术平方根的定义,解题的关键是知道=2,实际上这个题是求2的算术平方根.注意这里的双重概念.14.对顶角相等的逆命题是假命题(填写“真”或“假”).【考点】命题与定理.【分析】先根据互逆命题的定义写出对顶角相等的逆命题,再判断真假.【解答】解:“对顶角相等”的逆命题是:相等的角是对顶角,它是假命题.故答案为:假.【点评】本题考查了互逆命题及真假命题的定义.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题;正确的命题叫做真命题,错误的命题叫做假命题.15.一副三角板如图所示叠放在一起,则图中∠ABC=75°.【考点】三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠BAC=45°,∠ACB=60°,∴∠ABC=180°﹣45°﹣60°=75°.故答案为:75°.【点评】本题考查了三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.16.如图,直线l1的表达式为y=﹣3x+3,且直线l1与x轴交与点D,直线l2经过点A、B,且与直线l1交于点C,则△BDC的面积为.【考点】两条直线相交或平行问题.【分析】利用待定系数法确定直线l2的解析式;解由两条直线解析式所组成的方程组,确定C点坐标,根据直线l1的表达式求D点坐标;然后根据三角形面积公式计算即可.【解答】解:把y=0代入y=﹣3x+3得﹣3x+3=0,解得x=1,所以D点坐标为(1,0);设直线l2的解析式为y=kx+b,把A(4,0)、B(3,﹣)代入得,解得,所以直线l2的解析式为y=x﹣6;解得,所以C点坐标为(2,﹣3),所以S△BDC=S△ADC﹣S△ADB=×(4﹣1)×(3﹣)=.【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.三、解答题:(本题共7小题,其中第17小题8分,第18小题5分,第19小题6分,第20小题7分,第21小题8分,第22小题8分,第23小题10分共52分)17.计算:(1)(2)(﹣)×﹣.【考点】二次根式的混合运算.【分析】(1)首先化简二次根式,进而得出答案;(2)利用二次根式乘法运算法则化简求出答案.【解答】解:(1)===1;(2)(﹣)×﹣=﹣﹣=3﹣2=.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用代入消元法求出解即可.【解答】解:,把① 代入②得:5x+2x﹣8=6,即x=2,把x=2代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图所示,现有下列4个亊项:(1)∠1=∠2,(2)∠3=∠B,(3)FG⊥AB于G,(4)CD⊥AB于D.以上述4个事项中的(1)、(2)、(3)三个作为一个命题的己知条件,(4)作为该命题的结论,可以组成一个真命题.请你证明这个真命题.【考点】命题与定理;平行线的判定与性质.【分析】先由平行线的判定定理得出DE∥BC,GF∥CD,再由FG⊥AB于G得出∠BGF=90°,进而可得出结论.【解答】证明:∵∠3=∠B,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴GF∥CD,∴∠CDB=∠BGF.∵FG⊥AB,∴∠BGF=90°,∴∠CDB=90°,∴CD⊥AB.【点评】本题考查的是命题与定理,熟知平行线的判定与性质是解答此题的关键.20.我市某中学七、2015~2016学年度八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、2015~2016学年度八年级两支代表队选手成绩分布的条形统计图和成绩统计分析(1)观察条形统计图,可以发现:2015~2016学年度八年级成绩的标准差<,2015~2016学年度七年级成绩的标准差(填“>”、“<”或“=”),表格中m= 6 ,n= 7.5 ;(2)计算2015~2016学年度七年级的平均分;(3)有人说2015~2016学年度七年级的合格率、优秀率均高于2015~2016学年度八年级,所以2015~2016学年度七年级队成绩比2015~2016学年度八年级队好,但也有人说2015~2016学年度八年级队成绩比2015~2016学年度七年级队好.请你给出两条支持2015~2016学年度八年级队成绩好的理由.【考点】标准差;加权平均数;中位数;方差.【分析】(1)求出2015~2016学年度八年级成绩的方差<2015~2016学年度七年级成绩的方差,得出2015~2016学年度八年级成绩的标准差<年级成绩的标准差;求出2015~2016学年度七年级成绩和2015~2016学年度八年级成绩的中位数即可得出m和n;(2)由平均数公式即可得出结果;(3)从方差,平均分角度考虑,给出两条支持2015~2016学年度八年级队成绩好的理由即可.【解答】解:(1)∵2015~2016学年度八年级成绩的方差=[2(5﹣7.1)2+(6﹣7.1)2+2(7﹣7.1)2+4(8﹣7.1)2+(9﹣7.1)2]=1.69<3.41,∴2015~2016学年度八年级成绩的标准差<年级成绩的标准差;2015~2016学年度七年级成绩为3,6,6,6,6,6,7,8,9,10,∴中位数为6,即m=6;2015~2016学年度八年级成绩为5,5,6,7,7,8,8,8,8,9,∴中位数为7.5,即n=7.5;故答案为:<,6,7.5;(2)2015~2016学年度七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7;(3)①2015~2016学年度八年级队平均分高于2015~2016学年度七年级队;②2015~2016学年度八年级队的成绩比2015~2016学年度七年级队稳定;③2015~2016学年度八年级队的成绩集中在中上游;所以支持2015~2016学年度八年级队成绩好.【点评】此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.21.某服装店用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元(毛利润=售价【考点】二元一次方程组的应用.【分析】设A种服装购进x件,B种服装购进y件,根据用7000元购进A、B两种新式服装,按标价售出后获得毛利润4000元,列方程组求解.【解答】解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进40件.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.如图,是一个圆柱形的饼干盒,在盒子外侧下底面的点A处有甲、乙两只蚂蚁,它们都想要吃到上底面外侧B′处的食物:甲蚂蚁沿A→A′→B′的折线爬行,乙蚂蚁沿圆柱的侧面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都与圆柱的中轴线OO′平行),圆柱的底面半径是12cm,高为1cm,则:(1)A′B′=12 cm,甲蚂蚁要吃到食物需爬行的路程长l1= 12+1 cm;(2)乙蚂蚁要吃到食物需爬行的最短路程长l2= 5 cm(π取3);(3)若两只蚂蚁同时出发,且爬行速度相同,在乙蚂蚁采取最佳策略的前提下,哪只蚂蚁先到达食物处?请你通过计算或合理的估算说明理由.(参考数据:π取3,≈1.4)【考点】平面展开-最短路径问题.【分析】(1)由∠A′O′B′=90°,可知△B′A′O′为等腰直角三角形,故此A′B′=A′O′,然后根据l1=A′B′+AA′求解即可;(2)先求得弧A′B′的长,然后根据勾股定理求得矩形AA′B′B的对角线的长度即可;(3)将≈1.4代入从而可求得l1、l2的近似值,从而可作出判断.【解答】解:(1)∵∠A′O′B′=90°,O′A′=O′B′,∴A′B′=A′B′=A′O′=12.∴l1=A′B′+AA′=12+1.故答案为:12;12+1.(2)==6π=18.将圆柱体的侧面展开得到如图1所示矩形AA′B′B.∵=18,∴A′B′=18.在Rt△ABB′中,AB′===5.故答案为:5.(3)∵l1=12+1≈12×1.2+1=15.4∴=237.16.∵==324,∴.∴l1<l2.∴甲蚂蚁先到达食物处.【点评】本题主要考查的是平面展开路径最短、勾股定理的应用、扇形的弧长公式的应用,将圆柱体的侧面展开求得l2的长度是解题的关键.23.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是甲(填“甲”或“乙”),它的表达式是y=20x (不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.【考点】一次函数的应用.【分析】(1)根据图象可得OB表示的轮胎比OA表示的轮胎磨损慢,据此即可确定是甲或乙,利用待定系数法即可求得函数解析式;(2)利用待定系数法求得OA的函数解析式,然后求得当y=100时对应的x的值即可;(3)根据两个轮胎的磨损度都是100,即可列出方程组求解.【解答】解:(1)线段OB表示的是甲,设OB的解析式是y=kx,则1.5k=30,解得:k=20,则OB的表达式是y=20x.故答案是:甲,y=20x;(2)设直线OA的表达式为y=mx,根据题意得:1.5m=50,解得:m=,则OA的解析式是y=x.当y=100时,100=x,解得:x=3.答:这辆自行车最多可骑行3百万米.(3)根据题意,得,解这个方程组,得.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。

相关文档
最新文档