基于单片机的超声波测距系统设计说明
基于单片机超声波测距系统的设计和实现

基于单片机超声波测距系统的设计和实现超声波测距系统是利用超声波传播速度较快的特性,通过发射超声波并接收其回波来测量距离的一种常见的测距方式。
在本文中,我们将介绍基于单片机的超声波测距系统的设计和实现。
一、系统设计原理超声波测距系统主要由超声波发射器、超声波接收器、单片机和显示器组成。
其工作原理如下:1.发送超声波信号:超声波发射器通过单片机控制,向外发射超声波信号。
超声波的发射频率通常在40kHz左右,适合在空气中传播。
2.接收回波信号:超声波接收器接收到回波信号后,将信号经过放大和滤波处理后送入单片机。
3.距离计算:单片机通过测量超声波发射和接收的时间差来计算距离。
以声速343m/s为例,超声波的往返时间与距离之间的关系为:距离=时间差×声速/2、通过单片机上的计时器和计数器来测量时间差。
4.数据显示:单片机将计算得到的距离数据通过显示器显示出来,实时展示被测物体与超声波传感器之间的距离。
二、系统设计步骤1.系统硬件设计:选择合适的超声波模块,其具有超声波发射器和接收器功能,并可通过接口与单片机连接。
设计好电源电路以及超声波传感器与单片机之间的连接方式。
2.系统软件设计:根据单片机的型号和编程语言,编写相应的程序。
包括超声波信号的发射和接收控制,计时和计数功能的编程,距离计算和数据显示的实现。
3.硬件连接和调试:将硬件连接好后,对系统进行调试。
包括超声波模块与单片机的连接是否正确,超声波信号的发射和接收是否正常,计时和计数功能是否准确等。
5.优化和改进:根据实际测试结果,对系统进行优化和改进。
如增加滤波和放大电路以提高信号质量,调整超声波模块的发射频率,改进显示方式等。
三、系统实现效果完成以上设计和实施后,我们可以得到一个基于单片机的超声波测距系统。
该系统使用简单,测距精度高,响应速度快,适用于各种距离测量的应用场景。
同时,该系统还可根据具体需求进行各种改进和扩展,如与其他传感器结合使用,增加报警功能等。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计一、本文概述超声波测距技术因其非接触、高精度、实时性强等特点,在机器人导航、车辆避障、工业测量等领域得到了广泛应用。
STM32单片机作为一种高性能、低功耗的嵌入式系统核心,为超声波测距系统的设计提供了强大的硬件支持。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足不同应用场景的需求。
二、超声波测距原理本部分将介绍超声波测距的基本原理,包括超声波的产生、传播、接收以及距离的计算方法。
同时,分析影响超声波测距精度的主要因素,为后续系统设计提供理论基础。
三、系统硬件设计3、1在设计基于STM32单片机的高精度超声波测距系统时,我们遵循了“精确测量、稳定传输、易于扩展”的总体设计思路。
我们选用了STM32系列单片机作为系统的核心控制器,利用其强大的处理能力和丰富的外设接口,实现了对超声波发射和接收的精确控制。
在具体设计中,我们采用了回波测距法,即发射超声波并检测其回波,通过测量发射与接收之间的时间差来计算距离。
这种方法对硬件的精度和稳定性要求很高,因此我们选用了高精度的超声波传感器和计时器,以确保测量结果的准确性。
我们还考虑到了系统的可扩展性。
通过STM32的串口通信功能,我们可以将测量数据上传至计算机或其他设备进行分析和处理,为后续的应用开发提供了便利。
我们还预留了多个IO接口,以便在需要时添加更多的传感器或功能模块。
本系统的设计思路是在保证精度的前提下,实现稳定、可靠的超声波测距功能,并兼顾系统的可扩展性和易用性。
31、1.1随着物联网、机器人技术和自动化控制的快速发展,精确的距离测量技术在各个领域的应用越来越广泛。
超声波测距技术作为一种非接触式的距离测量方式,因其具有测量精度高、稳定性好、成本相对较低等优点,在工业自动化、智能家居、机器人导航、安防监控等领域得到了广泛应用。
STM32单片机作为一款高性价比、低功耗、高性能的嵌入式微控制器,在智能设备开发中占据重要地位。
基于单片机控制的超声波测距系统的设计

基于单片机控制的超声波测距系统的设计一、概述。
超声波测距技术是一种广泛应用的测距技术,它能够非常精确地测量物体到传感器的距离。
本文介绍的基于单片机控制的超声波测距系统主要由控制模块、信号处理模块和驱动模块三部分组成。
其中,控制模块主要实现超声波信号的发射与接收,信号处理模块主要实现对测量结果的处理和计算,驱动模块主要实现对LED灯的控制。
二、硬件设计。
1.超声波发射模块:采用 SR04 超声波发射传感器,并通过单片机的PWM 输出控制 SR04 的 trig 引脚实现超声波信号的发射。
2.超声波接收模块:采用SR04超声波接收传感器,通过单片机的外部中断实现对超声波信号的接收。
3.控制模块:采用STM32F103单片机,通过PWM输出控制超声波发射信号,并通过外部中断接收超声波接收信号。
4.信号处理模块:采用MAX232接口芯片,将单片机的串口输出转换成RS232信号,通过串口与上位机进行通信实现测量结果的处理和计算。
5.驱动模块:采用LED灯,通过单片机的GPIO输出控制LED灯的亮灭。
三、软件设计。
1.控制模块:编写程序实现超声波信号的发射与接收。
其中,超声波发射信号的周期为 10us,超声波接收信号的周期为 25ms。
超声波接收信号的处理过程如下:(1)当 trig 引脚置高时,等待 10us。
(2)当 trig 引脚置低时,等待 echo 引脚为高电平,即等待超声波信号的回波。
(3)当 echo 引脚为高电平时,开始计时,直到 echo 引脚为低电平时,停止计时。
(4)根据计时结果计算物体到传感器的距离,将结果通过串口输出。
2.信号处理模块:编写程序实现接收计算结果,并将结果通过串口与上位机进行通信。
具体步骤如下:(1)等待串口接收数据。
(2)当接收到数据时,将数据转换成浮点数格式。
(3)根据测量结果控制LED灯的亮灭。
以上就是基于单片机控制的超声波测距系统的设计。
该系统能够通过精确测量物体到传感器的距离并对测量结果进行处理和计算,能够广泛应用于各种实际场合。
基于单片机控制的超声波测距系统设计

基于单片机控制的超声波测距系统设计超声波技术是一种非常常用的测距技术,利用超声波在空气中的传播速度和回声原理来实现物体距离的测量。
超声波测距系统是基于这一原理设计的一种系统,可以广泛应用于物体距离的检测和控制领域。
本文将介绍基于单片机控制的超声波测距系统的设计原理、硬件和软件结构,以及系统的性能评估和实际应用。
首先,设计一个基于单片机控制的超声波测距系统需要考虑到硬件的搭建。
该系统主要由超声波发射模块、超声波接收模块、控制单元和显示单元组成。
超声波发射模块用于发送超声波脉冲,超声波接收模块用于接收回波信号。
控制单元则是通过单片机实现对超声波发射和接收模块的控制,同时处理回波信号并计算物体距离。
最后,显示单元用于将测量到的距离值以数字或者图形的形式显示出来。
在硬件搭建的基础上,还需要设计适合的软件算法来实现距离的测量和显示。
首先需要编程单片机实现对超声波发射和接收模块的控制,包括超声波信号的发送和接收,以及回波信号的处理和距离的计算。
在距离的计算方面,需要考虑到超声波在空气中的传播速度,同时考虑到超声波发射和接收模块之间的时间差,从而计算出物体到超声波发射模块的距离。
除了硬件和软件的设计,还需要对系统的性能进行评估。
主要包括系统的精度、测量范围、响应时间和稳定性等方面的评估。
可以通过实验测量不同距离下系统的测量误差,以及系统在不同环境条件下的表现,从而评估系统的性能是否符合实际应用的需求。
在实际应用方面,基于单片机控制的超声波测距系统可以应用于智能家居控制、无人驾驶汽车、智能仓储管理等方面。
例如,可以将该系统应用于智能家居中,通过测量门口到来访者的距离来实现自动开关门的控制;或者可以将该系统应用于无人驾驶汽车中,实现对周围物体距离的检测和避障控制。
梳理一下本文的重点,我们可以发现,在实际应用中具有很大的潜力和广泛的应用前景。
通过合理的硬件和软件设计,以及系统性能评估和实际应用探索,可以更好地发挥该系统在物体距离测量和控制领域的作用。
基于单片机的超声波测距系统的设计

基于单片机的超声波测距系统的设计引言超声波测距技术是一种常用的非接触式测距方法,广泛应用于工业自动化、无人驾驶、智能家居等领域。
本文将介绍基于单片机的超声波测距系统的设计原理和实现方法,以及其在实际应用中的优势和局限性。
一、设计原理基于单片机的超声波测距系统主要由超声波发射器、接收器、单片机和显示装置组成。
其工作原理如下:1.1 超声波发射器发射超声波信号,信号经过空气传播后,被目标物体反射返回。
1.2 超声波接收器接收到反射的超声波信号,并将信号转化为电信号。
1.3 单片机通过IO口控制超声波发射器的工作频率和接收器的工作模式,实现信号的发射和接收。
1.4 单片机通过计算超声波信号的往返时间,即可得到目标物体与传感器之间的距离。
1.5 显示装置将测得的距离信息显示出来,供用户参考和使用。
二、系统设计与实现2.1 硬件设计超声波发射器和接收器的选型是系统设计的关键。
通常情况下,超声波发射器和接收器的工作频率应匹配,常用的频率有40kHz和50kHz。
此外,还需选择合适的单片机和显示装置。
2.2 软件设计软件设计主要包括超声波信号的发射和接收控制以及距离计算等功能。
通过编程,可以实现以下功能:2.2.1 控制超声波发射器的工作频率和接收器的工作模式。
2.2.2 通过IO口读取接收器接收到的信号,并将其转化为数字信号。
2.2.3 使用定时器测量超声波信号的往返时间。
2.2.4 根据往返时间计算目标物体与传感器之间的距离。
2.2.5 将测得的距离信息显示在显示装置上。
三、系统优势基于单片机的超声波测距系统具有以下优势:3.1 非接触式测距:超声波测距系统可以实现对目标物体的非接触式测距,无需直接接触目标物体,避免了传感器与目标物体之间的摩擦和磨损。
3.2 高精度:超声波测距系统通过测量超声波信号的往返时间,可以实现较高的测距精度,通常可达到毫米级别。
3.3 快速响应:超声波测距系统的测量速度快,响应时间短,适用于需要快速测量的应用场景。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。
随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。
超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。
二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。
系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。
通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。
三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。
STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。
2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。
通过超声波的发送与接收,实现对目标的距离计算。
3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。
电源模块需考虑到功耗问题,以实现系统的长时间运行。
4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。
5. 显示模块:实时显示测距结果,方便用户观察与操作。
四、软件设计1. 主程序:负责整个系统的控制与数据处理。
主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。
2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。
通过计算超声波的发送与接收时间差,计算出目标物体的距离。
3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。
4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。
五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。
《2024年基于STM32单片机的高精度超声波测距系统的设计》范文

《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言随着科技的不断发展,高精度测距技术被广泛应用于各个领域,如机器人导航、环境监测、智能家居等。
本文将介绍一种基于STM32单片机的高精度超声波测距系统的设计。
该系统采用先进的超声波测距原理,结合STM32单片机的强大处理能力,实现了高精度、快速响应的测距功能。
二、系统概述本系统主要由超声波发射模块、接收模块、STM32单片机以及相关电路组成。
通过STM32单片机控制超声波发射模块发射超声波,然后接收模块接收反射回来的超声波信号,根据超声波的传播时间和速度计算距离。
系统具有高精度、抗干扰能力强、测量范围广等特点。
三、硬件设计1. STM32单片机本系统采用STM32系列单片机作为主控制器,具有高性能、低功耗、丰富的外设接口等特点。
通过编程控制单片机的GPIO 口,实现超声波发射和接收的控制。
2. 超声波发射模块超声波发射模块采用40kHz的超声波传感器,具有体积小、功耗低、测距范围广等优点。
通过单片机控制发射模块的触发引脚,产生触发信号,使传感器发射超声波。
3. 超声波接收模块超声波接收模块同样采用40kHz的超声波传感器。
当传感器接收到反射回来的超声波信号时,会产生一个回响信号,该信号被接收模块的回响引脚捕获并传递给单片机。
4. 相关电路相关电路包括电源电路、滤波电路、电平转换电路等。
电源电路为系统提供稳定的电源;滤波电路用于去除干扰信号;电平转换电路用于匹配单片机与传感器之间的电平标准。
四、软件设计1. 主程序设计主程序采用C语言编写,通过STM32单片机的标准库函数实现各功能模块的初始化、参数设置以及控制逻辑。
主程序首先进行系统初始化,然后进入循环等待状态,等待触发信号的到来。
当接收到触发信号时,开始测距流程。
2. 测距流程设计测距流程主要包括发射超声波、等待回响信号、计算距离等步骤。
当接收到触发信号时,单片机控制超声波发射模块发射超声波;然后等待接收模块的回响信号。
基于STM32单片机的高精度超声波测距系统的设计

基于STM32单片机的高精度超声波测距系统的设计基于STM32单片机的高精度超声波测距系统的设计1. 引言超声波测距技术是一种常用的非接触性测量技术,具有测量范围广、分辨率高等优点,广泛应用于工业自动化、无人驾驶、智能家居等领域。
本文旨在设计一种基于STM32单片机的高精度超声波测距系统,以满足快速、准确、可靠的测距需求。
2. 系统设计2.1 硬件设计超声波测距系统主要由超声波发射器、接收器和信号处理模块组成。
其中,超声波发射器用于发射超声波信号,接收器用于接收反射回来的超声波信号,信号处理模块用于处理接收到的信号并计算出测距结果。
2.2 超声波发射器超声波发射器采用压电陶瓷传感器作为能量转换元件,通过驱动电路将驱动信号转化为超声波信号并发射出去。
为了实现高精度的测距,超声波发射器需要具备较高的频率响应和较窄的方向性。
2.3 超声波接收器超声波接收器采用同样的压电陶瓷传感器作为能量转换元件,利用其能够将接收到的超声波信号转化为电信号。
为了实现高灵敏度的接收,超声波接收器需要具备较高的响应灵敏度和较低的噪声。
2.4 信号处理模块信号处理模块采用STM32单片机作为核心处理器,通过多通道模数转换器(ADC)将接收到的电信号转化为数字信号。
然后,通过数字信号处理算法对信号进行滤波、增益控制和时域分析等操作。
最后,利用测量原理计算出测距结果,并将结果显示在液晶显示器上。
3. 系统工作原理3.1 发射信号超声波发射器以一定的频率发射超声波信号,信号经过传播并与目标物体相互作用后,被目标物体反射回来。
3.2 接收信号超声波接收器接收到反射回来的超声波信号,并将其转化为电信号。
信号经过放大、滤波等处理后,送入信号处理模块。
3.3 信号处理信号处理模块使用STM32单片机对接收到的信号进行处理。
首先,通过ADC转化为数字信号。
然后,进行信号滤波,去除噪声和回波干扰。
接着,采用增益控制技术,对信号进行放大或衰减,以适应不同距离的测量需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学毕业设计(论文)题目:基于单片机的超声波测距系统设计指导教师:马旭东职称:讲师学生:郭浩泉学号:专业:电子信息工程院(系):信息工程学院完成时间: 2014年5月18日2014年 5月 18日毕业设计(论文)任务书附表一题目来源:此表指导教师填后、复印,指导教师、学生各保存一份,交院教学办一份毕业设计(论文)开题报告附表二毕业设计工作中期检查Ⅰ附表三2014年 3 月20日此表学生填写,指导教师给出评语后,复印件于第五周交院教学办公室。
毕业设计工作中期检查Ⅱ附表四 2014 年 4 月20日指导教师组织学生口头汇报后,学生填写该表,教师给出评语后,于第十周交院教学办公室。
基于单片机的超声波测距系统设计摘要距离是在不同场合中经常需要检测的一个参数,人们一直都在研究和探讨实现距离测量的最佳方法。
介绍了超声波测距的原理,利用超声波传感器作为核心器件,采用温度补偿的方法实现了对5cm~360cm距离的准确测量。
该测距系统由AT89S52单片机、HY_SRF05超声波传感器、DS18B20温度补偿电路、LCD1602显示电路、报警电路等组成。
此系统具有易控制、工作可靠、测距准确度高等优点。
测量结果表明,该系统误差不超过3cm。
该系统具有结构简单、成本低、性能可靠,精度高,实时显示障碍距离等优点,有一定的实用价值。
关键词:AT89S52;HY_SRF05;超声波测距;温度补偿Abstract: The distance is a parameter that needs to be detected in different occasions. People have been studying and discussing the best way to realize the distance measurement. The principle of ultrasonic distance measurement is presented. Ultrasonic sensors are used as the core device and method of temperature compensation is introduced to realize the accurate measurement of distance from 5 centimeters to 360 centimeters. The system includes AT89S52 single chip, HY_SRF05 ultrasonic sensor, DS18B20 temperature compensation circuit, LCD1602 display circuit and alarm circuit. Test results show that the measurement error of the system is less than 3 centimeters. Because of the characteristics of simple structure, lost cost, reliable performance, high accuracy and real-time distance display of obstacles. The system has certain practical value.Keywords: AT89S52; HY_SRF05; Ultrasonic Ranging; Temperature Compensation目录1 绪论 (1)1.1 课题背景及意义 (1)1.2 国外现状 (1)2 超声波测距系统原理 (2)2.1 超声波及其特征量 (2)2.1.1 超声波 (2)2.1.2 超声波基本波形 (3)2.1.3 声速 (3)2.1.4 声强 (3)2.2 超声波传感器 (3)2.3 超声波测距原理 (5)2.4 系统整体结构设计 (5)3 系统硬件设计 (5)3.1 单片机最小应用系统 (5)3.1.1 AT89S52单片机简介 (6)3.1.2 时钟电路 (7)3.1.3 复位电路 (8)3.2 超声波发射电路 (9)3.3 超声波接收电路 (11)3.4 HY_SRF05传感器模块电路 (12)3.5 LCD1602液晶显示电路 (12)3.5.1 LCD1602液晶显示器简介 (12)3.5.2 显示电路 (13)3.6 温度补偿电路 (14)3.6.1 DS18B20温度传感器简介 (14)3.6.2 测温电路 (15)3.7 蜂鸣器报警电路 (15)4 系统软件设计 (16)4.1 流程图 (16)4.2 程序设计 (18)4.2.1 按键子程序设计 (18)4.2.2 DS18B20测温子程序设计 (18)4.2.3 LCD1602显示子程序设计 (19)5 软件编译及系统仿真 (19)5.1 软件编译 (19)5.2系统仿真 (20)5.2.1 仿真环境 (20)5.2.2 仿真 (20)6 实验结果分析 (23)7 总结与展望 (24)7.1 总结 (24)7.2 展望 (24)致 (25)参考文献 (26)附录1 (27)附录2 (28)1 绪论1.1 课题背景及意义传统的测距方法在某些特殊条件下存在着很多不易解决的问题。
例如,传统的接触式液位测量,由于电极长期浸泡在液体中,所以存在易腐蚀、不便检修和维护、失去灵敏性等问题。
而应用超声波的液位测量具有非接触、检修和维护方便、结构简单、性能稳定等优点,彻底解决了传统的接触式测量存在的问题。
另外,超声测距分辨率高、方向性强、适用围广,并且几乎不受光线、烟雾、电磁干扰等因素的影响。
超声波测距在移动机器人避障、工业控制、三维精确定位、倒车雷达、曲面形仿检测等领域得到了广泛的应用。
特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息容易检测出来,具有较高的分辨力,因而其准确度也较其它方法高。
超声波测距电路既可以由分立元器件搭建,但此种方法搭建的电路往往结构庞大、可靠性差、调试困难、不易扩展。
基于单片机的超声波测距系统被广泛的应用。
通过简单的外围电路发射和接收超声波,单片机通过采样获取到超声波的传播时间,用软件来计算出距离,并且可以采集环境温度进行测距补偿,其测量电路小巧、精度高、反映速度快、可靠性好。
在测量精度方面也能达到工业实用的要求,因此得到了广泛的应用。
本课题的研究是非常有实用和有商业价值的。
1.2 国外现状超声换能器:以气体为耦合介质,在空气中发射和接收超声波进行超声检测的检测技术是检测声学的一个重要领域。
气介超声检测技术主要具有两个方面的优点:一是因为气体在空气中的波速较慢,所以气体中声波波长短,在气体中进行测距具有更高的精度和分辨率;二是其非接触式检测方式,适合于无法使用其它耦合剂的其他应用领域。
超声检测技术在距离测量、室报警、导盲等方面得到了广泛应用。
但气介超声检测技术很久时间以来都没有得到很好的展,其最主要的原因是,超声波在气体界面上的声透射非常低,气体的声阻抗高达4000瑞利。
另外,空气中声波频率越高衰减越强、空气中声波波速随温度变化、空气中检测声波易受环境噪声影响等原因也制约了气介超声检测技术的发展,但长期以来限制气介超声检测技术应用的恰巧是超声换能器本身。
由于空气的声阻抗和换能器材料的声阻抗不同,导致严重的阻抗不匹配,从而空气换能器的效率很低,频带也很窄,从而不能满足一般超声检测系统的信噪比、分辨率、灵敏度的要求。
但最近一段时间以来,空气换能器的研究伴随着纳米加工技术和材料科学的发展也有了很大的发展。
新型的采用多层匹配技术的压电瓷空气换能器和采用半导体硅工艺制成的电容式换能器在中心频率、带宽、插入损耗等特性都有非常大的改善,也促进了气介超声检测技术的发展。
目前常用的气体耦合超声换能器有静电式空气超声换能器和压电式超声换能器,它们都具有效率高、频带宽的特点。
气体耦合超声换能器件的发展,使空气中超声检测技术得到了广泛应用利用脉冲回波检测技术可实现距离的非接触测量。
超声波回波信号处理方法:超声波测距中,超声波回波处理方法的优劣,直接关系到回波前沿的定位精度和渡越时间的测量精度,进而决定着超声探测定位系统的精度和反应速度。
近年来,童峰、Yang Yichun、程晓亮、Figueroa、Lee、Homberg等先后在该方面做了大量研究。
童峰等提出最小均方自适应时延估计(LMSTDE)的算法。
该算法消去了实际换能器与理想换能器的频率特性差,消除了信道由于斜向入射产生的传递特性对输出信号产生的影响,使整个系统保持平坦的频率响应,且输出均方误差最小。
但该算法计算量太大,特别在自适应滤波器的阶数高时,计算量明显增加。
Yang Yichun等针对传统相关计算法在信号的采样频率很低时计算得出的相关函数分辨率低这一不足,提出了基于修正的线性调频变换和相关峰细化原理的精确时延估计快速算法,精确计算相关函数的峰,使得低采样信号的时延估计精度得以提高,并且不受采样率的限制。
程晓畅等针对常规相关峰插值方法在多倍插值的情况下,计算复杂、时延估计精度差等缺陷,结合超声回波信号的窄带通特性和相关峰细化原理,提出了直接提取相关函数包络和包络峰细化的算法,并分析了计算复杂度; 并且还针对超声波换能器的带宽特性和单脉冲回波特性,对 M 序列参数设计方法进行分析,他们借鉴雷达信号处理中的脉冲压缩技术,提出了基于 FFT 的伪随机码包络相关快速时延估计的算法,将信号解调与匹配相关融合,减少了计算量这三种算法均属于互相关函数算法,与传统互相关函数算法相比,它们均在提高时延估计精度的同时,避免了计算量的大幅增加。
卜英勇等根据回波信号的传输特征,利用小波分析法对回波信号进行运算处理,提出了基于小波包络原理的峰值监测方法小波分析法是一种针对信号的时间-尺度(时间-频率)进行分析的方法,可以获得平滑、有效的回波包络曲线,进而利用峰值检测法确定回波前沿的到达时刻,具有高分辨率的优点。
付华等尝试利用 Elman 反馈神经网络逼近真实函数,以期望提高避障系统的测量精确度,降低避障系统的误判率。
Elman 网络隐层采用了“tansig”激活函数,输出层选用了“pureline”激活函数,从而只要有足够的隐层神经元个数,网络就能够以任意精度逼近任意函数。
试验证明,该方法在对超声波测距传感器进行温度、湿度补偿后,其测量精度提高了两个数量级。
先中等基于能量重心校正法和最小二乘法的原理,提出了一种改进型椭圆中心超声回波寻峰的算法,即通过曲线拟合搜索回波信号能量集中点——椭圆中心点,进而找到回波信号的峰值点。