问题:椒盐噪声的去除
基于matlab的图像高斯噪声和椒盐噪声的滤除

2.3 结论
在图像处理过程中,消除图像的噪声干扰是一个非常重要的问题,本文利用matlab软件,采用高斯滤波的方式,对带有椒盐噪声的图像进行处理,经过滤波后的图像既适合人眼的视觉感觉又能够消除图像中的干扰影响。
通过本次试验我们可以看到高斯滤波对于滤除图像的“椒盐”噪声非常有效,它可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,尤其在滤除叠加白噪声和长尾叠加噪声方面显出极好的性能。
一、对于椒盐噪声,中值滤波效果比均值滤波效果好。
原因:
1、椒盐噪声是幅值近似相等但随机分布在不同的位置上,图像中有干净点也有污染点。
2、中值滤波是选择适当的点来代替污染点的值,所以处理效果好。
3、因为噪声的均值不为零,所以均值滤波不能很好地去除噪声点。
二、对于高斯噪声,均值滤波效果比中值滤波效果好。
原因:
1、高斯噪声是幅值近似正态分布,但分布在每点像素上。
2、因为图像中的每点都是污染点,所以中值滤波选不到合适的干净点。
3、因为正态分布的均值为零,所以均值滤波可以削弱噪声。
逆谐波滤波器去除椒盐噪声的原理

逆谐波滤波器去除椒盐噪声的原理
逆谐波滤波器是一种常用于信号处理领域的滤波器。
它可以用于去除椒盐噪声,恢复被噪声污染的信号。
椒盐噪声是一种常见的图像噪声类型,它表现为图像中随机分布的明亮与黑暗
像素点。
这种噪声的出现可能是由于图像传感器或数字化过程中的错误引起的。
椒盐噪声对图像质量产生负面影响,降低了图像的清晰度和细节。
逆谐波滤波器是一种非线性滤波器,它的原理是基于逆谐波均值运算。
逆谐波
均值运算是一种像素级的非线性滤波器,用于处理图像中的椒盐噪声。
它通过计算邻域内像素的幂平均值,将其作为中心像素的新像素值。
逆谐波滤波器通过以下步骤去除椒盐噪声:
1. 首先,选择合适大小的窗口(通常是3x3或5x5)来遍历图像的每个像素点。
2. 对于每个像素,将窗口内的像素值按照绝对值大小进行排序。
3. 排序后,将去除了最小和最大像素值的剩余像素值计算幂的平均值。
4. 将计算得到的平均值作为中心像素的新像素值。
逆谐波滤波器的关键在于使用了非线性的幂平均计算,这使得它对于椒盐噪声
的去除效果较好。
然而,逆谐波滤波器也有一些限制,它对于噪声密度较高或信号与噪声分布混合的情况下不太适用。
总而言之,逆谐波滤波器是一种有效的滤波器,可用于去除图像中的椒盐噪声。
通过使用逆谐波均值运算,它可以恢复被噪声污染的图像,提高图像质量和清晰度。
一种新的椒盐噪声去除方法

2 实验仿真
Edition[M]. Beijing: Publishing House of Electronics Industry,2002. 咱圆暂杨明,陈玲玲.基于线性预测的图像去噪[J].吉林化工学院学报,2014,31(5):72-
仿真实验中袁 在 Lena 图像中加入椒盐噪声袁 密度分别为 0.2 和
噪声密度 0.5
18.8092
11.0628
27.5053
22.6332
杉山 1 0 0 0 0 0 煽衫 杉山 0 0 0 1 煽衫
山 山
0
1
0
0
0
0 衫 山
衫山
0
0
1
0
衫 衫
山 山
0
0
-4
0
0
0 衫 山
衫山
0
-4
0
0
衫 衫
袁
记为方向核
山 山
0 山 1 删山
1 0
0 0
0 0
0 0
衫山 衫山 衫山 闪衫 删山
图 1 噪声密度为 0.2 时的实验结果
图 2 噪声密度为 0.5 时的ቤተ መጻሕፍቲ ባይዱ验结果
强椒盐噪声下的模糊边缘自适应中值滤波算法

强椒盐噪声下的模糊边缘自适应中值滤波算法强椒盐噪声是数字图像处理中常见的一种噪声类型,它会对图像的质量和清晰度造成很大的影响。
为了解决这个问题,研究人员提出了很多滤波算法,其中较为常用的是中值滤波算法。
但是,传统的中值滤波算法在处理强椒盐噪声时效果并不理想,因为它只能处理一定程度的噪声,而无法处理过于强烈的噪声。
因此,本文提出了一种新的算法——模糊边缘自适应中值滤波算法,可以有效地处理强椒盐噪声。
模糊边缘自适应中值滤波算法的主要思想是在中值滤波的基础上,引入模糊边缘检测和自适应滤波两个步骤。
具体来说,该算法首先对图像进行模糊边缘检测,以便确定哪些像素点是噪声,哪些是边缘。
然后,对于噪声像素点,采用中值滤波进行处理;对于边缘像素点,则采用自适应滤波进行处理。
这样,就可以在保留图像边缘信息的同时,有效地去除强椒盐噪声。
具体来说,模糊边缘自适应中值滤波算法的实现步骤如下:1. 对图像进行模糊边缘检测,以便确定哪些像素点是噪声,哪些是边缘。
这里可以采用一些经典的边缘检测算法,如Sobel算子、Canny算子等。
2. 对于噪声像素点,采用中值滤波进行处理。
这里可以采用传统的中值滤波算法,即将像素点周围的一定区域内的像素值进行排序,然后取中间值作为该像素点的新值。
3. 对于边缘像素点,则采用自适应滤波进行处理。
这里可以采用一些经典的自适应滤波算法,如均值滤波、高斯滤波等。
具体来说,对于每个边缘像素点,先计算其周围像素点的均值和方差,然后根据一定的阈值判断该像素点是否需要进行滤波。
如果需要进行滤波,则采用自适应滤波算法对其进行处理。
4. 最后,将处理后的图像输出。
模糊边缘自适应中值滤波算法具有以下优点:1. 可以有效地去除强椒盐噪声,保留图像边缘信息。
2. 算法简单易实现,计算速度较快。
3. 可以根据实际情况进行参数调整,以达到更好的滤波效果。
总之,模糊边缘自适应中值滤波算法是一种有效的处理强椒盐噪声的方法,可以在保留图像边缘信息的同时,去除噪声,提高图像质量和清晰度。
椒盐噪声

椒盐噪声是由图像传感器,传输信道,解码处理等产生的黑白相间的亮暗点噪声。
椒盐噪声往往由图像切割引起。
去除脉冲干扰及椒盐噪声最常用的算法是中值滤波。
路面图像属于结构光图像,使用区域分割技术中的阈值分割法消除白噪声及部分椒盐噪声,而不能使用中值滤波对白噪声及椒盐噪声进行滤波,因为滤波模板在图像中漫游时会改变光条中像素的真实灰度分布,给随后的重心法细化过程带来负面影响。
大量的实验研究发现,由摄像机拍摄得到的图像受离散的脉冲、椒盐噪声和零均值的高斯噪声的影响较严重。
噪声给图像处理带来很多困难,对图像分割、特征提取、图像识别等具有直接影响。
因此,实时采集的图像需进行滤波处理。
消除图像中的噪声成份叫做图像的平滑化或滤波操作。
滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;二是为适应计算机处理的要求,消除图像数字化时所混入的噪声。
对滤波处理的要求有两条:一是不能损坏图像轮廓及边缘等重要信息;二是使图像清晰,视觉效果好。
椒盐噪声是指两种噪声,一种是盐噪声(salt noise),另一种是胡椒噪声(pepper noise)。
盐=白色,椒=黑色。
前者是高灰度噪声,后者属于低灰度噪声。
一般两种噪声同时出现,呈现在图像上就是黑白杂点。
椒盐噪声是图像处理中十分常见的一种噪声, 它可能产生于图像捕捉设备传感器上的坏点或者强噪声信道条件下的图像传输过程。
对于被椒盐噪声污染的图像, 噪声点只取图像动态范围内( 如0~255) 的最大值或最小值, 即在图像中出现一些灰度值很小( 接近黑色) 或灰度值很大( 接近白色) 的污染点, 在图像上呈现一个个暗点和亮点, 类似于胡椒末和盐粉的微粒, 因此称为椒盐噪声。
加噪去噪的方法与引用场景

加噪去噪的方法与引用场景
加噪和去噪是数字图像处理中的重要概念。
以下是几种加噪和去噪的方法,以及它们的引用场景:
加噪的方法:
1. 添加高斯噪声:在图像中添加高斯噪声可以模拟图像在传输或记录过程中受到的随机误差。
高斯噪声是一种以正态分布形式出现的随机噪声。
2. 添加椒盐噪声:椒盐噪声是一种由图像传感器、传输信道等引起的随机误差,表现为图像中突然出现的白点或黑点。
添加椒盐噪声可以模拟这种情况。
去噪的方法:
1. 中值滤波:中值滤波器是一种非线性滤波器,可以将图像中的噪声去除。
中值滤波器对某个区域内的所有像素值进行排序,并将中值作为输出,对于去除椒盐噪声特别有效。
2. 高斯滤波:高斯滤波器是一种线性滤波器,通过将每个像素的值替换为其邻域内像素的加权平均值来去除噪声。
高斯滤波适用于去除高斯噪声。
3. 傅里叶变换:傅里叶变换可以将图像从空间域转换到频率域,通过在频率域中进行滤波操作,再反变换回空间域,可以达到去除噪声的效果。
傅里叶变换可以用于去除各种类型的噪声。
引用场景:
1. 医学图像处理:在医学领域,图像处理技术广泛应用于诊断、治疗和手术导航等方面。
去噪算法可以用于提高医学图像的清晰度和可读性,帮助医生更准确地诊断病情。
2. 遥感图像处理:遥感图像经常受到噪声的干扰,影响其质量和解译效果。
去噪算法可以提高遥感图像的信噪比,从而提高遥感数据的可利用性和可靠性。
3. 通信系统:在通信系统中,噪声是影响信号传输质量的重要因素之一。
通过去噪算法可以降低噪声对信号的影响,提高通信系统的性能和可靠性。
高斯噪声和椒盐噪声公式

高斯噪声和椒盐噪声公式全文共四篇示例,供读者参考第一篇示例:高斯噪声和椒盐噪声是数字图像处理中常见的两种噪声类型,对图像质量有着不同程度的影响。
在图像处理中,我们经常需要对噪声进行消除或降低,因此了解这两种噪声的特点和产生公式对于图像处理非常重要。
一、高斯噪声高斯噪声又称为白噪声,它是在图像中产生的一种随机噪声。
在实际应用中,由于各种因素如传感器的不确定性、环境的干扰等,会导致图像中出现高斯噪声。
一般来说,高斯噪声是服从高斯分布的随机变量产生的噪声。
高斯噪声的数学模型可以表示为:f'(x,y) = f(x,y) + n(x,y)f'(x,y)表示受到高斯噪声干扰后的图像像素值,f(x,y)表示原始图像像素值,n(x,y)表示高斯噪声。
高斯噪声的特点是均值为0,方差为\sigma^2,即:n(x,y) \sim N(0,\sigma^2)\sigma^2越大,噪声的强度越大。
高斯噪声对图像的影响主要体现在增加了图像的灰度值的随机性,使图像变得模糊、失真,降低了图像的质量。
在图像处理中需要采取相应的降噪措施来消除高斯噪声的影响。
二、椒盐噪声椒盐噪声是另一种常见的噪声类型,它的特点是在图像中突然出现明显的黑白点,类似于图像中加入了颗粒状的盐和胡椒。
椒盐噪声通常是由于数据采集或传输过程中发生错误导致的,例如传感器故障、数据损坏等。
f'(x,y) = \begin{cases}f(x,y), & p < q \\0, & q \leq p < 2q \\L-1, & 2q \leq p\end{cases}椒盐噪声的特点是不规则性强,严重干扰了图像的视觉效果,使图像的质量大幅下降。
处理椒盐噪声是图像处理中的一个重要问题。
三、高斯噪声和椒盐噪声的区别1. 高斯噪声是符合高斯分布的随机噪声,其幅值变化在一个比较小的范围内,呈现连续性;而椒盐噪声是不规则的黑白点分布,呈现离散性。
一种有效去除椒盐噪声的滤波算法

收稿日期22 修改日期22作者简介武英,女,南京晓庄学院物理与电子工程学院讲师,硕士,研究方向影像处理2008年11月第6期南京晓庄学院学报JOURNAL OF NANJ I NG X I A OZ HUANG U N I V ERS ITY Nov .2008No .6一种有效去除椒盐噪声的滤波算法武 英(南京晓庄学院物理与电子工程学院,江苏南京210017)摘 要:文章在已有极值中值滤波算法的基础上,提出一种改进的滤波算法.该算法对于不同密度的椒盐噪声采用了不同的滤波方法.在噪声密度较低时,采用有效信号的均值滤波;在噪声密度较大时,采用递归方式进行滤波.经过大量实验证明,该算法在滤除椒盐噪声能力和细节保护能力方面均有较大提高.关键词:椒盐噪声;极值检测;均值滤波;递归中图分类号:O422 文献标识码:A 文章编号:100927902(2008)06200622040 引言图像在传输和形成过程中会由于噪声的产生而导致图像质量下降,而由于成像中的短暂停留或开关作用而形成的椒盐噪声是导致图像质量下降的主要因素之一.20世纪70年代Tukey 提出的基于排序统计的中值滤波,是当前使用最广泛的非线性抑制噪声的方法之一,然而,中值滤波器的去噪效果依赖于滤波窗口的大小及参与中值计算的像素点数目,不同大小的滤波窗口对输出图像的质量有很大的影响,窗口过小,去除噪声的能力不好,窗口过大,又会损失大量的细节信息,造成图像的模糊.为了克服这些矛盾,出现了多种基于中值滤波的改进算法,如自适应中值滤波(Adaptive median filter,A MF )[1],开关中值滤波(S witch median filter,S W F )[2],极值中值滤波(Extr e m um median filter,E MF )[3],加权中值滤波(W eighted median filter,WMF ).这些算法在改善中值滤波器的性能方面做了重要的贡献,但在实际应用中都有各自的局限性,如S W F 在噪声密度低时效果较好,其性能随着输入图像信噪比的降低接近于标准中值滤波,E MF 虽然在一定程度上可以减少误差的累计传播,但随着噪声密度的增加,滤波性能也会迅速下降,WMF 通过加权,虽然降低了细节的损失,但同时去噪声性能也下降了.相比之下,A MF 具有较为优秀的滤波性能,但随着噪声密度的增加,保护细节的能力下降较快.因此,本文提出一种基于极值中值滤波算法的改进算法,该算法由噪声检测和噪声滤除两个部分组成.通过实验表明,该算法在一定程度上缓解了降噪和保护图像细节之间的矛盾.1 噪声检测椒盐噪声的PDF 可由以下公式描述:p (z )=P az =a p bz =b0其他(1)与图像信号的强度相比,椒盐干扰通常较大,因此在一幅图像中,椒盐噪声可以数字化为图像灰度值的最大最小值,负椒盐噪声以一黑点出现,正椒盐噪声以白点出现在图像中,若一幅图像的噪声密度为30%,则该图像中有15%的像素受负椒盐噪声影响,15%的像素受正椒盐噪声影响,而其余70%的像素的灰度值和原图像一致.[4]:20080720:20080910::.自然图像中,相邻像素之间存在着较大的相关性,某点的灰度值与其周围点的灰度值非常接近,除了孤立点(一般认为是噪声)外,即使在边缘部分也满足.在一幅图像中,如果一个像素点的值和其邻域的值相差很远,那么,该点很有可能就是被噪声点污染了,否则,如果其值与邻点很接近,就应该是一个有效的信号点.而滤波窗口尺寸的选择对噪声检测的准确性有很大影响,小尺寸的滤波窗口虽然对细节保护较好,但滤除噪声的能力较差,而大尺寸窗口则相反,滤除噪声能力较强,但同时易造成图像细节的模糊和扭曲.在噪声检测阶段,主要目的是尽可能准确的检测出噪声点,所以可以采用较大的检测窗口(如7×7或5×5).经过大量实验,当噪声密度达到90%时,采用7×7的检测窗口就足够了.利用参考文献[3]提出的极值检测.设f是被噪声污染的图像,其在位置(i,j)处的像素灰度值为f(i,j).令w[fij]表示以像素f(i,j)为中心的噪声检测窗口区域,找出其中的极大值和极小值,该方法的噪声检测过程为:f(i,j)∈n f(i,j)=m in(w[f ij])or m ax(w[f ij])s m in(w[fij])<f(i,j)<m ax(w[fij])(2)其中,n表示噪声,s表示信号.2 噪声滤波在噪声检测阶段采用7×7的大窗口进行极值检测,生成一个和原图像大小相同的二值噪声标记矩阵,可用1表示噪声,0表示信号.完成噪声检测后,在噪声滤除阶段,只需对标记为噪声的像素进行滤波处理,而信号点保持原灰度值不变,此时在小窗口内首先对滤波窗口内的椒盐噪声密度进行估计,如果噪声密度较低,采用改进的均值滤波方法,当滤波窗口内椒盐噪声密度很高时,采用递归方式以实现对高密度椒盐噪声的有效去除.该滤波方法的具体执行过程如下:设被噪声污染的图像f经过滤波后的输出图像为g,用噪声检测窗口(7×7)对污染图像进行极值检测,生成二值噪声标记矩阵,其中0为信号,1为可能的噪声,在接下来的噪声滤除阶段(滤波窗口3×3),只对噪声标记矩阵中的噪声点进行滤波处理,信号点的灰度值保持不变.如果某一点为噪声点,以该点为中心选择大小为3×3的滤波窗口,根据噪声标记矩阵,如果在滤波窗口内有信号点存在,则找出其中的信号点,用滤波窗口内信号点的均值取代原噪声点的灰度值.如果该滤波窗口内全部为噪声点(即噪声密度较大),取该中心像素周围已经进行噪声滤波的四个点的均值进行递归均值计算[5].即g(i,j)=[^g(i-1,j-1)+^g(i-1,j)+^g(i-1,j+1)+^g(i,j-1)]/4(3)对于图像的边界点,需要进行边界扩展,四个边界外扩一行一列,可满足滤波窗口为3×3,本文在处理中,采用了对称扩展,这样扩展能使边界的滤波效果较好.3 实验结果分析(标准中值、极值中值、自适应、本文结果分析)在仿真实验中,采用大小为256×256×8bit的标准测试图像lena为例来验证本文的滤波效果,实验时,在原始图像中加入密度不同的椒盐噪声,并对本文的理论基础极值中值和效果较好的自适应中值滤波及本文提出的方法进行了滤波效果比较.对于图像的滤波效果的评价采用主观和客观评价两种标准.客观标准采用PS NR(peak signal to noise rati o)峰值信噪比和MAE(m ean absolute err or)平均绝对值差来衡量滤波质量数值指标.其定义如下:MSE=1M×N∑Mi=1∑Nj=1[fy(i,j)-g(i,j)]2(4) PS NR=10lg2552MSE(5)MA E=1M×N∑Mi=1∑Nj=1|fy(i,j)-g(i,j)|(6)其中fy(i,j)为原始图像的像素值,g(i,j)为滤波后输出图像的像素值.这些指标的比较如表1所示,从该表中可以看出在图像中加入不同密度的噪声,本文的方法均能达到比较好的滤波效果.表1 各种算法输出结果的客观评价滤波方法性能指标椒盐噪声密度30%50%70%80%极值中值(5×5)PS NR 30.228224.347414.686610.6911MAE 2.34815.056418.541239.5923本文提出方法PS NR 32.286528.288325.845023.5598MAE 1.55343.88375.85927.6694自适应中值(最大窗口为7)PS NR 29.129626.373019.854415.0803MAE 2.84534.51349.850119.1558标准中值(5×5)PS NR 24.308720.775413.53539.9095MAE7.214010.235225.850848.8283图1 不同滤波方法的性能比较图 不同滤波方法对加入椒盐噪声的L 图像滤波效果比较 对于主观评价标准,可由图2的图像比较看出,本文的方法在噪声密度达到70%时,滤波图像的视觉效果明显好于其他方法.由图2可以看出,5×5的标准中值滤波在此时滤波效果很差,极值中值的滤波效果虽然好于标准中值,但仍有部分噪声点没有去除,自适应中值滤波将绝大部分的噪声点都滤除掉了,但同时也带来了一定程度的细节模糊.滤除噪声和保护细节是一对不可调和的矛盾,当对受到较高密度噪声污染的图像进行滤波时,必然会造成图像细节的损失,只不过本文的方法图像细节损失相对较小而已.由图2的比较结果可知,本2en a文的方法在噪声密度达到70%时,不仅可以滤除所有噪声,而且对于细节和边缘的保护能力也明显好于自适应中值滤波.通过主观和客观两个方面的滤波性能效果比较,本文的方法可以达到较好的滤波效果.4 结论本文首先分析了几种经典改进中值滤波算法,如极值中值、自适应中值等,在已有极值中值的滤波算法的基础上,提出一种改进滤波算法.本方法的改进在于首先不需要选择和图像本身特性紧密相关的阈值,避免造成误差,其次采用较大的窗口进行噪声检测,提高了噪声检测的准确性,第三能针对不同密度噪声采取不同的处理方法,提高滤波能力.在噪声密度较低时,进行改进的均值滤波,在噪声密度较高时,采用递归方式进行滤波.一方面可以保护细节,同时由于滤波窗口较小,计算量相对较小可以减少运算时间.通过从主客观两个方面对实验结果进行分析,本文提出的方法对椒盐噪声的滤波能力优于经典中值及改进算法.参考文献:[1]H wang H,Haddad R A.A Adap tive m edian filt e rs:New a l gorith m s and results[J].I EEE Transaction on I mage Proce ssi ng,1995,4(4):4992502.[2]Wang Z,ZhangD,Progressive s witching median filter for the re moval of i mpuls e nois e fr o m hig hly corrupted i mages,I EEE Trans.OnCircuits and Syste m s2II:Ana l og and Digital Signal Processi ng,1999,CAS2II,46(1):78280.[3]XI NG Z J,WANG S J,DE NG H J,et a l.A ne w filte ring algorith m ba s ed on extre m u m and median value[J].Journal of I mageand Graphics(中国图像图形学报),2001,6(6):5332536.[4]G onzalez R C,Wo ods R E.Digital I m ag e P rocessing[M].Be iji ng:Publishing House of Elec tronic s Indu stry,2003.[5]S ONG Y,L IM T,S U N L N.I m age Salt&Pepper Noise Se l f2adaptive Suppression A l gorit hn Ba s ed on Si m ilarit y Func ti on[J].ACT AAUT O MATI C SI N I C A,2007,23(5):4742478.[6]朱磊,徐佩霞.一种稳健快速的椒盐噪声抑制算法[J].小型微型计算机系统,2007,4(28):6922696.[7]王建勇,周晓光,廖启征.基于2级检测的脉冲噪声滤除算法[J].北京邮电大学学报,2005,28(3):59261.(责任编辑:王海军)An Effecti ve Sa lt2and2Pepper No ise F ilterWU Ying(School of Physi c s and El ec tronic Engineering,Nanjing Xi aozhuangUnive rsity,N anjing210017,China)Abstrac t:B ased on the extre m e median filter,an i m p r oved i m age filte r algorithm is pr oposed.D iff e r ent a lgorithm s a r e used for different noise densities.I f the noise density is l ow,the m ean filter with effec tive signa l is used;if the noise density is high,the recursive w indow filter is used.Lots of experi m ents show that the results of salt&pe ppe r noise filte ring and de tail2p r e serving are grea tly i m pr oved.Key wor ds:salt&pepper noise;extre m e detect;m ean filter;r ecursive。