复杂网络聚类系数和平均路径长度计算的MATLAB源代码

合集下载

基于复杂网络的高速铁路网络结构特征分析

基于复杂网络的高速铁路网络结构特征分析

运营管理基于复杂网络的高速铁路网络结构特征分析刘明玮1,2,宋锴3,李博1,2,李靖1,2(1.中国铁路列车运行图技术中心,北京100081;2.中国铁道科学研究院集团有限公司运输及经济研究所,北京100081;3.中国国家铁路集团有限公司运输部,北京100084)摘要:便捷稳定的高速铁路运输网络是铁路客货运高效运输的保证,以复杂网络理论为基础,从铁路实际基础设施角度构建高速铁路网络,从网络拓扑性质方面分析高速铁路网络特性,了解高速铁路网现状。

运用L Space方法构建高速铁路网络模型,从度与度的分布、平均路径长度、聚集系数等复杂网络指标分析拓扑网络结构特征。

研究得出,我国高速铁路网络整体上具有无标度网络特征,中东部和沿海沿江地区车站数量较多,聚集性较高;局部枢纽地区的节点连接聚集,具有小世界网络特征,主要集中在杭州南、南京南、郑州东等大型车站。

此外,通过对比分析2023年高速铁路网络特性的变化情况,可以看出路网车站具有连通性不断增强、路网区域布局均衡化发展的特征。

关键词:复杂网络理论;高速铁路网;网络拓扑;L Space;无标度网络;小世界网络中图分类号:U238;U29 文献标识码:A 文章编号:1001-683X(2024)03-0087-09 DOI:10.19549/j.issn.1001-683x.2023.08.03.0010 引言铁路作为国民经济大动脉,具有投资规模大、建设周期长、影响范围广的性质,车站和线路变化影响其他交通设施的区域性质,甚至影响整个网络的运输功能。

铁路运输网络节点数量多、枢纽结构复杂,具有复杂巨大系统的特性,从复杂网络系统的角度分析网络结构特性,深入挖掘静态物理网络信息,对未来规划及建设具有重要参考意义。

近年来,国内外多位学者已从铁路网络结构拓扑特性角度展开分析,验证铁路网络具有小世界或无标度特性。

Li等[1]应用网络科学分析我国铁路基础设施网络结构;Monmand等[2]利用P Space模型分析巴基斯坦铁路网络的结构特性;Cao等[3]分析以城市为节点、基金项目:中国国家铁路集团有限公司科技研究开发计划项目(P2021X008);中国铁道科学研究院集团有限公司科研开发基金项目(2021YJ312、2022YJ012)第一作者:刘明玮(1996—),女,助理研究员。

聚类分析MATLAB

聚类分析MATLAB

聚类分析MATLAB§8.利⽤Matlab和SPSS软件实现聚类分析1. ⽤Matlab编程实现运⽤Matlab中的⼀些基本矩阵计算⽅法,通过⾃⼰编程实现聚类算法,在此只讨论根据最短距离规则聚类的⽅法。

调⽤函数:min1.m——求矩阵最⼩值,返回最⼩值所在⾏和列以及值的⼤⼩min2.m——⽐较两数⼤⼩,返回较⼩值std1.m——⽤极差标准化法标准化矩阵ds1.m——⽤绝对值距离法求距离矩阵cluster.m——应⽤最短距离聚类法进⾏聚类分析print1.m——调⽤各⼦函数,显⽰聚类结果聚类分析算法假设距离矩阵为vector,a阶,矩阵中最⼤值为max,令矩阵上三⾓元素等于max聚类次数=a-1,以下步骤作a-1次循环:求改变后矩阵的阶数,计作c求矩阵最⼩值,返回最⼩值所在⾏e和列f以及值的⼤⼩gfor l=1:c,为vector(c+1,l)赋值,产⽣新类令第c+1列元素,第e⾏和第f⾏所有元素为,第e列和第f列所有元素为max源程序如下:%std1.m,⽤极差标准化法标准化矩阵function std=std1(vector)max=max(vector); %对列求最⼤值min=min(vector);[a,b]=size(vector); %矩阵⼤⼩,a为⾏数,b为列数for i=1:afor j=1:bstd(i,j)= (vector(i,j)-min(j))/(max(j)-min(j));endend%ds1.m,⽤绝对值法求距离function d=ds1(vector);[a,b]=size(vector);d=zeros(a);for i=1:afor j=1:afor k=1:bd(i,j)=d(i,j)+abs(vector(i,k)-vector(j,k));endendendfprintf('绝对值距离矩阵如下:\n');disp(d)%min1.m,求矩阵中最⼩值,并返回⾏列数及其值function [v1,v2,v3]=min1(vector);%v1为⾏数,v2为列数,v3为其值[v,v2]=min(min(vector'));[v,v1]=min(min(vector));v3=min(min(vector));%min2.m,⽐较两数⼤⼩,返回较⼩的值function v1=min(v2,v3);if v2>v3v1=v3;elsev1=v2;end%cluster.m,最短距离聚类法function result=cluster(vector);[a,b]=size(vector);max=max(max(vector));for i=1:afor j=i:bvector(i,j)=max;endend;for k=1:(b-1)[c,d]=size(vector);fprintf('第%g次聚类:\n',k);[e,f,g]=min1(vector);fprintf('最⼩值=%g,将第%g区和第%g区并为⼀类,记作G%g\n\n',g,e,f,c+1); for l=1:cif l<=min2(e,f)vector(c+1,l)=min2(vector(e,l),vector(f,l));elsevector(c+1,l)=min2(vector(l,e),vector(l,f));endend;vector(1:c+1,c+1)=max;vector(1:c+1,e)=max;vector(1:c+1,f)=max;vector(e,1:c+1)=max;vector(f,1:c+1)=max;end%print1,调⽤各⼦函数function print=print1(filename,a,b); %a为地区个数,b为指标数fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=std1(vector)v2=ds1(v1);cluster(v2);%输出结果print1('fname',9,7)2.直接调⽤Matlab函数实现2.1调⽤函数层次聚类法(Hierarchical Clustering)的计算步骤:①计算n个样本两两间的距离{d ij},记D②构造n个类,每个类只包含⼀个样本;③合并距离最近的两类为⼀新类;④计算新类与当前各类的距离;若类的个数等于1,转到5);否则回3);⑤画聚类图;⑥决定类的个数和类;Matlab软件对系统聚类法的实现(调⽤函数说明):cluster 从连接输出(linkage)中创建聚类clusterdata 从数据集合(x)中创建聚类dendrogram 画系统树状图linkage 连接数据集中的⽬标为⼆元群的层次树pdist 计算数据集合中两两元素间的距离(向量) squareform 将距离的输出向量形式定格为矩阵形式zscore 对数据矩阵 X 进⾏标准化处理各种命令解释1、T = clusterdata(X, cutoff)其中X为数据矩阵,cutoff是创建聚类的临界值。

度,聚类系数,平均路径长度程序

度,聚类系数,平均路径长度程序

function [DeD,aver_DeD]=Degree_Distribution(A)%% 求网络图中各节点的度及度的分布曲线%% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k)%A————————网络图的邻接矩阵%DeD————————网络图各节点的度分布%aver_DeD———————网络图的平均度N=size(A,2);DeD=zeros(1,N);for i=1:N% DeD(i)=length(find((A(i,:)==1)));DeD(i)=sum(A(i,:));endaver_DeD=mean(DeD);if sum(DeD)==0disp('该网络图只是由一些孤立点组成');return;elsefigure;bar([1:N],DeD);xlabel('节点编号n');ylabel('各节点的度数K');title('网络图中各节点的度的大小分布图');endfigure;M=max(DeD);for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性N_DeD(i)=length(find(DeD==i-1));endP_DeD=zeros(1,M+1);P_DeD(:)=N_DeD(:)./sum(N_DeD);bar([0:M],P_DeD,'r');xlabel('节点的度K');ylabel('节点度为K的概率P(K)');title('网络图中节点度的概率分布图');function [C,aver_C]=Clustering_Coefficient(A)%% 求网络图中各节点的聚类系数及整个网络的聚类系数%% 求解算法:求解每个节点的聚类系数,找某节点的所有邻居,这些邻居节点构成一个子图%% 从A中抽出该子图的邻接矩阵,计算子图的边数,再根据聚类系数的定义,即可算出该节点的聚类系数%A————————网络图的邻接矩阵%C————————网络图各节点的聚类系数%aver———————整个网络图的聚类系数N=size(A,2);C=zeros(1,N);for i=1:Naa=find(A(i,:)==1); %寻找子图的邻居节点if isempty(aa)disp(['节点',int2str(i),'为孤立节点,其聚类系数赋值为0']);C(i)=0;elsem=length(aa);if m==1disp(['节点',int2str(i),'只有一个邻居节点,其聚类系数赋值为0']);C(i)=0;elseB=A(aa,aa); % 抽取子图的邻接矩阵C(i)=length(find(B==1))/(m*(m-1));endendendaver_C=mean(C);function [D,aver_D]=Aver_Path_Length(A)%% 求复杂网络中两节点的距离以及平均路径长度%% 求解算法:首先利用Floyd算法求解出任意两节点的距离,再求距离的平均值得平均路径长度% A————————网络图的邻接矩阵% D————————返回值:网络图的距离矩阵% aver_D———————返回值:网络图的平均路径长度N=size(A,2);D=A;D(find(D==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:ND(i,i)=0;endfor k=1:N %Floyd算法求解任意两点的最短距离for i=1:Nfor j=1:Nif D(i,j)>D(i,k)+D(k,j)D(i,j)=D(i,k)+D(k,j);endendendendaver_D=sum(sum(D))/(N*(N-1)); %平均路径长度if aver_D==infdisp('该网络图不是连通图');end%% 算法2:用时间量级O(MN)的广度优先算法求解一个含N个节点和M条边的网络图的平均路径长度。

LOV词表特征及网络结构分析

LOV词表特征及网络结构分析

並务研究精報科#第39卷第3期 2021年3月L0V词表特征及网络结构分析贾君枝'李衍1(1.山西大学经济与管理学院,山西太原030006; 2.中国人民大学信息资源管理学院,北京100872)摘要:【目的/意义】关联开放词汇表(L O V)作为关联开放数据云(L O D)的重要组成部分,旨在提供对L O D中所使用词表的便捷访问,对L O V词表特征与网络结构进行探讨,一定程度上揭示了关联数据的演化和动态规律。

【方法/过程】本文从L O V数据网络的基本特征、结构特征两个角度入手,借助数理统计与复杂网络分析方法,对从L O V官网收集到的数据进行深入分析。

【结果/结论】了解词表基本特征的分布规律、集中趋势、离散程度以及词表 的网络结构特征,并验证L O V网络结构遵循了复杂网络中的无标度特性和小世界理论。

【创新/局限】从度量学的角度来观察L O V网络,可为全面了解L O V词表特征和结构,在映射和使用重要词表时提供参考。

由于本文使用的是 静态数据,因此未来可收集动态数据,对词表网络演化过程进行更进一步的探析,从而从更深层次揭示L O V网络的生长模式与规律。

关键词:关联开放词汇表;关联开放数据云;复杂网络;社会网络分析;词表中图分类号:G254 D O I:10.13833/j.issn.1007-7634.2021.03.0241引言万维网改变了人们交流和商业运作的方式,已成为全球 信息空间的基础设施。

如今该基础设施被认为是一个数据 网络平台,也称为语义网,其提供了各种类型的数据,并且用 结构化语言进行互联,从而使数据可以被机器理解和使用。

当大规模数据开始进人人们视野时,不同类型发布的数据具 有不同的访问机制,并且以不同的格式提供,从而为数据使 用增加了困难。

为了解决该问题,万维网之父Tim Bern­ers-Lee 制定了在网络上发布和互联结构化数据的原则 ,即利用UR I(统一资源标识符)命名数据实体,采用R D F数据模 型,通过H T T P协议揭示并获取数据,提供与其他U R I的 R D F数据互联,以便发现更多相关信息[11。

30个智能算法matlab代码

30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MATLAB源代码

复杂网络聚类系数和平均路径长度计算的MATLAB源代码复杂网络的聚类系数和平均路径长度是度量网络结构特征的重要指标。

下面是MATLAB源代码,用于计算复杂网络的聚类系数和平均路径长度。

首先,我们需要定义一个函数,用于计算节点的聚集系数。

这个函数的输入参数是邻接矩阵和节点的索引,输出参数是节点的聚类系数。

```matlabfunction cc = clustering_coefficient(adj_matrix, node_index) neighbors = find(adj_matrix(node_index, :));k = length(neighbors);if k < 2cc = 0;elseconnected_count = 0;for i = 1:k-1for j = i+1:kif adj_matrix(neighbors(i), neighbors(j))connected_count = connected_count + 1;endendendcc = 2 * connected_count / (k * (k - 1));endend```接下来,我们定义一个函数,用于计算整个网络的平均聚合系数。

```matlabfunction avg_cc = average_clustering_coefficient(adj_matrix) n = size(adj_matrix, 1);cc = zeros(n, 1);for i = 1:ncc(i) = clustering_coefficient(adj_matrix, i);endavg_cc = sum(cc) / n;end```然后,我们需要计算网络的平均最短路径长度。

这里我们使用了Floyd算法来计算每对节点之间的最短路径。

```matlabfunction avg_path_length =average_shortest_path_length(adj_matrix)n = size(adj_matrix, 1);dist_matrix =graphallshortestpaths(sparse(double(adj_matrix)));avg_path_length = sum(dist_matrix(:)) / (n^2 - n);end```最后,我们可以使用这些函数来计算一个复杂网络的聚类系数和平均路径长度。

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码

加权聚类系数和加权平均路径长度matlab代码(实用版)目录1.引言2.加权聚类系数和加权平均路径长度的定义和意义3.Matlab 代码实现4.结论正文一、引言在网络科学中,聚类系数和平均路径长度是两个重要的参数,用于描述网络的结构特性。

加权聚类系数和加权平均路径长度是在此基础上,对这两个参数进行加权处理,使得分析结果更加精确。

本文将介绍如何使用Matlab 代码实现加权聚类系数和加权平均路径长度的计算。

二、加权聚类系数和加权平均路径长度的定义和意义1.加权聚类系数加权聚类系数是用来衡量网络中节点之间联系紧密程度的参数。

其计算公式为:加权聚类系数 = (∑(权重^2)) / (∑(权重))其中,权重代表连接两个节点的边的权重。

2.加权平均路径长度加权平均路径长度是用来衡量网络中节点之间平均距离的参数。

其计算公式为:加权平均路径长度 = ∑(路径长度 * 权重) / ∑(权重)其中,路径长度代表从源节点到目标节点经过的边的权重之和,权重代表连接两个节点的边的权重。

三、Matlab 代码实现假设我们有一个邻接矩阵表示的网络,邻接矩阵如下:```A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];```我们可以使用以下 Matlab 代码实现加权聚类系数和加权平均路径长度的计算:```matlab% 邻接矩阵A = [0, 1, 1, 0, 0, 1, 0, 1, 0, 0];% 计算加权聚类系数weight = A; % 假设权重与邻接矩阵相同clustering_coefficient = sum(weight.^2) / sum(weight);% 计算加权平均路径长度path_length = sum(sum(weight, 2) * weight) / sum(weight);```四、结论通过 Matlab 代码,我们可以方便地实现加权聚类系数和加权平均路径长度的计算。

课题:WS小世界网络模型构造

课题:WS小世界网络模型构造

课题:WS小世界网络模型构造姓名赵训学号 2班级计算机实验班一、WS 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。

实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径) 和聚类特性(较大的聚类系数) 。

传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而ER 随机网络具有小世界特性但却没有高聚类特性。

因此这两种传统的网络模型都不能很好的来表示实际的真实网络。

Watts 和Strogatz建立的WS小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。

二、WS小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。

2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。

其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。

在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡,如图a所示。

图a相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('WS小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angle=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angle);y=100*sin(angle);plot(x,y,'r.','Markersize',30);hold on;%生成最近邻耦合网络;A=zeros(N);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1;endfor j=1:((i+K)-N)A(i,j)=1;endendif K<ifor j=i-K:i-1A(i,j)=1;endelsefor j=1:i-1A(i,j)=1;endfor j=N-K+i:NA(i,j)=1;endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1);if pp<=pA(i,j)=0;A(j,i)=0;b=unidrnd(N);while i==bb=unidrnd(N); endA(i,b)=1;A(b,i)=1;endendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1plot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hold on;endendendhold offaver_path=aver_pathlength(A);disp(aver_path);对应输出(取网络节点数N=16,K=2;p分别取0,0.1,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

申明:文章来自百度用户carrot_hy复杂网络的代码总共是三个m文件,复制如下:第一个文件,function [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types)% CCM_ClusteringCoef calculates clustering coefficients.% Input:% gMatrix adjacency matrix% Types type of graph:'binary','weighted','directed','all'(default).% Usage:% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(gMatrix, Types) returns% clustering coefficients for all nodes "Cp_Nodal" and average clustering % coefficient of network "Cp_Global".% Example:% G = CCM_TestGraph1('nograph');% [Cp_Global, Cp_Nodal] = CCM_ClusteringCoef(G);% Note:% 1) one node have vaule 0, while which only has a neighbour or none.% 2) The dircted network termed triplets that fulfill the follow condition % as non-vacuous: j->i->k and k->i-j,if don't satisfy with that as% vacuous, just like: j->i,k->i and i->j,i->k. and the closed triplets% only j->i->k == j->k and k->i->j == k->j.% 3) 'ALL' type network code from Mika Rubinov's BCT toolkit.% Refer:% [1] Barrat et al. (2004) The architecture of the complex weighted networks. % [2] Wasserman,S.,Faust,K.(1994) Social Network Analysis: Methods and %Applications.% [3] Tore Opsahl and Pietro Panzarasa (2009). "Clustering in Weighted% Networks". Social Networks31(2).% See also CCM_Transitivity% Written by Yong Liu, Oct,2007% Center for Computational Medicine (CCM),% National Laboratory of Pattern Recognition (NLPR),% Institute of Automation,Chinese Academy of Sciences (IACAS), China.% Revise by Hu Yong, Nov, 2010% E-mail:% based on Matlab 2006a% $Revision: , Copywrite (c) 2007error(nargchk(1,2,nargin,'struct'));if(nargin < 2), Types = 'all'; endN = length(gMatrix);gMatrix(1:(N+1):end) = 0;%Clear self-edgesCp_Nodal = zeros(N,1); %Preallocateswitch(upper(Types))case 'BINARY'%Binary networkgMatrix = double(gMatrix > 0);%Ensure binary networkfor i = 1:Nneighbor = (gMatrix(i,:) > 0);Num = sum(neighbor);%number of neighbor nodestemp = gMatrix(neighbor, neighbor);if(Num > 1), Cp_Nodal(i) = sum(temp(:))/Num/(Num-1);endcase 'WEIGHTED'% Weighted network -- arithmetic mean for i = 1:Nneighbor = (gMatrix(i,:) > 0); n_weight =gMatrix(i,neighbor); Si = sum(n_weight);Num = sum(neighbor); if(Num > 1),n_weight = ones(Num,1)*n_weight;n_weight = n_weight + n_weight';n_weight = n_weight.*(gMatrix(neighbor,Cp_Nodal(i) = sum(n_weight(:))/(2*Si*(Num-1)); end end %case 'WEIGHTED'% Weighted network -- geometric mean% A = (gMatrix~= 0);% G3 = diag((gMatrix.A(1 ⑶)人3);)% A(A == 0) = inf; %close-triplet no exist,let CpNode=0 (A=inf)% CpNode = G3./(A.*(A-1));case 'DIRECTED', % Directed networkfor i = 1:Ninset = (gMatrix(:,i) > 0);outset = (gMatrix(i,:) > 0)'; %out-nodes setif(any(inset & outset)) allset = and(inset, outset);% Ensure aji*aik > 0,j belongs to inset,and kbelongs tooutsetend neighbor) > 0);%in-nodes settotal = sum(inset)*sum(outset) - sum(allset);tri = sum(sum(gMatrix(inset, outset))); Cp_Nodal(i)= tri./total;endend%Note: Directed & weighted network (from Mika Rubinov) case 'ALL',%All typeA = (gMatrix~= 0);G = gMatrix.A(1/3) + (gMatrix.')4(1/3); D = sum(A + A.',2);g3 = diag(G A 3)/2; D(g3 == 0) = inf; Cp=0 c3 = D.*(D-1) - 2*diag(AA2);Cp_Nodal = g3./c3;otherwise,%Eorr Msgerror('Type only four: "Binary","Weighted","Directed",and "All"');endCp_Global = sum(Cp_Nodal)/N;%%第二个文件:function [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix, s, t)% CCM_AvgShortestPath generates the shortest distance matrix of source nodes% indice s to the target nodes indice t.% Input:% gMatrix symmetry binary connect matrix or weighted connectmatrix source nodes, default is 1:N% t target nodes, default is 1:N% Usage: % G = gMatrix + gMatrix'; %symmetrized% D = sum(G,2); %total degree % g3 = diag(GA3)/2; %number of triplet % D(g3 == 0) = inf; %3-cycles no exist,let % c3 = D.*(D-1) - 2*diag(gMatrixA2); %number of all possible 3-cycles% Cp_Nodal = g3./c3;%case 'DIRECTED', % Directed network -- clarity format (from Mika Rubinov, UNSW) Cp=0%adjacency matrix%total degree %number of triplet%3-cycles no% [D_Global, D_Nodal] = CCM_AvgShortestPath(gMatrix) returns the mean% shortest-path length of whole network D_Global,and the mean shortest-path % length of each node in the network% Example:% G = CCM_TestGraph1('nograph');% [D_Global, D_Nodal] = CCM_AvgShortestPath(G);% See also dijk, MEAN, SUM% Written by Yong Liu, Oct,2007% Modified by Hu Yong, Nov 2010% Center for Computational Medicine (CCM),% Based on Matlab 2008a% $Revision: , Copywrite (c) 2007% ###### Input check ######### error(nargchk(1,3,nargin,'struct'));N = length(gMatrix); if(nargin < 2 | isempty(s)), s = (1:N)';else s = s(:); endif(nargin < 3 | isempty(t)), t = (1:N)';else t = t(:); end % Calculate the shortest-path from s to all nodeD = dijk(gMatrix,s);%D(isinf(D)) = 0;D = D(:,t); %To target nodesD_Nodal = (sum(D,2)./sum(D>0,2)); % D_Nodal(isnan(D_Nodal)) = []; D_Global = mean(D_Nodal);第三个文件:function D = dijk(A,s,t)%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.% D = dijk(A,s,t)% A = n x n node-node weighted adjacency matrix of arc lengths% (Note: A(i,j) = 0 => Arc (i,j) does not exist;A(i,j) = NaN => Arc (i,j)exists with 0 weight)% s = FROM node indices% = [] (default), paths from all nodes% t = TO node indices% = [] (default), paths to all nodes% D = |s| x |t| matrix of shortest path distances from 's' to 't'% = [D(i,j)], where D(i,j) = distance from node 'i' to node 'j'% % (If A is a triangular matrix, then computationally intensive node % selection step not needed since graph is acyclic (triangularity is a% sufficient, but not a necessary, condition for a graph to be acyclic)% and A can have non-negative elements)% % (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is now% transposed and P now represents successor indices)% % (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, NetworkFlows, % Prentice-Hall, 1993, p. 109.) % Copyright (c) 1998-2000 by Michael G. Kay% Matlog Version 29-Aug-2000%% Modified by JBT, Dec 2000, to delete paths% Input Error Checking ******************************************************error(nargchk(1,3,nargin,'struct'));[n,cA] = size(A);if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end if nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); endif ~any(any(tril(A) ~= 0)) % A is upper triangular isAcyclic = 1;elseif ~any(any(triu(A) ~= 0)) % A is lower triangular isAcyclic = 2;else % Graph may not be acyclic isAcyclic = 0;end if n ~= cAerror('A must be a square matrix'); elseif ~isAcyclic &any(any(A < 0))error('A must be non-negative'); elseif any(s < 1 | s > n)error(['''s'' must be an integer between 1 and ',num2str(n)]); elseif any(t < 1 | t > n)error(['''t'' must be an integer between 1 and ',num2str(n)]);end % End (Input Error Checking)************************************************A = A'; % Use transpose to speed-up FIND for sparse AD = zeros(length(s),length(t));P = zeros(length(s),n);for i = 1:length(s) j = s(i);Di = Inf*ones(n,1); Di(j) = 0;isLab = logical(zeros(length(t),1)); if isAcyclic == 1nLab = j - 1;elseif isAcyclic == 2nLab = n - j;elsenLab = 0; UnLab = 1:n;isUnLab = logical(ones(n,1)); endwhile nLab < n & ~all(isLab)if isAcyclicDj = Di(j);else % Node selection[Dj,jj] = min(Di(isUnLab)); j = UnLab(jj);UnLab(jj) = []; isUnLab(j) = 0; end nLab = nLab + 1;if length(t) < n, isLab = isLab | (j == t); end[jA,kA,Aj] = find(A(:,j));Aj(isnan(Aj)) = 0;if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; endP(i,jA(Dk < Di(jA))) = j; Di(jA) = min(Di(jA),Dk); if isAcyclic == 1 j = j +1;elseif isAcyclic == 2triangular A j = j - 1;end %disp( num2str( nLab )); endD(i,:) = Di(t)'; end % Increment node index for upper triangular A% Decrement node index for lower。

相关文档
最新文档