网络设备冗余和链路冗余常用技术(图文)

合集下载

存储_网络冗余

存储_网络冗余
each direction) •PCI-E x16 Gen2: 16GB/s
AFT
Adapter Fault Torence “适配器容错” 在一台服务器中将二块网
卡设置为“AFT 组”,primary 和standy, 流量只在primary,如一个网卡或链接停止 ,则辅助网卡立即接管,从而保持服务 器网络链接连续性。
三.硬盘冗余
磁盘阵列:RAID1 RAID5 硬盘Hotspare
四.服务器冗余
类型 冗余方式
类型
按指令系统: CISC服务器 RISC服务器
CISC Complex Instruction Set Computer
基于Intel X86架构,PC服务器 XEON
Load ians frame=协议帧 name=XXX team=num Bind ians XXX team=1 primary(从网卡不必写primary参数)
Load ians commit mode=AFT/ALB
INTEL网卡的三种模式
AFT:Adapter Fault Torence ALB:Adapter Load Balance ALA:Adapter Link Aggregation
CPU、阵列卡的类型。 HP DL580系列服务器的特点? DELL PowerEDGE所采用的阵列卡?
五.交换机冗余
交换机技术: 1.Spanning-tree&portfast 2.GEC/FEC 3.VLAN
1.Spanning-tree
为网络提供路径冗余同时防止产生环路 两个工作站之间有两条路径,但有且只
总部:数据清算和集中交易 操作系统:Linux AS4、win2003 数据库:Oracle 服务器:HP DL580系列,IBM System

光路切换设备的冗余备份技术与故障恢复机制

光路切换设备的冗余备份技术与故障恢复机制

光路切换设备的冗余备份技术与故障恢复机制随着信息技术的快速发展,通信网络已经成为现代社会不可或缺的基础设施之一。

光纤通信作为一种高带宽、低损耗的传输介质,被广泛应用于各行各业。

而光路切换设备作为光纤通信系统的重要组成部分,扮演着实现高可靠性和可用性的关键角色。

本文将介绍光路切换设备的冗余备份技术和故障恢复机制。

一、冗余备份技术冗余备份技术旨在提高系统的可靠性和容错能力。

在光路切换设备中,常见的冗余备份技术包括硬件冗余和链路冗余。

1. 硬件冗余硬件冗余是通过在设备内部添加冗余组件来实现的。

主要包括冗余电源模块、冗余控制模块和冗余光纤接口模块等。

当其中一个组件发生故障时,系统可以自动地切换到备用组件,确保通信的连续性和可靠性。

2. 链路冗余链路冗余是通过在网络拓扑中增加备用链路来实现的。

常见的链路冗余技术包括主备链路切换和环路备份。

主备链路切换是指在两个光路切换设备之间配置主链路和备用链路,当主链路发生故障时,系统会自动地切换到备用链路,从而实现对数据的无缝切换。

环路备份是指在网络拓扑中构建冗余的环回路径,并通过使用路由协议来实现动态的冗余备份。

当网络中的一条链路发生故障时,系统会自动地进行路由重算,选择可用的备用链路进行数据传输,从而实现对通信的连续性保障。

二、故障恢复机制故障恢复机制是指在故障发生后,系统如何快速地检测、定位和恢复故障的过程。

1. 故障检测与定位光路切换设备通常会配备故障检测和定位功能,以及相应的告警系统。

当设备出现故障时,系统会自动地进行故障检测,并通过告警系统将故障信息反馈给网络管理人员。

同时,系统还会通过故障定位算法精确定位故障的位置,为后续的故障修复提供准确依据。

2. 故障恢复与修复一旦故障发生,系统需要及时采取措施进行故障恢复与修复。

光路切换设备通常会支持自动故障恢复功能,当检测到故障之后,系统会自动地将数据流量切换到备用路径,以保证通信的连续性。

同时,故障修复人员也会根据故障的类型和定位结果,采取相应的修复措施来恢复设备的正常工作状态。

链路冗余技术

链路冗余技术

链路冗余技术:保障您网络通畅的最佳方案网络通信时常发生因链路故障而失去连接的现象,导致网络中断和数据丢失。

这种情况下,链路冗余技术可以帮助您保障网络的稳定性和可靠性。

在一般的网络架构中,通过在通信的路径上增加多条链路,同时对传输的数据进行备份存储,实现对链路的冗余备份,避免单点故障,并增加网络的吞吐量和带宽利用率。

目前比较常见的链路冗余技术有VRRP(Virtual Router Redundancy Protocol)、HSRP (Hot Standby Router Protocol)、GLBP(Gateway Load Balancing Protocol)等。

VRRP技术通过虚拟路由器实现链路冗余,当主路由器出故障时,备用路由器可以实时接管主路由器的工作。

而HSRP则通过选主机制确保高可用性的路由器成为主机,并通过心跳检测机制不断监测链路的连接状态、负载均衡等情况。

GLBP技术则是一种较为高级的链路冗余技术,可以实现对多个网关的负载均衡和链路的冗余备份,效果更加优异。

通过采用链路冗余技术,可以有效地消除网络故障带来的影响,降低企业的维护成本并提高网络的可用性。

如果您的企业需要一种高效可靠的网络保障技术,不妨考虑使用链路冗余技术。

什么是核心交换机的链路聚合、冗余、堆叠、热备份

什么是核心交换机的链路聚合、冗余、堆叠、热备份

什么是核心交换机的链路聚合、冗余、堆叠、热备份一、链路聚合是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。

链路聚合一般用来连接一个或多个带宽需求大的设备,例如连接骨干网络的服务器或服务器群。

它可以用于扩展链路带宽,提供更高的连接可靠性。

1、举例公司有2层楼,分别运行着不同的业务,本来两个楼层的网络是分开的,但都是一家公司难免会有业务往来,这时我们就可以打通两楼之前的网络,使具有相互联系的部门之间高速通信。

如下图:如上图所示,SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,且SwitchA和SwitchB之间有较大的数据流量。

用户希望SwitchA和SwitchB之间能够提供较大的链路带宽来使相同VLAN间互相通信。

同时用户也希望能够提供一定的冗余度,保证数据传输和链路的可靠性。

创建Eth-Trunk接口并加入成员接口,实现增加链路带宽,2台交换机分别配置Eth-Trunk1 分别将需要通信的3条线路的端口加入Eth-Trunk1,设置端口trunk,允许相应的vlan通过;这样两楼的网络就可以正常通信了。

2、实现配置步骤:在SwitchA上创建Eth-Trunk1并配置为LACP模式。

SwitchB配置过程与SwitchA类似,不再赘述<HUAWEI> system-view [HUAWEI] sysname SwitchA[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] mode lacp[SwitchA-Eth-Trunk1] quit配置SwitchA上的成员接口加入Eth-Trunk。

SwitchB配置过程与SwitchA类似,不再赘述[SwitchA] interface gigabitethernet 0/0/1[SwitchA-GigabitEthernet0/0/1] eth-trunk 1[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet 0/0/2[SwitchA-GigabitEthernet0/0/2] eth-trunk 1[SwitchA-GigabitEthernet0/0/2] quit[SwitchA] interface gigabitethernet 0/0/3[SwitchA-GigabitEthernet0/0/3] eth-trunk 1[SwitchA-GigabitEthernet0/0/3] quit在SwitchA上配置系统优先级为100,使其成为LACP主动端[SwitchA] lacp priority 100在SwitchA上配置活动接口上限阈值为2[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] max active-linknumber 2[SwitchA-Eth-Trunk1] quit在SwitchA上配置接口优先级确定活动链路[SwitchA] interface gigabitethernet 0/0/1[SwitchA-GigabitEthernet0/0/1] lacp priority 100[SwitchA-GigabitEthernet0/0/1] quit[SwitchA] interface gigabitethernet 0/0/2[SwitchA-GigabitEthernet0/0/2] lacp priority 100[SwitchA-GigabitEthernet0/0/2] quit二、链路冗余为了保持网络的稳定性,在多台交换机组成的网络环境中,通常都使用一些备份连接,以提高网络的效率、稳定性,这里的备份连接也称为备份链路或者冗余链路。

网络设备冗余和链路冗余-通用技术(图片文字)

网络设备冗余和链路冗余-通用技术(图片文字)

网络设备及链路冗余部署——基于锐捷设备8.1 冗余技术简介随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。

作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。

高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。

为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。

大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。

本章将对这三种冗余技术的基本原理和实现进行详细的说明。

8.2设备级冗余技术设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。

在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。

下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。

8.2.1S6806E交换机的电源冗余技术图8-1 S6806E的电源冗余如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。

工程中最常见配置情况是同时插入两块P6800-AC模块来实现220v交流电源的1+1备份。

电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。

注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。

如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。

8.2.2 S6806E交换机的管理板卡冗余技术图8-2 S6806E的管理卡冗余如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。

局域网组建的网络容错和冗余配置

局域网组建的网络容错和冗余配置

局域网组建的网络容错和冗余配置现代社会中,计算机网络的重要性不言而喻。

无论是企业、学校还是家庭,都离不开一个稳定、安全的局域网。

然而,网络故障或中断可能导致数据丢失、业务中断等问题,因此,局域网的网络容错和冗余配置显得尤为重要。

本文将探讨局域网组建中的网络容错和冗余配置,以确保网络运行的稳定性和可靠性。

一、网络容错技术概述网络容错是指在网络设备或连接出现故障时,能够自动检测并转移数据流量,从而在不影响业务的前提下保证网络的可靠运行。

常见的网络容错技术包括冗余设备、链路故障切换和负载均衡等。

1. 冗余设备冗余设备是指在一个网络节点出现故障时,能够自动切换到备用设备,以保证网络的正常运行。

例如,通过配置冗余路由器和交换机,当主设备损坏时,备用设备能够立即接管主设备的功能,从而避免网络中断。

2. 链路故障切换链路故障切换是指当一个网络链路出现故障时,能够自动转移数据流量到备用链路,以确保网络的可用性。

通过配置链路故障检测机制和备用链路,可以在主链路故障时快速切换到备用链路,避免数据丢失和业务中断。

3. 负载均衡负载均衡是指将网络流量均匀分配到多个网络设备上,以避免某个设备负载过重而导致性能下降或故障。

通过配置负载均衡算法,可以根据网络设备的负载情况智能地将流量分担到各个设备上,提高网络的可用性和性能。

二、网络容错和冗余的部署实践在局域网组建过程中,如何合理地配置网络容错和冗余设备,以达到最佳的网络可用性是关键。

下面将介绍一些常见的网络容错和冗余配置实践。

1. 设备冗余部署在局域网中,可以通过配置双机热备、主备模式等方式来实现设备的冗余部署。

双机热备是指在局域网中设置两台主机,一台作为主机提供服务,一台作为备机,当主机故障时,备机会自动接管主机的功能。

主备模式则是在局域网中设置一台主设备和一台备设备,当主设备故障时,备设备会自动切换为主设备。

通过这种方式,可以保证在设备故障时网络的正常运行。

2. 多链路冗余备份在局域网中,可以通过配置多个链路和链路故障检测机制来实现链路的冗余备份。

网络冗余技术mstp+vrrp

网络冗余技术mstp+vrrp

网络冗余技术——VRRP+MSTP一、组网需求1.选用两台锐捷的s3550 ,两台锐捷的S2126-G。

2.全网共有三个业务vlan ,为 vlan 10 、vlan 20、vlan 40 s3550 A 、s3550B、S2126-A、S2126-B 都起用 mstp多生成树协议,并且所有设备都属于同一个mst域,且实例映射一致(vlan 10映射实例1、vlan 20、40映射实例2,其他vlan映射默认实例0)。

Vlan 10业务以s3550 A为根桥; vlan 20、40业务以s3550B为根桥,实现阻断网络环路,并能实现不同vlan数据流负载分担功能。

3.s3550 A 、s3550B 都分别对三vlan起用三个vrrp组,实现三组的业务的负载分担和备份。

二、组网图三、配置步骤1.s3550 A配置:switch(config)#hostname S3550-AS3550-A(config)#vlan 10S3550-A(config)#vlan 20S3550-A(config)#vlan 40S3550-A(config)#interface fastethernet 0/1S3550-A(config-if)#switchport mode trunk!定义F0/1为trunk端口S3550-A(config)#interface fastethernet 0/23S3550-A(config-if)#switchport mode trunkS3550-A(config)#interface fastethernet 0/24S3550-A(config-if)#switchport mode trunkS3550-A(config)#spanning-tree !开启生成树S3550-A (config)#spanning-tree mode mstp !采用MSTP生成树模式S3550-A (config)#spanning-tree mst 1 priority 0 !指定实例1的优先级为0S3550-A (config)#spanning-tree mst 2 priority 4096 !指定实例2的优先级为4096 S3550-A (config)#spanning-tree mst configuration! 进入MSTP配置模式S3550-A (config-mst)#instance 1 vlan 10 ! 配置实例1并关联Vlan 10S3550-A (config-mst)#instance 2 vlan 20,40 ! 配置实例2并关联Vlan 20和40 S3550-A (config-mst)#name region1 ! 配置域名为region1S3550-A (config-mst)#revision 1 ! 配置版本(修订号)S3550-A (config)# interface VLAN 10 !创建vlan 10 svi接口S3550-A (config-if)# ip address 192.168.10.1 255.255.255.0 !配置ip地址S3550-A (config-if)# vrrp 1 priority 120 !配置vrrp组1 优先级为120S3550-A (config-if)# vrrp 1 ip 192.168.10.254!配置vrrp组1虚拟ip地址为192.168.10.254S3550-A (config)# interface VLAN 20 创建vlan 20 svi接口S3550-A (config-if)# ip address 192.168.20.1 255.255.255.0配置ip地址S3550-A (config-if)# vrrp 2 ip 192.168.20.254!配置vrrp组2虚拟ip地址为192.168.20.254S3550-A (config-if)# vrrp 1 priority 100S3550-A (config)# interface VLAN 40 创建vlan 40 svi接口S3550-A (config-if)# ip address 192.168.40.1 255.255.255.0配置ip地址S3550-A (config-if)# vrrp 3 ip 192.168.40.254!配置vrrp组3虚拟ip地址为192.168.40.254S3550-A (config-if)#vrrp 3 priority 1002.s3550 B配置:switch(config)#hostname S3550-BS3550-B(config)#vlan 10S3550-B(config)#vlan 20S3550-B(config)#vlan 40S3550-B(config)#interface fastethernet 0/1S3550-B(config-if)#switchport mode trunk!定义F0/1为trunk端口S3550-B(config)#interface fastethernet 0/23S3550-B(config-if)#switchport mode trunkS3550-B(config)#interface fastethernet 0/24S3550-B(config-if)#switchport mode trunkS3550-B(config)#spanning-tree !开启生成树S3550-B (config)#spanning-tree mode mstp !采用MSTP生成树模式S3550-B (config)#spanning-tree mst 1 priority 4096 !指定实例1的优先级为4096 S3550-B (config)#spanning-tree mst 2 priority 0 !指定实例2的优先级为0S3550-B (config)#spanning-tree mst configuration! 进入MSTP配置模式S3550-B (config-mst)#instance 1 vlan 10 ! 配置实例1并关联Vlan 10S3550-B (config-mst)#instance 2 vlan 20,40 ! 配置实例2并关联Vlan 20和40 S3550-B (config-mst)#name region1 ! 配置域名为region1S3550-B (config-mst)#revision 1 ! 配置版本(修订号)S3550-B (config)# interface VLAN 10 !创建vlan 10 svi接口S3550-B (config-if)# ip address 192.168.10.2 255.255.255.0 !配置ip地址S3550-B (config-if)# vrrp 1 ip 192.168.10.254!配置vrrp组1虚拟ip地址为192.168.10.254S3550-A (config-if)# vrrp 1 priority 100 !配置vrrp组1 优先级为100S3550-B (config)# interface VLAN 20 创建vlan 20 svi接口S3550-B (config-if)# ip address 192.168.20.2 255.255.255.0配置ip地址S3550-B (config-if)# vrrp 2 priority 120 !配置vrrp组2 优先级为120S3550-B (config-if)# vrrp 2 ip 192.168.20.254!配置vrrp组2虚拟ip地址为192.168.20.254S3550-B (config)# interface VLAN 40 创建vlan 40 svi接口S3550-B (config-if)# ip address 192.168.40.2 255.255.255.0配置ip地址S3550-B (config-if)# vrrp 3 priority 150 !配置vrrp组1 优先级为150S3550-B (config-if)# vrrp 3 ip 192.168.40.254!配置vrrp组3虚拟ip地址为192.168.40.2543.S2126-AS2126-A (config)#spanning-tree !开启生成树S2126-A (config)#spanning-tree mode mstpS2126-A(config)#vlan 10 !创建Vlan 10S2126-A(config)#vlan 20 !创建Vlan 20S2126-A(config)#vlan 40 !创建Vlan 40S2126-A(config)#interface fastethernet 0/1S2126-A(config-if)#switchport access vlan 10!分配端口F0/1给Vlan 10S2126-A(config)#interface fastethernet 0/2S2126-A(config-if)#switchport access vlan 20!分配端口F0/2给Vlan 20S2126-A(config)#interface fastethernet 0/23S2126-A(config-if)#switchport mode trunk!定义F0/23为trunk端口S2126-A(config)#interface fastethernet 0/24S2126-A(config-if)#switchport mode trunkS2126-A(config)#spanning-tree mst configuration ! 进入MSTP配置模式S2126-A(config-mst)#instance 1 vlan 10 !配置实例1并关联Vlan 1和10S2126-A(config-mst)#instance 2 vlan 20,40 !配置实例2并关联Vlan 20和40 S2126-A(config-mst)#name region1 !配置域名称S2126-A(config-mst)#revision 1 !配置版本(修订号)4.S2126-b。

网络冗余技术

网络冗余技术

网络冗余技术网络冗余二层STP (802.1D 802.1W 802.1S)三层路由冗余RIP OSPF EIGRP网关冗余HSRP VRRP GLBP以太网信道EtherChannel (2 3)双机热备HSRP主机访问外网,发向网关。

网关故障,中断HSRP是CISCO的专用协议,让多台R提供同一个IP网关服务。

一主,一备,主故障,备自动提供服务。

选举优先级(0-255),默认100,最高成为主R(config )# int e0# standby 1 priority 120 高于100,将成为主R例:一在R1、R2、R3上配置osfp协议,实现全网互通。

二配置HSRP协议, 将R1的优先级设为120,使其成为活动R.配置:R1(config )# int e0# ip add 172.16.1.199 255.255.255.0# standby 1 ip 172.16.1.200 加入虚拟组172.16.1.200# standby 1 priority 120将优先级设为120# standby 1 authentication 123明文验证# standby 1 preempt 抢占,优先级高成为主# standby 1 track s0 30跟踪S0接口,DOWN优先级降30# no shutR3(config )# int e0# ip add 172.16.1.201 255.255.255.0# standby 1 ip 172.16.1.200 加入虚拟组172.16.1.200# standby 1 authentication 123明文验证# standby 1 preempt 抢占,优先级高成为主# no shut三测试1. PC Ping 172.16.100.1 –t , 然后R# sh standby ,则R1优先级为120,活动RR3优先级为100,备用PC Tracert 172.16.100.1 经R1 到目标2.将R1的E0关闭,ping中断后自动恢复,经R3到目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络设备及链路冗余部署——基于锐捷设备8.1 冗余技术简介随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。

作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。

高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。

为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。

大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。

本章将对这三种冗余技术的基本原理和实现进行详细的说明。

8.2设备级冗余技术设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。

在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。

下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。

8.2.1S6806E交换机的电源冗余技术图8-1 S6806E的电源冗余如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。

工程中最常见配置情况是同时插入两块P6800-AC模块来实现220v交流电源的1+1备份。

电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。

注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。

如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。

8.2.2 S6806E交换机的管理板卡冗余技术图8-2 S6806E的管理卡冗余如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。

承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。

管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。

简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。

在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。

具体配置如下注意:在交换机运行过程中,如果用户进行了某些配置后执行主管理卡的切换,一定要记得保存配置,否则会造成用户配置丢失在实际项目中,S65和S68系列的高端交换机一般都处于网络的核心或区域核心位置,承载着园区网络中关键的业务流量。

为了提供更可靠的网络平台,锐捷网络推荐对于S65和S68系列交换机都配备电源和管理卡的冗余。

8.3链路级冗余技术在大型园区网络中往往存在多条二层和三层链路,使用链路级冗余技术可以实现多条链路之间的备份,流量分担和环路避免。

本章将对几种主要的链路冗余技术进行阐述。

8.3.1 二层链路冗余的实现在二层链路中实现冗余的方式主要有两种,生成树协议和链路捆绑技术。

其中生成树协议是一个纯二层协议,但是链路捆绑技术在二层接口和三层接口上都可以使用。

首先介绍的是链路捆绑技术(Aggregate-port)。

8.3.1.1二层链路捆绑技术(Aggregate-port)AP技术的基本原理把多个二层物理链接捆绑在一起形成一个简单的逻辑链接,这个逻辑链接我们称之为一aggregate port(简称AP)。

AP是链路带宽扩展的一个重要途径,符合IEEE 802.3ad标准。

它可以把多个端口的带宽叠加起来使用,形成一个带宽更大的逻辑端口,同时当AP中的一条成员链路断开时,系统会将该链路的流量分配到AP中的其他有效链路上去,实现负载均衡和链路冗余。

AP技术一般应用在交换机之间的骨干链路,或者是交换机到大流量的服务器之间。

锐捷网络交换机支持最大8条链路组成的AP。

二层AP技术的基本应用和配置下面来看一个简单的AP应用实例:图8-3 二层链路AP技术在图8-3中两台S3550交换机存在两条百兆链路形成了环路,如果要避免环路的话必须要启用生成树协议,这样会导致其中一条链路被阻塞掉,既造成了带宽的浪费,同时也违背了使用两条链路实现冗余加负载分担的设计初衷。

在这种情况下使用AP技术可以园满的解决这个问题,通过捆绑两条链路形成一个逻辑端口AggregatePort,带宽被提升至200M,同时在两条链路中的一条发生故障时,流量会被自动转往另一条链路,从而实现了带宽提升,流量分担和冗余备份的目的。

具体的设备配置以其中S3550-1为例:配置完成后使用命令检查结果如下:S3550-1#show aggregatePort 1 summaryAggregatePort MaxPorts SwitchPort Mode Ports------------- -------- ---------- ------ -----------------------Ag1 8 Enabled Access Fa0/1 , Fa0/2可以看到Ag1已经被正确配置,F0/1和F0/2成为AP组1 的成员。

二层AP技术的负载均衡AP技术的配置和应用环境都并不复杂,但是在实际项目使用AP的时候,很多人往往忽视了一个问题,那就是如何用好AP的负载均衡模式。

二层AP有两种负载均衡模式:基于源MAC或者是基于目的MAC进行帧转发。

在实际项目中,灵活运用这两种模式才能使得AP发挥最大的功效。

图8-4 AP的负载均衡模式在图8-4中可以看到在核心和汇聚之间存在一条由三个百兆组成的AP链路,缺省情况下二层AP基于源MAC地址进行多链路负载均衡。

这样做在用户侧交换机上是没有任何问题的,因为数据来自不同的用户主机,源MAC不同;但是如果在核心交换机上也根据源MAC 来投包的话,仅仅会利用上三条链路中的一条,因为核心交换机发往用户数据帧的源MAC 只有一个,就是本身的SVI接口MAC。

因此为了能够充分利用AP的所有成员链路,必须在核心交换机上更改成基于目的MAC的负载均衡方式。

锐捷网络推荐在使用AP技术时根据项目的情况合理选择负载均衡的方式,以免造成链路带宽的浪费。

调整二层AP负载均衡模式的配置以S3550为例:8.3.1.2 生成树技术本章节主要介绍如何在实际项目中运用生成树技术实现二层链路的冗余和流量分担,对于生成树技术原理不会做过多的描述,如果对生成树技术有兴趣的读者请自行查阅资料。

生成树协议802.1D STP作为一种纯二层协议,通过在交换网络中建立一个最佳的树型拓扑结构实现了两个重要功能:环路避免和冗余。

但是纯粹的生成树协议IEEE 802.1D在实际应用中并不多,因为其有几个非常明显的缺陷:,收敛慢,而且浪费了冗余链路的带宽。

作为STP的升级版本,IEEE 802.1W RSTP解决了收敛慢的问题,但是仍然不能有效利用冗余链路做负载分担。

因此在实际工程应用中,往往会选用802.1S MSTP技术。

MSTP技术除保留了RSTP快速收敛的优点外,同时MSTP能够使用instance(实例)关联VLAN的方式来实现多链路负载分担。

下面我们来看一个实例:图8-5 MSTP原始拓扑使用STP实现链路冗余在图8-5是一种常见的二层组网方式,三台交换机上都拥有两个VLAN,VLAN10和VLAN20。

接入层交换机到汇聚交换机有两条链路,如果使用802.1D STP技术来进行链路冗余的话,会导致图8-6中的结果:图8-6 使用STP后拓扑变化从图中可以很清楚的看出使用802.1D STP或802.1W RSTP,虽然能够实现链路冗余,但是无论如何都会导致S2126G的某条上行链路被阻塞,从而导致链路带宽的浪费。

使用MSTP实现链路冗余和负载分担如果使用802.1S MSTP的话,就可以同时达到冗余和流量分担的目的。

现在来看看在这种拓扑结构下,如何正确使用MST实现以上功能.(1)在三台交换机上全部启用MST,并建立VLAN 10到Instance 10 和VLAN 20到Instance 20的映射,这样就把原来的物理拓扑,通过Instance到VLAN的映射关系逻辑上划分成两个拓扑,分别对应VLAN 10和VLAN 20。

(2)调整S3550-1 在VLAN10中的桥优先级为4096,保证其在VLAN 10的逻辑拓扑中被选举为根桥。

同时调整在VLAN20中的桥优先级为8192,保证其在VLAN20的逻辑拓扑中的备用根桥位置。

(3)S3550-2的调整方法和S3550-1类似,也是要保证在VLAN20中,S3550-2成为根桥,在VLAN10中,其成为备用根桥。

图8-7非常形象的描述了本案例使用MSTP的实现过程图8-7 使用MST后的拓扑变化MSTP的配置实例:S2126G配置如下S3550-1配置如下S3550-2配置如下注意:由于MST的配置较为复杂,因此在下面列出了MST的配置中一些经常出现的错误。

(1)Spanning-tree模式没有选择。

(2)各个交换机Instance映射关系不一致,从而导致交换机间的链路被错误阻塞。

(3)很多工程师在配置完S3550-1在Instance10中的根桥优先级后,没有将其设置成另一个实例的备用根桥。

这是非常危险的操作,因为一旦出现Instance20的主用链路失效后可能导致S2126G被选举为根桥,使得VLAN20的所有流量都必须经过S2126G这种接入层交换机,在极端情况下可能导致S2126G当机。

(4)MST的配置顺序问题,应该在配置完MST的参数后再打开生成树,否则有可能出现MST工作异常的情况。

(5)没有指定VLAN到Instance关联的VLAN都被归纳到Instance0,在实际工程中需要注意Instance0 的根桥指定。

8.3.2 三层链路冗余技术三层链路冗余技术较二层链路冗余技术丰富很多,依靠各种路由协议可以轻的实现三层链路冗余和负载均衡。

另外三层链路捆绑技术也提供了路由协议之外的一种选择。

由于在当前的大型园区网络中,绝大部分情况使用的路由协议都是OSPF,因此在讨论基于路由协议的冗余技术时,只考虑使用OSPF的情况。

8.3.2.1三层链路捆绑技术三层链路的AP和二层链路AP技术的本质都是一样,都是通过捆绑多条链路形成一个逻辑端口来实现增大带宽,保证冗余和负载分担的目的。

在本章的8.3.1.1小节中对AP技术已经做了详细的阐述,在本节中就只介绍三层AP的基本配置,需要详细了解链路捆绑技术请参阅8.3.1.1小节。

相关文档
最新文档