高二数学 7.5曲线和方程(第一课时)大纲人教版必修

合集下载

人教版高中数学第二册(上) 《曲线和方程》说课课件

人教版高中数学第二册(上) 《曲线和方程》说课课件

在辨析反例之后,有了关于对象所共有的本质属性 的正确认识,给对象以明确的定义是水到渠成,这里单 独列出作为一个教学步骤,是想突出这个中心环节,并 有意识地训练学生依据知觉中的分散的已知知识给概念 下定义的创造能力。
教材分析 教学目标 重难突破 学情分析 教法分析 学法分析 教学过程分析
4、定义强化阶段——多种表征,深化内涵
教材分析 教学目标 重难突破 学情分析 教法分析 学法分析 教学过程分析
1、感性认识阶段——以旧带新,提出问题
幻灯片2
画出方程x–y = 0表示的直线
幻灯片3
1、直线上的点的坐标都是方程的解; 2、以这个方程的解为坐标的点都在直线上。 即:直线上所有点的集合与方程的解的集合之间建立了一一对应关系。 也即:
◆知识目标:了解曲线上的点与方程的解之间的 一一对应关系;初步领会“曲线的方程”与“方程的 曲线”的概念;学会根据已有的情景资料找规律,进 而分析、判断、归纳结论;强化“形”与“数”一致 并相互转化的思想方法。 ◆能力目标:通过直线方程的引入,加强学生对 方程的解和曲线上的点的一一对应关系的认识;在形 成曲线和方程的概念的教学中,学生经历观察、分析、 讨论等数学活动过程,探索出结论,并能有条理的阐 述自己的观点;能用所学知识理解新的概念,并能运 用概念解决实际问题,从中体会转化化归的思想方法, 提高思维品质,发展应用意识; ◆情感目标:通过概念的引入,让学生感受从特 殊到一般的认知规律;通过反例辨析和问题解决,培 养合作交流、独立思考等良好的个性品质,以及勇于 批判、敢于创新的科学精神。
要启动学生的思维,就要有一个明确的可 供思考的问题,使学生的思维有明确的指向。 这里提出的思考题是以相信学生对用方程表示 曲线的实事已有了初步的认识为前提,它可以 说是本节课的中心议题,应引导全班学生积极 思维,让多的学生发表意见,形成“高潮”。 在思考题的后面加上了“为什么?” ,是为了 给那些还记着“直线的方程”的定义的学生提 供思考的余地,减小思考的跨度。

高中数学《曲线和方程》第一课时优秀说课稿范文

高中数学《曲线和方程》第一课时优秀说课稿范文

高中数学《曲线和方程》第一课时说课稿高中数学《曲线和方程》第一课时优秀说课稿范文作为一名无私奉献的老师,很有必要精心设计一份说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。

那么应当如何写说课稿呢?以下是小编整理的高中数学《曲线和方程》第一课时优秀说课稿范文,仅供参考,大家一起来看看吧。

高中数学《曲线和方程》第一课时说课稿1一、教材分析1、教材背景作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验。

本课为第二课时主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求。

2、本课地位和作用承前启后,数形结合。

曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节。

“曲线”与“方程”是点的轨迹的两种表现形式。

“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题。

体现了坐标法的本质——代数化处理几何问题,是数形结合的典范。

后继性、可探究性。

求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性。

同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法。

数学建模与示范性作用。

曲线的方程是解析几何的核心。

求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范。

数学的文化价值。

解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例。

高二数学曲线和方程精品PPT教学课件

高二数学曲线和方程精品PPT教学课件
2020年10月2日
y
x-y=0
M(x0, y0)
O x
x y 0
2
函数y=ax2的图象是关 于y轴对称的抛物线,这条抛 物线是所有以方程y=ax2的 解为坐标的点组成的.这就 是说,如果M(x0,y0)是抛 物线上的点,那么(x0,y0) 一定是这个方程的解;反过 来,如果(x0,y0)是方程 y=ax2的解,那么以它为坐 标的点一定在这条抛物线 上.(如右图)
7.5 曲线和方程(1) -----曲线的方程
28.12.2020
2020年10月2日
1
一、曲线与方程关系举例: 位于第一、三象限的角平
分线的方程是x-y=0.即:如果 点M(x0,y0)是这条直线上的 任意一点,它到两坐标轴的距 离一定相等,从而x0=y0,那么 它的坐标(x0,y0)是方程x- y=0的解;反之,如果(x0,y0 )是方程x-y=0的解,即x0=y0 ,那么以这个解为坐标的点到 两轴的距离相等,它一定在这 条平分线上.(如右图)
2020年10月2日
y
y ax2
M(x0, y0) x
yax2(a0)
3
二、曲线与方程概念:
一般地,在直角坐标系中,如果某 曲线C(看作适合某种条件的点的轨迹) 上的点与一个二元函数 f(x,y)0的实 数解建立了如下关系:
1.曲线上的点的坐标都是这个方程的解;
2. 方程的解为坐标的点都是曲线上点。
x2+y2=25,并判断点M(3,-4)、M2(-2 5 ,2)是否在这
个圆上.
证明:(1)设M(x0,y0)是圆上任意一点,因为点M到原点 的距离等于5,所以 x02 y02 5 ,也就是 x02 y02 25
即(x0,y0)是方程x2+y2=25的解.

高二数学双曲线及其标准方程(第一课时)说课课件人教

高二数学双曲线及其标准方程(第一课时)说课课件人教

三 迹是什么?

0< a < c时轨迹是双曲线
轨 2 、a= c时:动点M的轨迹是什么?
迹 a= c时,轨迹是以F1、F2为端点两

条射线。
论 3、a=0时:动点M的轨迹是什么?
M F1 o F2
a=0时:轨迹是F1、F2的中垂线 4、a> c时:动点M的轨迹又是什么?
动点M无轨迹(违背三角形边的关系)
解: ∵双曲线的焦点在x轴上
∴可设标准方程为
x2 a2
y2 b2
1
根据题意可得a=4,c=5,
∴ b2=c2-a2=25-16=9
变式(1):若两定点为F1(0,-5),F2(0,5)则轨 迹方程如何?
变式(2) :若两定点为|F1F2|=10则轨迹方程 如何?
• 设计说明:本例与变式(1)是在已定
4.例1 详写
变式(1) 变式(2)
五、本节课的教学感想
• 本节课使用计算机多媒体技术,展现知识的 发生过程,激情引趣,充分体现“教师为主导, 学生为主体”的观念,增加课堂教学的容量及准 确性直观性,注重数学科学研究方法的掌握,是 研究性教学的一次有益尝试。有利于改变学生的 学习方式,有利于学生自主探究,有利于学生的 实践能力和创新意识的培养。
首 页
上 页
下 页
小 结
结 束
(二)教法选择:
教学方法 :直观教学法、启发发现法、类比 教学法、电化教学法
理论根据:为了调动学生学习的积极性,使学 生变被动学习为主动愉快的学习。教学中引导学生 从复习回顾“椭圆及其标准方程”通过类比引出双 曲线的定义,在概念的理解上,用步步设问、来加 深理解。在概念的建立上 ,借助电脑,演示轨迹 变化的动画过程,从而使学生直接地接受并提高学 生的学习兴趣和积极性,很好地突破难点和提高教 学效率,从而增大教学的容量和直观性、准确性。 充分体现了“教师为主导,学生为主体”的教学原 则。

2019-2020年高二数学 7.5曲线和方程(第一课时)大纲人教版必修

2019-2020年高二数学 7.5曲线和方程(第一课时)大纲人教版必修

2019-2020年高二数学 7.5曲线和方程(第一课时)大纲人教版必修课时安排4课时从容说课曲线的方程和方程的曲线,是解析几何的重要概念,我们己知,在建立了直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应的关系.然而曲线是由具有某种特征的点集在一起所形成,即曲线为点集,既然平面内的点与作为它的坐标的有序实数对之间建立了一一对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束.这种约束可由两变数x、y的方程f(x,y)=0来表明.于是符合某种条件的点的集合,就变换到x、y的二元方程的解的集合.这两个集合应具有这样的对应关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都在曲线上.于是,一个二元方程也就可以看作它的解所对应的点的全体组成的曲线;二元方程所表示的x、y之间的关系,就是以(x、y)为坐标的点所要符合的条件,这样的方程就为曲线的方程;反之,这条曲线就叫做这个方程的曲线,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的坐标应受怎样的约束条件的问题.通过对本节的学习,应初步掌握求曲线的方程的基本方法、步骤.●课题§7.5.1 曲线和方程(一)●教学目标(一)教学知识点1.曲线的方程.2.方程的曲线.(二)能力训练要求会用曲线和方程的概念直接判断比较简单的曲线和方程间的关系.(三)德育渗透目标渗透数形结合思想.●教学重点曲线的方程和方程的曲线.曲线C和方程F(x,y)=0必须满足两个条件:(1)曲线上的点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都在曲线上.这时,才能把这个方程叫做曲线的方程,这条曲线叫做方程的曲线.●教学难点对曲线的方程和方程的曲线间的对应关系的理解.●教学方法启发引导法●教具准备投影片两张第一张:记作§7.5.1 A第二张:记作§7.5.1 B●教学过程Ⅰ.课题导入[师]在本章开始时,我们研究过各种直线的各种方程,详细讨论了直线和二元一次方程的关系,下面哪位同学给大家叙述一下它们的关系?[生甲]在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x、y的二元一次方程.[生乙]在平面直角坐标系中,任何关于x、y的二元一次方程都表示一条直线.[师]这两位同学所描述的都正确,即直线和二元一次方程的关系是将其两者综合起来便更加完整、准确.如,两坐标轴所成的角位于第一、三象限的平分线的方程是x-y=0.(打出投影片§7.6.1 A)也就是说,如果点M(x0,y0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反过来,如果(x0,y0)是方程x-y=0的解,即x0=y0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上.那么,一般的曲线和方程的关系又如何呢?下面,我们进一步研究一般曲线(包括直线)和方程的关系.Ⅱ.讲授新课大家知道,函数y=ax2的图象是关于y轴对称的抛物线.即这条抛物线是所有以方程y=ax2的解为坐标的点组成的.(打出投影片§7.6.1 B)也就是说,如果M(x0,y0)是抛物线上的点,那么(x0,y0)一定是这个方程的解;反过来,如果(x0,y0)是方程y=ax2的解,那么以它为坐标的点一定在这条抛物线上.这样,我们就说y=ax2是这条抛物线的方程.再如y=sin x是正弦曲线的方程,y=cos x是余弦曲线的方程,等等.综上所述,一般地,在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立如下的关系:(1)曲线上的点的坐标是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形).由曲线的方程的定义,还可得到:如果曲线C的方程是f(x,y)=0,那么点P0(x0,y0)在曲线C上的充要条件是f(x0,y0)=0.[师]下面我们来看一例子.[例](1)证明圆心为坐标原点,半径等于5的圆的方程是x2+y2=25;(2)并判断点M1(3,-4)、M2(-2,2)是否在这个圆上.分析:(1)要想证明圆心为坐标原点,半径等于5的圆的方程是x2+y2=25.即要证所有到坐标原点的距离等于5的点的坐标都是方程x2+y2=25的解.(或者说任一到坐标原点的距离等于5的点P(x0,y0)的坐标x0,y0均满足x02+y02=25).且要证以方程x2+y2=25的解为坐标的点都在圆上(或者说方程x2+y2=25的任一解(x0,y0),以(x0,y0)为坐标的点到坐标原点的距离等于5).(2)若要判断某点是否在圆上,则只要看其坐标是否满足圆的方程即可.(1)证明:设M (x 0,y 0)是圆上任意一点,则|OM |=5即∴x 02+y 02=25,即(x 0,y 0)是方程x 2+y 2=25的解.(2)解:设(x 0,y 0)是方程x 2+y 2=25的任一解,那么x 02+y 02=25.即,∴点M (x 0,y 0)到原点的距离等于5,点M (x 0,y 0)是这个圆上的点.由(1)、(2)可知,x 2+y 2=25是圆心为坐标原点,半径等于5的圆的方程.把点M 1(3,-4)的坐标代入方程x 2+y 2=25,左右两边相等,(3,-4)是方程的解,所以点M 1在这个圆上;把点M 2(-2,2)的坐标代入方程x 2+y 2=25,左右两边不等,(-2,2)不是方程的解,所以点M 2不在这个圆上.如图所示:[师]下面请同学们结合练习认真体会.Ⅲ.课堂练习[生](板演练习)课本P 69 练习1,2,3.1.解:设到两坐标轴距离相等的点P (x ,y ).则|x |=|y |,即:x =±y∴x ±y =0,∴到两坐标轴距离相等的点组成的直线的方程是x ±y =0而不是x -y =0.2.解:如图所示:等腰三角形△ABC 的中线为线段AO .∴AO 的方程是x =0(0≤y ≤3)注:AO 所在直线的方程为x =0.3.解:根据题意可得:⎪⎩⎪⎨⎧=⨯+⨯=⨯+⨯251125)35(02222b a b a 解之得答:a ,b 的值分别为16,9.Ⅳ.课时小结通过本节学习,要理解曲线的方程和方程的曲线,曲线C 和方程F (x ,y )=0必须满足两个条件:(1)曲线上的点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都在曲线上.这时,才能把这个方程叫做曲线的方程,这条曲线叫做方程的曲线. Ⅴ.课后作业(一)课本P72习题7.6 1,2.(二)1.预习内容:课本P69~712.预习提纲:求简单的曲线方程的基本步骤有哪些?●板书设计。

高二数学曲线和方程PPT优秀课件

高二数学曲线和方程PPT优秀课件
点练。习: 1.若命题“曲线上的点的坐标都是方程f(x,y) 的解”是正确的,试判断下列命题的真假: (1)不是曲线上点的坐标一定不满足f(x,y)=0. (2) 坐标满足方程f(x,y)=0的点在曲线上。 (3)曲线C是方程f(x,y)=0的曲线。 (4)不是方程f(x,y)=0的解,一定不是曲线C上 的点。
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
x
O
x
A
Hale Waihona Puke BC• ①曲线上的点的坐标都是这个方程的解; • ②以这个方程的解为坐标的点都是曲线上的点。
练习:请标出下列方程所对应的曲线 (1) x y0 (2)x2y2=0 (3)|x|y=0
y
y
y
O
x
O
x
O
x
A
B
C
• ①曲线上的点的坐标都是这个方程的解; • ②以这个方程的解为坐标的点都是曲线上的
M(x0,y0)是C上的点
(x0,y0)是方程y=2x2 (1 x 2) 的解
y
l
8
C
1
x-y=0
O1 x
2 -1 O
y=2x2(1 x 2) 2x

定义:在直角坐标系中,如果某曲
线C(看作适合某种条件的点的集合或轨
迹)上的点与一个二元方程f(x,y)=0的实数
解建立了如下的关系:

①曲线上的点的坐标都是这个方
例1.(1)画出两坐标轴所成的角在第一、 三象限的平分线 l ,并写出其方程.
(2)画出函数y=2x2(1 x 2)的图象C
曲线 ? 方程

(x,y)
y
l

高中数学说课稿:人教版高中数学第二册(上)第七章《曲线和方程》第一课时优秀说课稿模板-精选教育文档

高中数学说课稿:人教版高中数学第二册(上)第七章《曲线和方程》第一课时优秀说课稿模板-精选教育文档

高中数学说课稿:人教版高中数学第二册(上)第七章《曲线和方程》第一课时优秀说课稿模板曲线和方程(第一课时)(说课稿)各位领导、专家、同仁:你们好!我是广安市乐善中学的数学教师蒋永华。

我说课的内容是“曲线和方程”。

下面我从教材分析、教学方法、学法指导、教学程序、板书设计以及评价六个方面来汇报对教材的钻研情况和本节课的教学设想。

恳请在座的专家、同仁批评指正。

一、关于教材分析1、教材的地位和作用“曲线和方程”是高中数学第二册(上)第七章《直线和圆的方程》的重点内容之一,是在介绍了“直线的方程”之后,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。

这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何的教学奠定了一个理论基础。

2、教学内容的选择和处理本节教材主要讲解曲线的方程和方程的曲线、坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。

共分四课时完成,这是第一课时。

此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。

我在处理教材时,不拘泥于教材,敢于大胆进行调整。

主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,然后在此基础上归纳定义;再一点就是在得出定义之后,引导学生用集合观点来理解概念。

3、教学目标的确定根据教学大纲的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。

4、关于教学重点、难点和关键由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上解析几何的入门之径。

高二数学上 第七章 直线和圆的方程 : 7.5曲线的方程(一)

高二数学上 第七章 直线和圆的方程 : 7.5曲线的方程(一)

之间的关系: 只具备性质(2) 即具备完备性,
但不具备性质(1) 即不具纯粹备性.l2
l1
因为到两坐标轴距离相等的点的
轨迹有 两条直线l1 和 l2 ,
直线 l1 上的点的坐标都是方程y=x 的解,
但直线 l2 上的点(除原点外)的坐标不是方程y=x
的解,
y=x只是直线l1的方程,它不是所求轨迹的方程.
(2)“以这个方程的解为坐标的点都在曲线上”阐 明符合条件的所有点都在曲线上而毫无遗(漏完备性).
由曲线的方程的定义可知,
如果曲线C的方程是 f(x,y)=0,那么点P0(x0 ,y0) 在曲线C 上的充要高条二数件学上是第七f章(x直0线,和圆y的0方)=0 .
程 : 7.5曲线的方程(一)
例如,过点A(2,0)平行于y轴的直线L(如 图)与方程|x|=2 之间的关系:
高二数学上 第七章 直线和圆的方 程 : 7.5曲线的方程(一)
例1 证明圆心为 半坐 径5标 的 等原 圆 于点 的x2, 方 y2程 2, 5是
并判M 断 1(3, 点 4)、 M 2(25, 2)是否在.这个圆
证明: (1)设M(x0, y0)是圆上任意 , 则 一点
由题意知 |MO|5即 x02 y02 5.
高二数学上 第七章 直线和圆的方
(D)曲线C是方程f(x,y)=程0的: 7曲.5曲线线的的方程一(一部) 分或是全部
作业:
P69 练 习:1,2,3 作业: P72 1,2
高二数学上 第七章 直线和圆的方 程 : 7.5曲线的方程(一)
高二数学上 第七章 直线和圆的方 程 : 7.5曲线的方程(一)
高二数学上 第七章 直线和圆的方 程 : 7.5曲线的方程(一)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学 7.5曲线和方程(第一课时)大纲人教
版必修
7、5 曲线和方程课时安排4课时从容说课曲线的方程和方程的曲线,是解析几何的重要概念,我们己知,在建立了直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应的关系、然而曲线是由具有某种特征的点集在一起所形成,即曲线为点集,既然平面内的点与作为它的坐标的有序实数对之间建立了一一对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束、这种约束可由两变数x、y的方程f(x,y)=0来表明、于是符合某种条件的点的集合,就变换到x、y的二元方程的解的集合、这两个集合应具有这样的对应关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都在曲线上、于是,一个二元方程也就可以看作它的解所对应的点的全体组成的曲线;二元方程所表示的x、y之间的关系,就是以(x、y)为坐标的点所要符合的条件,这样的方程就为曲线的方程;反之,这条曲线就叫做这个方程的曲线,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的坐标应受怎样的约束条件的问题、通过对本节的学习,应初步掌握求曲线的方程的基本方法、步骤、●课题
7、5、1 曲线和方程
(一)●教学目标
(一)教学知识点
1、曲线的方程、
2、方程的曲线、
(二)能力训练要求会用曲线和方程的概念直接判断比较简单的曲线和方程间的关系、
(三)德育渗透目标渗透数形结合思想、●教学重点曲线的方程和方程的曲线、曲线C和方程F(x,y)=0必须满足两个条件:(1)曲线上的点的坐标都是这个方程的解、(2)以这个方程的解为坐标的点都在曲线上、这时,才能把这个方程叫做曲线的方程,这条曲线叫做方程的曲线、●教学难点对曲线的方程和方程的曲线间的对应关系的理解、●教学方法启发引导法●教具准备投影片两张第一张:记作
7、5、1 A第二张:记作
7、5、1 B●教学过程Ⅰ、课题导入[师]在本章开始时,我们研究过各种直线的各种方程,详细讨论了直线和二元一次方程的关系,下面哪位同学给大家叙述一下它们的关系?[生甲]在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x、y的二元一次方程、[生乙]在平面直角坐标系中,任何关于x、y的二元一次方程都表示一条直线、[师]这两位同学所描述的都正确,即直线和二元一次方程的关系是将其两者综合
起来便更加完整、准确、如,两坐标轴所成的角位于第一、三象限的平分线的方程是x-y=0、(打出投影片
7、6、1 A)也就是说,如果点M(x0,y0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即x0=y0,那么它的坐标(x0,y0)是方程x-y=0的解;反过来,如果(x0,y0)是方程x-y=0的解,即x0=y0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上、那么,一般的曲线和方程的关系又如何呢?下面,我们进一步研究一般曲线(包括直线)和方程的关系、Ⅱ、讲授新课大家知道,函数y=ax2的图象是关于y轴对称的抛物线、即这条抛物线是所有以方程y=ax2的解为坐标的点组成的、(打出投影片
7、6、1 B)也就是说,如果M(x0,y0)是抛物线上的点,那么(x0,y0)一定是这个方程的解;反过来,如果(x0,y0)是方程
y=ax2的解,那么以它为坐标的点一定在这条抛物线上、这样,我们就说y=ax2是这条抛物线的方程、再如y=sinx是正弦曲线的方程,y=cosx是余弦曲线的方程,等等、综上所述,一般地,在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立如下的关系:(1)曲线上的点的坐标是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形)、由曲线的方程的定义,还可得到:如果曲线C的方程是f(x,y)=0,那么点P0(x0,y0)在曲线C
上的充要条件是f(x0,y0)=0、[师]下面我们来看一例子、[例](1)证明圆心为坐标原点,半径等于5的圆的方程是
x2+y2=25;(2)并判断点M1(3,-4)、M2(-2,2)是否在这个圆上、分析:(1)要想证明圆心为坐标原点,半径等于5的圆的方程是x2+y2=
25、即要证所有到坐标原点的距离等于5的点的坐标都是方程x2+y2=25的解、(或者说任一到坐标原点的距离等于5的点P (x0,y0)的坐标x0,y0均满足x02+y02=25)、且要证以方程
x2+y2=25的解为坐标的点都在圆上(或者说方程x2+y2=25的任一解(x0,y0),以(x0,y0)为坐标的点到坐标原点的距离等于5)、(2)若要判断某点是否在圆上,则只要看其坐标是否满足圆的方程即可、(1)证明:设M(x0,y0)是圆上任意一点,则|OM|=5即∴x02+y02=25,即(x0,y0)是方程x2+y2=25的解、(2)解:设(x0,y0)是方程x2+y2=25的任一解,那么x02+y02=
25、即,∴点M(x0,y0)到原点的距离等于5,点M(x0,y0)是这个圆上的点、由(1)、(2)可知,x2+y2=25是圆心为坐标原点,半径等于5的圆的方程、把点M1(3,-4)的坐标代入方程
x2+y2=25,左右两边相等,(3,-4)是方程的解,所以点M1在这个圆上;把点M2(-2,2)的坐标代入方程x2+y2=25,左右两边不等,(-2,2)不是方程的解,所以点M2不在这个圆上、如图所示:[师]下面请同学们结合练习认真体会、Ⅲ、课堂练习[生](板演练习)课本P69 练习1,2,
3、1、解:设到两坐标轴距离相等的点P(x,y)、则|x|=|y|,即:x=y∴xy=0,∴到两坐标轴距离相等的点组成的直线的方程是xy=0而不是x-y=0、2、解:如图所示:等腰三角形△ABC的中线为线段AO、∴AO的方程是x=0(0≤y≤3)注:AO所在直线的方程为x=0、3、解:根据题意可得:解之得答:a,b的值分别为16,
9、Ⅳ、课时小结通过本节学习,要理解曲线的方程和方程的曲线,曲线C和方程F(x,y)=0必须满足两个条件:(1)曲线上的点的坐标都是这个方程的解、(2)以这个方程的解为坐标的点都在曲线上、这时,才能把这个方程叫做曲线的方程,这条曲线叫做方程的曲线、Ⅴ、课后作业
(一)课本P72习题
7、61,
2、(二)
1、预习内容:课本P69~7
12、预习提纲:求简单的曲线方程的基本步骤有哪些?●板书设计
7、5、1 曲线和方程
(一)
一、曲线和方程(1)例题讲解(2)。

相关文档
最新文档