桩基完整性试验

合集下载

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测桩基超声波透射法完整性检测是一种常用的桩基测试方法,能够有效地检测桩基的质量和完整性,可以帮助工程师在施工前、施工中和施工后确定桩基的状态,从而保证工程质量和安全性。

桩基是土木工程中常用的基础结构,在建筑和桥梁等大型工程中得到广泛应用。

桩基质量的好坏直接关系到工程的可靠性和稳定性。

如果桩基的完整性受到损害,那么它的承载能力就会降低,从而导致工程安全事故的发生。

因此,对桩基的完整性进行检测非常重要。

桩基超声波透射法完整性检测是一种比较常用的测试方法。

这种方法可以利用超声波,穿透整个桩体,来检测桩基的完整性。

通过测试数据的分析和解释,可以精确地确定桩基的质量和完整性,从而指导工程师进行后续的建设工作。

这种检测方法的优点很多。

首先,它可以避免对桩基的损伤。

在测试过程中,不需要对桩基进行切割或其他物理损伤,只需要用超声波即可实现数据的采集,不会对桩基质量和完整性造成影响。

其次,它具有高精度和高可靠性。

超声波透射法可以穿透桩体,利用波传播的速度变化来确定桩基的完整性,测试结果准确可靠。

最后,这种方法还可以节省时间和成本。

相对于其他测试方法,桩基超声波透射法不需要进行大量的试验和测量,所需时间和成本较少。

不过,在进行桩基超声波透射法完整性检测时,也会面临一些挑战和难点。

比如,测试数据可能会受到土体的干扰,影响测试结果的准确性。

此外,不同类型的桩基可能对测试结果产生不同的影响,需要注意选择合适的测试方案。

为了更好地应对这些问题,工程师需要积累丰富的实践经验,掌握先进的测试技术和分析方法。

总的来说,桩基超声波透射法完整性检测是一种比较可靠和有效的测试方法,可以帮助工程师在桩基建设的不同阶段确定桩基质量和完整性,从而提高工程的可靠性和稳定性。

在将来,这种测试方法还有望进一步发展,提高其测试精度和可靠性,为工程建设和工程质量的提升做出更大的贡献。

基桩低应变完整性试验

基桩低应变完整性试验

低应变测试仪PIT 测定桩身完整性试验一、实验目的:1. 掌握低应变测试仪PIT 基本使用方法;2. 掌握低应变测试仪PIT 测定桩身完整性的方法;二、实验内容:用低应变桩身完整性。

三、实验仪器及检测评定标准:1. 美国PDI 公司生产的低应变桩身完整性测试仪PIT ;2. 试验桩;3.《公路工程基桩动测技术规程》JTG/T F81-01-2004四、现场检测检测流程本次检测,严格依据桩基动测规程执行。

被检测桩均应凿去浮浆及破损部分,露出新鲜密实的混凝土;每根桩布置2~4个检测点,每个检测点记录的有效信号数均大于3。

现场检测示意图如图1。

图1 基桩反射波法现场检测示意图判断标准1、波速计算:tL c ∆=2 or f L c ∆⋅=2 式中(图2):c—桩身材料的一维应力波纵波波图2完整摩擦桩纵波波速计算示意图速(m/s ),简称波速;L —测点下桩的长度(m );Δt —桩底反射波峰值与入射波峰值的时刻差(s ); Δf ——幅值谱上完整桩相邻峰值间的频率差(Hz )。

被检工程的桩身材料平均波速值m c 为5根以上完整桩的波速平均值。

2、完整性类别划分:Ⅰ类桩:桩身结构完整。

桩底反射合理,实测波速在合理范围内,桩底反射波到达前,无同相反射波发生。

Ⅱ 类桩:桩身结构基本完整,存在轻微缺陷。

桩底反射基本合理,实测波速在合理范围之内缺陷反射波幅值相对较弱。

Ⅲ 类桩:完整性介于Ⅱ类和Ⅳ类之间,一般存在明显缺陷,宜采用钻芯法或声波透射法等其它方法进一步判断或直接进行处理。

记录到多个同相反射信号,形成复杂波列,且无合理的桩底反射信号。

依反射信号和提供桩长计算的波速明显偏离同类完整桩平均波速,或时域信号存在较强的异常同相反射。

嵌岩端承型桩虽有明显的桩底反射,但反射波却与入射波相位相同。

Ⅳ 类桩:桩身结构存在严重缺陷,就其结构完整性而言不能使用。

未见桩底反射。

出现多次幅值较强的同相、等间距反射信号,或信号幅值明显较强并以大低频形式出现,当振源脉冲宽度极窄时,同时伴有连续的t ∆很小的同相反射(频域为双峰),此为典型的浅部断桩特征。

桩基施工中的桩身完整性检测与材料试验要求

桩基施工中的桩身完整性检测与材料试验要求

桩基施工中的桩身完整性检测与材料试验要求引言桩基作为一种重要的土木工程基础结构,其质量和完整性对工程的稳定性和可靠性起着至关重要的作用。

而桩身完整性检测与材料试验是保障桩基质量的重要手段。

本文将就桩身完整性检测与材料试验的要求及其重要性进行探讨。

一、桩身完整性检测的要求1. 检测方法桩身完整性检测通常采用声波或超声波检测方法,通过测量声波或超声波在桩内传播的速度和反射情况,判断桩身是否存在破损或裂缝。

该方法具有简单、快速、准确的特点,能够及时发现桩身的问题,保证桩基施工质量。

2. 检测要求桩身完整性检测的主要要求包括以下几个方面:(1)检测时间:应在桩基施工完成后进行,以确保测试结果的准确性和可靠性。

(2)检测点位:应选择具有代表性的位置进行检测,通常选择钻孔设置的探测点位或施工作业中存在疑点的位置进行检测。

(3)检测精度:检测仪器的精度应符合相关标准的要求,以确保测试结果的可信度。

(4)检测参数:应测量桩身的声波或超声波传播速度、反射情况等参数,以判断桩身的完整性情况。

(5)检测报告:应将检测结果以正式的报告形式呈现,包括桩身的完整性情况、存在的问题及建议的处理措施等内容。

二、材料试验的要求1. 试验对象桩基施工中常用的桩材料包括钢筋混凝土桩和钢管桩。

对于钢筋混凝土桩,主要试验对象是混凝土和钢筋;对于钢管桩,主要试验对象是钢管的材质和焊接接头。

2. 试验内容(1)混凝土试验:包括强度试验、密度试验和收缩试验等。

强度试验主要包括抗压强度试验和抗拉强度试验,通过试验可以评估混凝土的力学性能和耐久性能。

(2)钢筋试验:包括钢筋的拉伸试验和弯曲试验,通过试验可以评估钢筋的强度和延性。

(3)钢管试验:包括钢管的拉伸试验和冲击试验,通过试验可以评估钢管的强度和韧性。

(4)焊接试验:对于钢管桩的焊接接头,应进行焊缝强度试验和焊缝断裂韧性试验,以评估焊接质量。

3. 试验要求材料试验应符合相应的标准和规范要求,包括试验方法、试样制备、试验设备和试验结果的评定等。

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析某高速公路桥梁工程桩,桩径:1600 mm;桩长:43.5 m,桩型钻孔灌注桩。

桩基验收检测方案为超声波透射法检测,分别对次桩依次采用:超声波透射法检测,低应变反射波法检测,钻孔取芯完整性检测,钻孔电视检测四种检测方法对其进行完整性判定。

一、超声波透射法检测检测目的:基桩的完整性仪器型号:RSM-SY7(F)采用四只45KHz超声波跨孔探头,一次提升同时完成四管,六剖面的测试,从超声波测试结果来看,发现有五个剖面在6.8-7.0米处,出现幅值超判据情况。

再对该桩6.9米处异常点波形观察,异常点信号首波幅值和后续谐振波信号都偏弱,但其声速正常。

由于是在同深度,多剖面信号异常,在与施工方沟通排除声测管焊接因素的影响,在做钻孔取芯前,使用低应变反射波法检测进一步查明缺陷情况。

二、低应变反射波法检测检测目的:基桩的完整性仪器型号:RSM-PRT(M)采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

第一次采集结果:信号在6.8米处有较小幅值的同相反射。

第二次采集结果:变换传感器安装位置信号在 6.8米处有较大幅值的同相反射,并可见第二次、第三次缺陷反射。

第三次采集结果:采用频率较高的钢筋敲击,提高缺陷位置精度,同相缺陷反射幅值较小,但也很清晰,可见微弱第二次缺陷反射。

最终低应变检测核定其缺陷位置在距桩顶 6.8米处,与超声波投射法检测缺陷深度相符,因低应变数据缺陷较为严重,怀疑桩大面积断桩,决定采用钻孔取芯进一步验证其缺陷情况。

三、钻孔取芯完整性检测检测目的:基桩的完整性仪器型号:钻孔取芯机采用钻机对该桩进行钻孔取芯检测,着重观察该桩 6.9米处混凝土完整性情况,但通过对芯样的目测观察,在 6.9 米处未取出连续较完整的芯样,以钻孔取芯检测结果出具报告也很难判定该桩缺陷情况。

桩基完整性检测方法

桩基完整性检测方法

桩基完整性检测方法
桩基完整性检测方法通常分为两种:非破坏性检测和破坏性检测。

1. 非破坏性检测方法:
- 应力波法:通过在桩顶施加冲击或震动,利用应力波在桩体内的传播特点,检测桩体的完整性。

通过分析反射波和散射波的特征,可判断桩体是否存在缺陷。

- 超声波法:通过超声波在桩体内传播的速度和衰减情况,检测桩体的完整性。

如果桩体存在裂缝或空洞等缺陷,会导致超声波的传播速度变化和能量衰减。

- 电磁法:利用电磁波在桩体内的传播特性,检测桩体的完整性。

通过测量电磁波的传播时间、幅值和相位等参数,可以判断桩体的状态和存在的缺陷。

2. 破坏性检测方法:
- 钻孔取芯法:通过钻孔在桩体中取芯样品,并对样品进行室内试验,如压缩试验、剪切试验等,来评估桩体的完整性和强度。

- 桩顶弯曲监测法:通过在桩顶安装位移传感器,监测桩顶的变形情况,并结合弯矩传感器监测桩顶的弯曲变形情况,来评估桩体的完整性和稳定性。

- 桩身钻孔检测法:通过在桩身上钻孔,检测桩身的质量和连续性。

如通过钻孔取芯、钻孔埋置传感器等方式,检测桩身的材料性质和存在的缺陷。

选择具体的检测方法需根据具体情况综合考虑,包括桩基类型、场地条件、检测目的和要求等。

反射波法检测基桩完整性(1

反射波法检测基桩完整性(1

现场检测技术方法
安装传感器
传感器安装点及其附近不得有缺损或裂缝; 当锤击点在桩顶中心时,传感器安装点与桩中心的距离
宜为桩半径的三分之二; 当锤击点不在桩顶中心时,传感器安装点与锤击点的距
离不宜小于桩半径的二分之一; 对于预应力管桩,传感器安装点、锤击点与桩顶面圆心
构成的平面夹角宜为90度。
T1
Toe
-0.02
Vel
0 5 10 15 20 25 m
从检测波形上看,该桩在距桩顶16米左右处同相反射信号较强,桩身完整性 存在比较严重的缺陷,判定该桩为Ⅲ类桩。结合地质报告,该桩所处主要地 层结构为卵石层和亚粘土层,判定缺陷类型为夹泥。后据施工单位反映,该 桥场地地质情况比较差,成孔比较困难,钻孔过程中经常会出现孔壁坍塌的 情况。该桩桩身夹泥缺陷明显,此缺陷的形成有以下几个原因:其一主要是 混凝土灌注过程中出现了局部塌孔的情况,泥土挤入桩身;其二是施工单位 在处理坍孔或加大泥浆稠度时直接加入孔内的粘土在施工中被分散成泥团、 泥块,在灌注混凝土时夹入桩身;其三是缺陷位置处的混凝土灌注速度不正 常,低于正常灌注速度,当混凝土下泄时,不足以将泥浆全部挤出,造成夹 泥的缺陷。
Ⅳ类桩实例分析
cm/s
0.01 0.01 0.00
2: # 156
MA: 2.00 MD: 2.00 LE: 40.00 WS: 4000 LO: 0.77 HI: 0.00 PV: 0 T1: 63
T1
Toe
-0.01
Vel
0 5 10 15 20 25 30 35 40 m
从检测波形上看,该桩在距桩顶24米处同相反射信号非常强,并且可以见 到该缺陷的二次和三次重复反射,见不到桩底反射信号,故判断该桩为断 桩。后经事故调查得知,该起断桩事故与地质情况无关,为人为原因造成。 当时施工单位在对该桩灌注过程中,发现所购商品混凝土坍落度连续七车 不满足施工质量要求,最小的为11cm,最大的为15cm,随即对该商品混凝 土清退出场,等合格的商品混凝土到场后,此时该桩已经中断灌注混凝土 2.5至3个小时,继续灌注时导管内混凝土已经不能顺利下落,施工单位随 即采取敲击导管并利用25吨吊车小幅度上下往复运动导管,强行使混凝土 下落,此时孔内混凝土已经凝结,不可能继续上浮,最终形成二次浇筑面 造成断桩。这是一种典型的断桩形成原因。

桩基高应变完整性检测

桩基高应变完整性检测

桩基高应变完整性检测引言基础工程是建筑工程的主要组成部分,地基质量直接关系到整个建筑物的机构安全,直接关系到人民生命财产安全。

桩基础是主要的基础形式之一,随着高层建筑的层高增加,结构体型复杂、层数相差悬殊的建筑以及地下空间的开发利用越来越广泛,桩基础是许多高层建筑的首选或必选基础形式。

而桩基础单桩承载力的测试是保证桩基隐蔽工程的重要保证之一。

而高应变检测结合了低应变检测和静载荷实验的功能,既能检测桩基的完整性,又能检测桩基的承载力,高应变检测方法填充了静载荷实验的缺点。

技术原理高应变检测的目的是检测工程桩的竖向抗压承载力和桩身结构完整性,并对桩基的质量进行评价。

其基本原理是:用重锤冲击桩顶,使桩—土产生足够的相对位移,以充分激发桩周土阻力和桩端承载力,通过安装在桩顶以下转身两侧的力和加速度传感器接收桩的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判断桩的承载力和评价桩身质量完整性。

由于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,将桩身内运动的各种应力波划分为上行波和下行波。

由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下,正的作用力(压力)将产生正向的运动,而负的作用力(拉力)将产生负向的运动。

上行波则正好相反,上行的压力波将使桩产生负向的运动,而上行波的拉力则产生正向的运动。

由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩截面突然增大处会产生一个压力回波,这一压力回波回到桩顶,将使桩顶处的力增加,速度减少。

同时,下行的压力波在桩截面突然减少处或有负摩阻力处,将产生一个拉力回波,将使桩顶处的力减小,速度增加。

通过这一基本概念就可在实测的力波曲线和速度曲线中根据二者变化关系来判断桩身的各种情况。

布置方案图1 高应变动力测桩示意图检测的工作面要求:(1)为确保试验时吹激力的正常传递和提高工作效率,应先凿掉桩顶部的破碎层和软弱混凝土,对灌注桩、桩头严重破损的混凝土预制桩和桩头已出现屈服变形的钢桩,试验前应对桩头进行修复或加固处理。

基桩的承载力和桩身完整性的检测

基桩的承载力和桩身完整性的检测

基桩的承载力和桩身完整性的检测根据《建筑基桩检测技术规范》JGJ106-2014,以下简称“基桩检测”,确定建筑工程基桩的承载力和桩身完整性的检测与评价。

一、总要求(承载力和桩身完整性)《基桩检测》3.1.1 基桩检测可分为施工前为设计提供依据的试验桩检测和施工后为验收提供依据的工程桩检测。

基桩检测应根据检测目的、检测方法的适应性、桩基的设计条件、成桩工艺等,按表3.1.1合理选择检测方法。

二、试桩(施工前)《基桩检测》3.1.2 当设计有要求或有下列情况之一时,施工前应进行试验桩检测并确定单桩极限承载力:1 设计等级为甲级的桩基;2 无相关试桩资料可参考的设计等级为乙级的桩基;3 地基条件复杂、基桩施工质量可靠性低;4 本地区采用的新桩型或采用新工艺成桩的桩基。

《基桩检测》3.3.1 为设计提供依据的试验桩检测应依据设计确定的基桩受力状态,采用相应的静载试验方法确定单桩极限承载力,检测数量应满足设计要求,且在同一条件下不应少于3根;当预计工程桩总数小于50根时,检测数量不应少于2根。

“地基条件、桩长相近,桩端持力层、桩型、桩径、成桩工艺相同”即为本规范所指的“同一条件”。

对于大型工程,“同一条件”可能包含若干个桩基分项(子分项)工程。

同一桩基分项工程可能由两个或两个以上“同一条件”的桩组成,如直径400mm和500mm 的两种规格的管桩应区别对待。

本条规定同一条件下的试桩数量不得少于一组3根,是保障合理评价试桩结果的低限要求。

三、单桩承载力和桩身完整性(施工后)《基桩检测》3.1.3 施工完成后的工程桩应进行单桩承载力和桩身完整性检测。

基桩质量检测时,承载力和完整性两项内容密不可分,往往是通过低应变完整性普查,找出基桩施工质量问题并得到对整体施工质量的大致估计,而工程桩承载力是否满足设计要求则需通过有代表性的单桩承载力检验来实现。

《基桩检测》3.2.7 验收检测时,宜先进行桩身完整性检测,后进行承载力检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三桥梁桩基完整性超声测试试验
一、实验目的
1.掌握混凝土超声波测试方法。

2.测试桥梁桩基的缺陷,并用简图描绘出来。

二、实验仪器
桩基完整性检测仪PIT-V
或PIT-FV。

它可检测各种灌注桩
和打入桩的桩身完整性,判定桩
身缺陷的程度及位置。

PIT-V只
测速度。

PIT-FV(图一)可测力
和速度,也可测两个加速度。

图一检测仪PIT-FV 三、试件模型
图二桩基模型图
四、实验原理
超声波探伤是利用超声波能在弹性介质中传播时,会在界面上产生反射、折射等特性来探测材料内部或表面缺陷的探伤方法,简称UT。

超声波在弹性介质中单位时间内传播的距离,称为超声波在这种介质中的传播速度。

简称超声波速,用C表示。

超声波速与介质的性质(密度、弹性模量等)和波的类型有关。

在超声波探伤中,超声波的发射和接收是通过探头来实现的。

超声波探伤仪的种类很多,可按显示方式、发射波连续性、声波通道等进行分类。

超声波探伤不但检测厚度大,而且灵敏度高、速度快、成本低、能对缺陷定位和定量,同时对人体无害。

然而,超声波探伤缺陷显示不直观,探伤技术难度大,易受主、客观条件的影响,探伤结果不便保存。

超声波探伤方法很多,若按原理分类,可分为脉冲反射法、穿透法和共振法,下面分别介绍脉冲反射法和穿透法。

1.脉冲反射法
1)脉冲反射法原理
图一所示为用单探头(一个探头兼作反射和接收)探伤的原理图。

图三 脉冲反射法探伤原理图
图一中脉冲发生器所产生的高频电脉冲激励探头的压电晶片振动,使之产生超声波。

超声波垂直入射到工作中,当通过界面A 、缺陷F 和底面B 时,均有部分超声波反射回来,这些反射波各自经历了不同的往返路程回到探头上,探头又重新将其转变为电脉冲,经接收放大器放大后,即可在荧光屏上显现出来。

其对应各点的波型分别称为始波(A ')、缺陷波(F ')和底波(B ')。

当被测工件中无缺陷存在时,则在荧光屏上只能见到始波A '和底波B '。

缺陷的位置(深度AF)可根据各波型之间的间距之比等于所对应的工件中的长度之比求出,即
F A B A AB AF ''⨯'
'= 其中AB 是工件的厚度.可以测出;B A ''和F A '',可从荧光屏上读出。

缺陷的大小可用当量法确定。

这种探伤方法叫纵波探伤或直探头探伤。

振动方向与传播方向相同的波称纵波;振动方向与传播方向相垂直的波称横波。

2)横波脉冲反射法
当入射角不等于零的超声波入射到固体介质中,且超声波在此介
质中的纵波和横波的传播速度均大于在入射介质中的传播速度时,则同时产生纵波和横波。

又由于材料的弹性模量总是大于剪切模量G,因而纵波传播速度总是大于横波的传播速度。

根据几何光学的折射规律,纵波折射角也总是大于横波折射角。

当人射角取得足够大时,可以使纵波折射角等于或大于90°,从而使纵波在工作中消失,这时工件中就得到了单一的横波。

图二表示单探头横波探伤的情况。

横波入射工件后,遇到缺陷时便有一部分被反射回来,即可以从荧光屏上见到脉冲信号,如图二(a)所示;若探头离工件端面很近,会有端面反射,如图二(b)所示,因此应该注意与缺陷区分;若探头离工件端面很远且横波又没有遇到缺陷,有可能由于过渡衰减而出现图二(c)的情况超声波在传播中存在衰减。

图四横波脉冲发射法波型示意图
横波探伤的定位在生产中采用标准试块调节或三角试块比较法。

缺陷的大小同样用当量法确定。

钢结构构件焊缝的超声波探伤,必须由持证专业人员按CB 1152进行,并根据图纸技术要求和行业标准确定验收。

2.穿透法
穿透法是根据超声波能量变化情况来判断工件内部状况的。

它是将发射探头和接收探头分别置于工件的两相对表面。

发射探头发射的超声波能量是一定的,在工件不存在缺陷时,超声波穿透一定工件厚度后,在接收探头上所收到的能量也是一定的。

而工件存在缺陷时,由于缺陷的反射使接收到的能量减小,从而断定工件存在缺陷。

根据发射波的不同种类,穿透法有脉冲波探伤法和连续波探伤法两种,如图三和图四所示。

脉冲波高
频发生器
工件缺陷
放大器连续波高
频发生器
缺陷
工件
放大器
图五脉冲波穿透探伤法示意图图六连续波穿透法探伤示意图穿透法探伤的灵敏度不如脉冲反射法高,且受工件形状的影响较大,但较适宜检查成批生产的工件。

如板材一类的工件,可以通过接收能量的精确对比而得到较高的精度,宜实现自动化。

五、实验步骤
1.把试件准备好。

2.在试件的顶部安装发射及接受应变片。

3.在发射应变片上轻敲一下,使其产生机械波往下传,并发射回来。

4.接受应变片接受反射回来的信号,将其转换成电信号展示在显示屏上。

5.完成数据采集,进行数据的分析和缺陷的定性判断。

敲击并接受波
图七试件工作图。

相关文档
最新文档