机器视觉系统详解

合集下载

自动化机器视觉系统

自动化机器视觉系统

自动化机器视觉系统自动化机器视觉系统(Automated Machine Vision System)是一种基于计算机视觉技术的先进系统,能够实现物体的自动检测、识别和分析。

该系统结合了传感器、图像处理算法和决策系统,以实现对物体的快速而准确的处理。

本文将从系统原理、应用场景和未来发展等方面进行介绍。

1. 系统原理自动化机器视觉系统利用相机或其他光学传感器捕捉物体的图像,并通过图像处理算法对图像进行分析。

系统通常会采用特定的光源和滤波器来改善图像的质量和对比度。

图像处理算法包括图像增强、特征提取和分类等步骤。

最后,通过决策系统对处理结果进行评估和判断,实现对物体的自动化处理。

2. 应用场景自动化机器视觉系统在工业、医疗、农业和安防等领域有广泛的应用。

以下是几个典型的应用场景:2.1 工业自动化在工业生产线上,自动化机器视觉系统能够实现对产品的检测、排序和包装等操作。

例如,在电子制造业中,系统可以检测电路板上的缺陷或误焊,以提高产品质量和生产效率。

2.2 医疗影像分析自动化机器视觉系统在医学影像领域也有重要的应用。

通过对医学图像进行处理和分析,系统能够帮助医生进行疾病的诊断和治疗。

例如,在眼科领域,系统可以检测和定量测量眼底图像中的病变,辅助眼科医生诊断眼部疾病。

2.3 农业智能化自动化机器视觉系统在农业领域有助于实现农业智能化和精准农业。

系统可以识别农田中的杂草和病虫害,并自动施放相应的农药或杀虫剂,提高农作物的产量和质量。

2.4 安防监控在安防领域,自动化机器视觉系统可以用于实现视频监控和事件识别。

系统可以对图像进行实时分析,检测和识别异常行为或危险事件,并及时报警。

这在提升安全性和保护财产方面起到至关重要的作用。

3. 未来发展随着计算机视觉技术的不断发展,自动化机器视觉系统的应用前景非常广阔。

以下是一些可能的未来发展方向:3.1 深度学习和神经网络深度学习和神经网络是近年来在计算机视觉领域中取得突破的技术。

机器视觉系统原理及基础知识通用课件

机器视觉系统原理及基础知识通用课件
实时性指标
包括处理速度、帧率等,用于评估机器视觉系统在处理图像和视频 时的速度和效率。
鲁棒性指标
包括光照变化、遮挡、噪声等干扰因素对系统性能的影响,用于评 估机器视觉系统在实际应用中的稳定性和可靠性。
不同场景下性能评估方法
实验室环境下性能评估
通过在标准数据集上进行测试和比较,评估机器视觉系统的基本性能和算法优劣。
量,提取关键信息。
特征提取与描述
02
通过手工设计特征提取算法,如SIFT、SURF等,对图像进行特
征提取和描述,为后续分类和识别提供基础。
分类与识别
03
利用分类器如SVM、K-means等对提取的特征进行分类和识别
,实现图像内容的理解和应用。
深度学习在机器视觉中应用
01
卷积神经网络(CNN)
通过构建深度卷积神经网络,自动学习图像中的特征表达,提高图像分
触发方式
软件触发、硬件触发等,应根据实际应用场景进 行选择。
04
机器视觉系统软件平台介绍
常见软件平台对比分析
OpenCV
开源计算机视觉库,提供丰富的图像处理与计算机视觉功能,支 持多种编程语言。
Halcon
商业机器视觉软件,提供强大的图像处理和机器视觉算法库,易于 集成到工业应用中。
VisionPro
学术社区
推荐了几个重要的机器视觉学术社区和论坛,如CVPR、 ECCV等会议以及GitHub等代码分享平台,便于研究者和 开发者交流与合作。
THANKS
感谢观看
案例:应用实例展示
图像处理实例
展示如何利用软件平台对图像进行预处理、特征提取、目标检测等操作。
机器视觉应用实例
展示如何结合具体的工业应用场景,利用软件平台实现自动化检测、识别、定 位等功能。

机器人视觉系统介绍

机器人视觉系统介绍

机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。

按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。

三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。

所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。

机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。

如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。

机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。

将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。

产品的分类和选择也集成于检测功能中。

下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。

视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。

图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。

数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。

机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。

图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。

由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。

机器视觉系统

机器视觉系统

实用案例分析
5、检测牙膏管口边缘毛刺: A、对物件进行旋转位置识别 B、检测管口是否有毛刺或其他障碍物 C、通过异步触发器对图像进行整体评估
实用案例分析
6、颜料盒生产时的粘贴物监控: A、安放颜料块前,监控颜料盒每一格中注入的胶水量
实用案例分析
7、检验传动轴是否正确安装,并且编码一致: A、自动检测编码存在与否,以及封口和卡子的位置
机器视觉系统概述
机器视觉的工作原理
机器视觉检测系统采用CCD照相机将被检测的目标标转换成图像信号, 传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变 成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特 征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出 结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动 识别功能。
机器视觉系统概述
人类视觉
适应性 智能 彩色识别能 力 灰度分辨力 空间分辨力 适应性强,可在复杂及变化的环境中识别目 标 具有高级智能,可运用逻辑分析及推理能力 识别变化的目标,并能总结规律 对色彩的分辨能力强,但容易受人的心理影 响,不能量化 差,一般只能分辨64个灰度级 分辨率较差,不能观看微小的目标
机器视觉系统概述
§ 什么是视觉系统 § 工作原理 § 系统构成 § 系统特点 § 机器视觉发展史 § 特点&为什么要使用机器视觉&人机对比 § 硬件分类 § 主要行业应用&实际案例
§ 机器视觉主要功能
§ 机器视觉优势
机器视觉系统概述
什么是机器视觉系统
机器视觉就是用机器代替人眼来做测量和判断。
机器视觉系统是指通过机器视觉产品(即图像获取装置,分 CMOS 和CCD 两种)将被获取目标转换成图像信号,传送给专 用的图像处理系统,根据像素分布和亮度、颜色等信息,转变 成数字化信号;图像系统对这些信号进行各种运算来抽取目标 的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统详解

机器视觉系统详解
工业相机白平衡这一参数可用来调节图像中红色和蓝色的色度,以得到逼真 的色彩。可通过手动或自动方式控制这些值。自动白平衡功能提供两种操作 模式:
自动:对视频数据流持续实施白平衡操作。
单触:只触发一次调节过程。
普通的多媒体相机只提供一个白平衡参数,所以增加红色色值会减少蓝 色色值,反之亦然。高质量的相机提供两个参数,因此可以分别调节红和蓝 的色值:
中焦距镜头
焦距介于广角镜头和长焦镜头之间的镜头。通常情况下 畸变校正较好。
长焦距镜头
等效焦距超过200mm的镜头。工作距离长,放大比大, 畸变常常表现为枕形状畸变。
等效焦距计算方法:
实际焦距×43mm
镜头成像圆的直径
按照功能分
变焦距镜头 镜头的焦距可以调节,镜头的视角、视野可变。
定焦距镜头 镜头的焦距不能调节,镜头视角固定。聚焦位
最大/最小工作距离(Work Distance) 从物镜到被检测物体的距离的范围,小于最小工作距离大于最大工作 距离系统均不能正确成像。
景深(Depth Of Field) 在某个调焦位置上,景深内的物体都可以清晰成像。
工作距离(WD) 视 野 (
成象面
FOV
) 景深(DOV)
后焦面距离
畸变 几何畸变指的是由于镜头方面的原因导致的图像
按像素排列方式划分 面阵摄像机
• 黑白摄像机 • 采用BAYER转化的单片相机 • 3CCD彩色摄像机(分光棱镜)
线阵摄像机
• 黑白摄像机 • 3Line彩色摄像机 • 3CCD彩色摄像机(分光棱镜)
3CCD 彩色相机
3Line 彩色相机
BAYER转换彩色相机
第三节:相机的主要参数
像素:用来计算影像的一种单位 ,一个像素通常 被视为图像的最小的完整采样。每一张图片都是 由很多个像素组成误差大

机器视觉系统详述

机器视觉系统详述

右图中,绿色背景 采用红色光源提高 对比度 (灰阶图像)
光源
代码 R G B V W IR UV
颜色 红 绿 蓝 紫 白 红外 紫外
波长(nm) 625(600~720) 517(510~530) 465(430~480) 400 色温:5500k
应用 背景为黑色的透明软板孔位定位、绿色线路 板检测、透光膜厚度测量等。 红色背景产品检测、银色背景产品检测等。
• 特殊要求,需要用到红外或紫外相机情况
镜头--如何选择镜头

定焦与变焦 变焦镜头
工作距离不变的情况下获得不同的放大倍率
镜头--如何选择镜头

远心镜头与标准工业镜头
远心镜头
• 精密测量系统
CCTV镜头
• 一般工业测量、缺陷检测,对物体成像的放大倍率没有严格要求
远心镜头
CCTV镜头
镜头--如何选择镜头
目录
1 2
机器视觉系统构成 成像系统核心器件选型方法
3 4
5
机器视觉系统设计步骤 应用案例
飞行捕捉和相机丢帧解决办法
机器视觉系统构成
机 器 (Machine)
1、机器视觉系统介绍
+
视 觉 (Vision)
机械
运动
控制
视(硬件)
觉(软件)
机器视觉是一个系统的概念,运 用现代先进的控制技术、计算机 技术及传感技术,表现为光机电 的结合。
镜头
镜头畸变
畸变是镜头放大倍率随着视场变化而变化的现象。
测量应用,畸变越小越好
畸变可以通过软件进行校正
镜头
镜头景深
对于理想的光学系统,像平面对应一个理想物平面。实际光学
系统,能清晰成像的最远物面到理想物平面的距离称为远景深 度,能清晰成像的最近物面到对准平面的距离称为近景深度, 远景深度和近景深度的和就是光学系统的景深。

机器视觉系统概述课件

机器视觉系统概述课件

REPORTING
图像采集技术
分辨率与清晰度
高分辨率和清晰的图像是机器视觉的基础,决定 了识别和判断的准确性。
动态范围
捕捉不同光照条件下的图像,使机器视觉系统能 够处理真实场景中的各种挑战。
颜色再现性
确保系统能够准确识别和区分颜色,这对于许多 应用至关重要。
图像处理算法
滤波与降噪
去除图像中的噪声,提高后续处理的准确性。
3D视觉技术
1 2
立体视觉
通过分析两幅或多幅图像的差异,重构物体的 三维结构。
结构光
通过投射已知的光模式到物体上,再分析反射 的光线,计算物体的形状和距离。
3
光编码与时间测量
利用特殊的光编码技术和高精度的时间测量, 实现高精度的3D重建。
2023
PART 04
机器视觉系统的实施步骤
REPORTING
边缘检测与特征提取
从图像中识别关键特征,帮助系统理解和区分不同 的物体。
图像分割
将图像划分为有意义的部分,以便于分析和识别。
深度学习在机器视觉中的应用
对象识别
利用深度学习模型(如CNN)识别图像中的物 体。
目标跟踪
实时跟踪视频流中的对象,用于监控、人机交互 等应用。
场景理解
通过深度学习分析图像,理解场景的三维结构和 语义信息。
2023
PART 02
机器视觉系统的组成
REPORTING
图像获取
相机选择
根据应用需求选择合适的相机类 型,如面阵相机、线扫描相机等

照明方式
选择合适的照明方式以提高图像质 量,如前向照明、背光照明等。
镜头调整
根据目标物体的距离和尺寸调整镜 头焦距,以获得清晰、高分辨率的 图像。

机器视觉系统原理及基础知识课件

机器视觉系统原理及基础知识课件
利用分类器或神经网络等技术,对提取的特征进行分类和识别。
特征提取
从处理后的图像中提取出与目标相关的特征,如颜色、形状、纹理等。
图像采集通过相机、镜头源自设备获取原始图像。图像处理
对采集的图像进行预处理、增强、分割等操作,提取出有用的信息。
图像采集与处理
02
使用光电传感器将光信号转换为电信号,形成原始图像数据。
技术标准和互通性
目前机器视觉技术标准和互通性有待提高,需要制定统一的技术标准,促进不同厂商和系统之间的互通性和互操作性。
THANKS
感谢观看
特点
定义
工业自动化
农业科技
医疗影像分析
安全监控
01
02
03
04
用于生产线上的质量检测、定位、跟踪和引导机器人等。
用于智能农业中的植物生长监测、病虫害检测等。
用于医学影像的自动识别和辅助诊断。
用于公共安全监控、交通违规检测等。
结果输出
将识别结果以图像、文字等形式输出,供用户查看或控制其他设备。
图像识别
图像传感器
镜头选择
光源照明
选择合适的镜头焦距和光圈大小,以获取清晰、无畸变的图像。
合理选择和设计光源照明方案,以提高图像对比度和清晰度。
03
02
01
将彩色图像转换为灰度图像,减少计算量和处理时间。
灰度化
采用滤波器等方法去除图像中的噪声和干扰。
噪声去除
通过对比度拉伸、直方图均衡化等方法增强图像的细节和对比度。
医学影像中的定量分析
机器视觉系统能够对医学影像进行定量分析,如血管狭窄程度、组织密度等,为医生提供更加全面的诊断信息。
医学影像中的三维重建
通过机器视觉技术,可以将二维医学影像进行三维重建,更加直观地展示病灶结构和周围组织关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
16
第三节:镜头各个参数间的关系 光圈大通光能力大,光圈小通光能力小; 光圈小则景深大,光圈大则景深小;
A
17
第四节:镜头的分类
按照等效焦距分为
广角镜头
等效焦距小于标准镜头(等效焦距为50mm)的镜头。 特点是最小工作距离短,景深大,视角大。常常表现为桶 形畸变。
中焦距镜头
焦距介于广角镜头和长焦镜头之间的镜头。通常情况下 畸变校正较好。
图像采集设备所能够覆盖的范围,它可以是在监视器上可以见到的 范围,也可以使设备所输出的数字图像所能覆盖的最大范围。
最大/最小工作距离(Work Distance) 从物镜到被检测物体的距离的范围,小于最小工作距离大于最大工作 距离系统均不能正确成像。
景深(Depth Of Field) 在某个调焦位置上,景深内的物体都可以清晰成像。
A
22
2.镜头接口要跟相机接口匹配安装,也可通 过转换匹配安装 。
A
23
3.镜头的工作距离要适当。
所谓工作距离,是指当图像在焦距 范围内的时候,物体和镜头前端的距 离。通过焦距、工作距离、CCD尺寸 这些我们还可以得知镜头的视场范围, 选择镜头的原则也同时包括了镜头视 场覆盖的原则。
A
24
4.机器视觉镜头的光谱特性要符合光源的要求。在 机器视觉系统中,镜头不只是与相机相互作用的, 镜头还需满足光源要求,才能获取全部的图像信 息。在这里需要考虑光源的波长、光谱范围、以 及光源的种类是红外还是紫外等等。
光源是一个视觉应用开始工作的第一步,好的光源与照明 方案往往是整个系统成败的关键,起着非常重要的作用。
使用光源的目的:光源并不是简单的照亮物体而已。 1.光源与照明方案的配合应尽可能地突出物体特征量; 2.将待测区域与背景明显区分开,增加对比度,消隐不感 兴趣的部分; 3.增强待测目标边缘清晰度; 4.保持足够的整体亮度; 5.物体位置的变化不应该影响成像的质量。
工作距离(WD) 视 野 (
成象面
FOV

景深(DOV)
A
后焦面距离
13
畸变
几何畸变指的是由于镜头方面的原因导致的图像 范围内不同位置上的放大率存在的差异。几何畸变 主要包括径向畸变和切向畸变。如枕形或桶形失真。 畸变小于2%人眼是看不出来的。如果畸变小于 CCD的一个像素,那么相机也看不出来了。
光圈与F值 光圈是一个用来控制镜头通光量装置,它通常是在 镜头内。表达光圈大小我们是用F值,如f1.4,f2, f2.8 等等。
A
14
分辨率
测量系统能够重现的最小的细节的尺寸常 常用每毫米线对来表示,也就是根据这个 镜头能够分辨一毫米内多少对直线。选择 镜头的时候必须注意厂商给出的分辨率的 定义方式。
第四节:光源选择的注意事项
影响因素: 1.相机光谱响应特性; 2.LED的颜色、反光角度、亮度、寿命等; 3.物品形状与LED形状; 4.打光方式; 5.辅助手段(偏光镜、滤光镜、漫反射板等)
选择原则: 满足应用,综合考虑 理论分析,实验验证
A
6
第五节:LED光源的应用实例
前面讲到, LED的特性使得其广泛的应用 于机器视觉系统中。
以上误差,甚至消除这些误差。 远心镜头的口径至少要与需要观察的物体
尺寸相等或更大。
A
21
第六节:选择镜头的原则
1. 机器视觉镜头可支持的最大的CCD尺寸不能小于所搭配 的相机中CCD传感器芯片的尺寸 。 .如果镜头尺寸比 CCD靶面尺寸小,图片边缘会出现黑场,即只有中间一个 圆圈的视场是有效的.
5.机器视觉镜头的畸变率要符合测量标准。直线在 经过透镜成像后会变成弯曲的现象,这就是畸变, 畸变主要有两种,分别为桶形畸变和枕形畸变。 畸变的存在是具有普遍性的,目前也没有能完全 消除的手段,所以能将畸变率控制在一个水平上 就算是合格了。
机器视觉系统详解
深圳市圆融精密电子有限公司
A
1
机器视觉系统的构成
相机
光源
镜头
相机触发信号
供电及传输模拟图片信号
I/O控制
光源触发信号
与软件通讯
被测物
其他动作信号
其他机械部分
图像采集卡
数字图片信号
电 脑 系 统
A
2
第一章、光源
第一节:光源简介
光源:为确保视觉系统正常取像获得足够光信息而提供照 明的装置。
焦距
焦距是像方主面到像方焦点的距离。如 16mm, 25mm,35mm等。 成像面
可以在镜头的像面上清晰成像的物方平面。
A
15
镜头接口
• C-MOUNT 镜头的标准接口之一,镜头的接口螺纹参数:
公称直径:1“ 螺距:32牙 • CS-Mount是C-Mount的一个变种,区别仅仅在于
镜头定位面到图像传感器光敏面的距离的不同,C- Mount 是17。5mm,CS-Mount是12。5mm。 • C/CS能够匹配的最大的图像传感器的尺寸不超过1“。 • F-Mount,卡口,没有螺纹。 • 其他类型
长焦距镜头
等效焦距超过200mm的镜头。工作距离长,放大比大, 畸变常常表现为枕形状畸变。
等效焦距计算方法:
实际焦距×43mm
镜头成像圆的直径
A
18
按照功能分
变焦距镜头 镜头的焦距可以调节,镜头的视角、视野可变。
定焦距镜头 镜头的焦距不能调节,镜头视角固定。聚焦位
置和光圈可以调节。 定光圈镜头
适合的灯源可以提高系统检测精度、运行速度及工作效率。
A
3
第二节:照明方式的分类
在机器视觉系统中一般使用透射光和反射光。
反射光
透射光
光源
相机
光源
相机
产品
产品
Hale Waihona Puke 光源A4第三节:光源的分类及比较
萤光灯 卤素灯+光纤导管 LED光源 其他(激光、紫外光等)
其中LED光源凭借其诸多的优点在现代机A 器视觉系统中得到越来越多的应用。 5
目前常用的LED光源有:环形光、条形光、 面板光、同轴光、点光源、线光源等等。
根据不同的产品选择合适的光源,有时候 会需要几种光源进行组合照明。
A
7
A
8
A
9
A
10
A
11
第二章、镜头
第一节:镜头简介
光学镜头相当于人眼的晶状体,在机器视 觉系统中非常重要。
A
12
第二节:镜头的基本概念
视野 (FOV)
光圈不能调节,通常情况下聚焦也不能调节。
A
19
按照用途分
微距镜头(或者成为显微镜头) 用于拍摄较小的目标具有很大的放大比
远心镜头 包括物方远心镜头和像方远心镜头以及双
边远心镜头。
A
20
第五节:远心镜头
在测量系统中,有一些因素影响测量的精度与重复性。 1. 物体位置变化引起的比例尺变化 2. 畸变 3. 投影误差 4. 物体边缘测量误差大 采用远心镜头可以很大程度的降低
相关文档
最新文档