解读机器视觉系统解析及优缺点
机器人视觉系统介绍

机器人视觉(Robot Vision)简介机器视觉系统的组成机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。
按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。
三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。
所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。
机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。
如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。
机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。
将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。
产品的分类和选择也集成于检测功能中。
下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。
视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。
图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。
数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。
机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。
图像的获取图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成:*照明*图像聚焦形成*图像确定和形成摄像机输出信号1、照明照明和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少3 0%的应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
《机器视觉基础》课件

安全监控
要点一
总结词
机器视觉在安全监控领域的应用,能够提高安全防范能力 和监控效率。
机器视觉的优势与挑战
优势
非接触式、高精度、高效率、高可靠 性、可实现自动化和智能化等。
挑战
数据量大、计算复杂度高、对光照和 角度敏感、对遮挡和噪声的鲁棒性差 等。
02
机器视觉系统组成
图像获取
图像获取是机器视觉系统的第一步, 负责将目标物体转化为数字图像,以 便后续处理。
图像获取的关键在于获取高质量的图 像,以便后续处理能够准确地进行特 征提取和目标识别。
基于概率统计的算法
总结词
利用概率统计理论,对图像中的目标进行识别和分类的方法。
详细描述
基于概率统计的算法通过建立目标模型,利用概率分布和统计规律对图像中的目标进行识别和分类。 该算法具有较强的鲁棒性和适应性,能够处理一些复杂的视觉任务,如目标跟踪、场景识别等。
基于深度学习的算法
总结词
利用深度神经网络对图像进行层次化特征提取和分类的方法。
VS
详细描述
机器视觉技术被广泛应用于工业生产线上 ,对产品进行外观、尺寸、缺陷等方面的 检测。通过高精度的图像采集和处理,机 器视觉系统能够快速准确地识别出不合格 品,并自动剔除或进行分类,从而提高生 产效率和产品质量。
农业检测
总结词
机器视觉在农业领域的应用,有助于提高农 产品的产量和质量。
详细描述
03
02
角点检测
机器视觉系统的优化与校准技巧

机器视觉系统的优化与校准技巧机器视觉系统在现代工业生产中扮演着重要的角色,它能够对产品进行高速、高精度的检测与判别,从而提高生产效率并降低人工成本。
然而,机器视觉系统的性能受到多种因素的影响,因此需要进行优化和校准,以确保系统的可靠性和稳定性。
本文将介绍机器视觉系统的优化与校准技巧,并探讨如何提高系统的性能。
首先,正确的光照条件对于机器视觉系统的正常运行至关重要。
光照过强或过弱都会对图像质量和算法的准确性产生影响。
为了优化视觉系统,我们应该确保光源的亮度和颜色温度等参数符合要求,并采用适当的光源补偿技术,例如增加反射板、滤光片等来调节光照强度和颜色质量,以使图像的亮度和对比度适宜。
其次,目标物体的形态和纹理对于图像处理和算法的性能也很关键。
机器视觉系统通常依赖于边缘提取、形状匹配等技术来实现目标物体的检测与辨识。
为了优化系统的性能,我们可以采取以下措施:选择合适的图像处理算法,例如边缘检测算法、纹理描述算法等;利用滤波器和增强算法来去除图像噪声,提高目标物体的辨识度;同时,根据目标物体的几何形状和纹理特征,进行形态学处理和纹理分析,以达到更准确的检测结果。
除了光照和目标物体外,摄像机的参数设置也对机器视觉系统的性能有着重要影响。
摄像机的曝光时间、增益、对比度等参数应根据实际情况进行调整,以获得最佳的图像质量。
此外,摄像机的选用也要考虑光学参数和分辨率等因素,以满足对精度和速度的要求。
当然,在进行系统优化时,我们还应该考虑到能源消耗和成本等因素,以在性能和经济效益之间进行权衡。
此外,为了确保机器视觉系统的准确性和稳定性,系统的校准是必不可少的。
系统的校准旨在减小图像获取和处理中的误差,提高检测和判别结果的精度。
校准技巧包括相机标定、图像畸变矫正、坐标系匹配等。
相机标定是校准的重要环节,可以通过拍摄特定的标定板和使用标定算法来确定相机的内外参数。
图像畸变矫正通过去除图像畸变,提高图像的几何质量。
坐标系匹配通过对系统中的各个组件进行准确定位和对齐,确保测量结果的一致性和准确性。
机器视觉检测系统【深度解读】

机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。
通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。
人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。
这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。
视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。
与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。
视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。
因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。
在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。
2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。
(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。
通常,机器视觉检测就是用机器代替肉眼来做测量和判断。
工业机器视觉系统课件

应用领域拓展
随着机器视觉技术的不断成熟,其应用领域也将不断拓展 ,如医疗、农业、环保等领域都可能成为机器视觉技术的 应用方向。
人机协作
未来机器视觉系统将更加注重人机协作,通过智能化技术 提高人机交互的效率和安全性,实现更加和谐的人机关系 。
THANKS FOR WATCHING
感谢您的观看
用。
技术成熟与标准化
随着技术的不断成熟和标准化, 机器视觉系统的成本将进一步降 低,同时提高系统的可靠性和兼
容性。
普及教育
加大对机器视觉技术的普及教育 力度,提高企业和技术人员对机 器视觉的认识和应用能力,进一 步推动机器视觉系统的普及和应
用。
05
工业机器视觉系统的挑 战与解决方案
技术挑战与解决方案
技术挑战
机器视觉系统中的图像处理算法需要高 精度和高效率,以满足工业生产线的快
速检测需求。
技术挑战
不同工业场景下,需要处理各种复杂 和多变的图像,如表面缺陷、尺寸测
量等。
解决方案
采用先进的图像处理算法和计算机视 觉技术,如深度学习、人工智能等, 提高检测精度和速度。
解决方案
针对不同应用场景,定制化开发机器 视觉系统,优化算法和参数,提高系 统的适应性和鲁棒性。
06
结论
工业机器视觉系统的价值与意义
保障产品质量
机器视觉系统可以对产品进行细致的检测 ,及时发现并处理不合格品,从而保证产
品质量。
A 提升生产效率
机器视觉系统能够快速、准确地检 测产品,减少人工检测的误差和时
间,从而提高生产效率。
B
C
D
促进工业自动化发展
机器视觉系统的应用是工业自动化发展的 重要方向之一,能够推动工业自动化技术 的进步。
机器视觉系统概念是什么

机器视觉系统概念是什么?机器视觉技术是计算机科学的一个重要分支,它涉及到计算机、图像处理、模式识别、人工智能、信号处理、光学、机械等多个领域。
自起步发展至现在,已经有三十多年的历史。
其功能及应用范围随着工业自动化的发展逐渐完善和推广。
其中特别是CCD工业摄像机、智能相机、ARMFPGA、图像处理和模式识别等技术的快速发展,极大地推动了机器视觉系统的发展。
简言之,机器视觉就是用机器代替人眼来作各种测量和判断。
在生产线上,人来作这类测量和判断会因疲劳,个人之间的差异等等产生误差和错误;但机器却会不知疲倦地,稳定地进行下去。
使用机器视觉的优点为:(1)非接触测量,对观测与被观测者都不会产生任何损伤,从而提高了系统的可靠性;(2)具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围;(3)长时间稳定工作,人类难以长时间对同一对象进行观察,而机器视觉则可以长时间地作测量、分析和识别任务。
(4)可以在恶劣环境下工作。
一个完整的机器视觉系统的主要工作过程如下:(1)工件定位检测器探测到物体已运动至接近摄像机视野的中心,向图像采集卡发送触发脉冲;(2)图像采集卡按事先设定的程序和时延,分别向摄像机和照明设备发出起动脉冲;(3)工业摄像机停止目前的扫描,重新开始新的一帧扫描;或者摄像机在起动脉冲来到之前处于等待状态,起动脉冲来到后起动一帧扫描;(4)工业摄像机开始新的一帧扫描之前,打开曝光机构,曝光时间可以事先设定;(5)另一个起动脉冲打开灯光照明,灯光开启时间应与摄像机曝光时间匹配;(6)工业摄像机曝光后,正式开始一帧图像的扫描和输出;(7)图像采集卡接收模拟视频信号并通过A/D将其数字化,或者直接接收工业摄像机数字化之后的数字视频,近几年来由于科技的迅猛发展,图像采集卡这种模拟信号转数字信号的形式已渐渐被工业数字摄像机所代替,工业数字摄像机自带I/O,可直接外触发,拥有完整的SDK开发包,功能强大,笔者使用过MV-EM系列千兆网工业数字相机,如果大家有兴趣可以关注了解一下工业数字相机的基本构成及用途;(8)图像采集卡将数字图像放到处理器或者计算机的内存中;(9)处理器对图像进行处理、分析、识别,获得测量结果,或逻辑控制值;(10)处理结果控制流水线的动作;或进行定位,纠正运动的误差等。
视觉系统相比传统的机器视觉的优势有哪些?

视觉系统相比传统的机器视觉的优势有哪些?随着科技的不断发展,机器视觉技术在工业、农业、医疗等领域中得到了广泛应用。
传统的机器视觉系统运用图像识别算法对图片进行处理,并利用传统的计算机视觉算法进行分析,实现物体的识别、分析和检测。
但是,这种方式存在着许多问题,比如算法复杂度高、处理速度慢、稳定性不足等。
相对而言,视觉系统在这些方面有众多优势。
算法速度更快视觉系统基于深度学习模型,具有快速识别物体并快速进行决策的功能。
采用机器学习方式进行判断,使系统对物体的识别和辨析更加准确。
机器学习算法可以在更快的时间内集中学习大量的数据,大幅度提高了系统的识别能力,从而也大幅度提高了算法的速度。
而传统的机器视觉需要依靠固定的算法进行图像处理,没有未来的可发展性,也不够灵活。
更加稳定和准确视觉系统具有快速准确的功能,可以处理更多类型的图像。
其识别功能精准高效,即使面对低光照、遮挡、噪音干扰等情况,也能保持准确率,不会受到外部干扰的影响。
视觉系统是基于深度学习算法训练出来的,同时动态自适应地调整参数,保持输入数据的稳定性和准确性。
自主学习能力更强传统的机器视觉需要人工特征提取,需要手工设置算法的阈值和区分度等参数,对比而言,视觉系统的自主学习能力更强,能够获得更准确的结果。
其深度学习算法可以对数据进行自我修正和自我提高,从而自已进步。
通过大量的训练和数据,视觉系统能够自主学习新的知识并整合到原有模型中去,从而能够更好地满足工业和生产的需求。
效率更高与成本更低另外,传统的机器视觉在需要对算法进行升级时会带来较高的技术成本,而视觉系统可以通过不断的训练和优化,达到更优秀的效果。
视觉系统不需要过多的租赁存储空间和设备,而是基于云端的架构,能够实现更高效的存储和计算。
如果应用到机器人等领域中,还可以实现更高的自动化程度,从而来提升生产效率,减少人力成本。
综上所述,相对于传统的机器视觉而言,视觉系统在算法速度、稳定性和准确性、自主学习能力以及效率与成本等方面都有较大的优势,因此都能够更好地满足工业、农业、医疗等重要领域的需求,同时也可以在应用中不断地创新和发展。
解读机器视觉系统解析及优缺点

解读机器视觉系统解析及优缺点在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。
通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。
由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。
这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。
当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。
机器视觉的优点包括以下几点:■精度高作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。
因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。
■连续性视觉系统可以使人们免受疲劳之苦。
因为没有人工操作者,也就没有了人为造成的操作变化。
多个系统可以设定单独运行。
■成本效率高随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。
一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。
另外,视觉系统的操作和维持费用非常低。
■灵活性视觉系统能够进行各种不同的测量。
当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。
许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。
在SPC中,制造参数是被持续监控的。
整个过程的控制就是要保证这些参数在一定的范围内。
这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。
机器视觉系统比光学或机器传感器有更好的可适应性。
它们使自动机器具有了多样性、灵活性和可重组性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解读机器视觉系统解析及优缺点在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。
通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。
由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。
这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。
当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。
机器视觉的优点包括以下几点:■精度高作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。
因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。
■连续性视觉系统可以使人们免受疲劳之苦。
因为没有人工操作者,也就没有了人为造成的操作变化。
多个系统可以设定单独运行。
■成本效率高随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。
一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。
另外,视觉系统的操作和维持费用非常低。
■灵活性视觉系统能够进行各种不同的测量。
当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。
许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC命令。
在SPC中,制造参数是被持续监控的。
整个过程的控制就是要保证这些参数在一定的范围内。
这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。
机器视觉系统比光学或机器传感器有更好的可适应性。
它们使自动机器具有了多样性、灵活性和可重组性。
当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。
当生产线重组后,视觉系统往往可以重复使用机器视觉系统的构成机器视觉技术用计算机来分析一个图像,并根据分析得出结论。
现今机器视觉有两种应用。
机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。
尽管机器视觉应用各异,但都包括以下几个过程;■图像采集光学系统采集图像,图像转换成模拟格式并传入计算机存储器。
■图像处理处理器运用不同的算法来提高对结论有重要影响的图像要素。
■特性提取处理器识别并量化图像的关键特性,例如印刷电路板上洞的位置或者连接器上引脚的个数。
然后这些数据传送到控制程序。
■判决和控制处理器的控制程序根据收到的数据做出结论。
例如:这些数据包括印刷电路板上的洞是否在要求规格以内或者一个自动机器如何必须移动去拾取某一部件。
机器视觉系统解析典型的视觉系统一般包括:光源、光学系统,相机、图像处理单元(或图像采集卡)、图像分析处理软件、监视器、通讯/输入输出单元等。
图像采集图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的数据,它直接影响到系统的稳定性及可靠性。
一般利用光源、光学系统,相机、图像处理单元(或图像捕获卡)获取被测物体的图像。
■光源光源和影响机器视觉系统输入的重要因素,因为它直接影响输入数据的质量和至少30%的应用效果。
由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。
许多工业用的机器视觉系统用可见光作为光源,这主要是因为可见光容易获得,价格低,并且便于操作。
常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。
但是,这些光源的一个最大缺点是光能不能保持稳定。
以日光灯为例,在使用的第一个100小时内,光能将下降15%,随着使用时间的增加,光能将不断下降。
因此,如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。
另一个方面,环境光将改变这些光源照射到物体上的总光能,使输出的图像数据存在噪声,一般采用加防护屏的方法,减少环境光的影响。
由于存在上述问题,在现今的工业应用中,对于某些要求高的检测任务,常采用X射线、超声波等不可见光作为光源。
由光源构成的照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。
其中,背向照明是被测物放在光源和相机之间,它的优点是能获得高对比度的图像;前向照明是光源和相机位于被测物的同侧,这种方式便于安装;结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息;频闪光照明是将高频率的光脉冲照射到物体上,要求相机的扫描速度与光源的频闪速度同步。
■光学系统对于机器视觉系统来说,图像是唯一的信息来源,而图像的质量是由光学系统的恰当选择来决定。
通常,由于图像质量差引起的误差不能用软件纠正。
机器视觉技术把光学部件和成像电子结合在一起,并通过计算机控制系统来分辨、测量、分类和探测正在通过自动处理系统的部件。
机器视觉系统通常能快到100%的探测所处理的产品而不会降低生产线的速度。
由于越来越多的制造商正需要“6-sigma“(小于百万分之三的有效单位)结果,以便能够在当今质量意识很强的市场中更有竞争力,这种能力显得非常重要。
另外,这些系统能够与满意过程控制(SPC)非常理想的配合。
光学系统的主要参数与图像传感器的光敏面的格式有关,一般包括:光圈、视场、焦距、F数等。
■相机相机是实际上是一个光电转换装置,即将图像传感器所接收到的光学图像,转化为计算机所能处理的电信号。
光电转换器件是构成相机的核心器件。
目前,典型的光电转换器件为真空摄像管、CCD、CMOS图像传感器等。
真空电视摄像管由密封在玻璃管罩内的摄像靶、电子枪两部分组成。
摄像靶将输入光学图像的光照度分布转换为靶面相应象素电荷的二维空间分布,主要完成光电转换和电荷存贮任务;电子枪则完成图像信号的扫描拾取过程。
电视摄像管型成像系统具有高清晰度、高灵敏度、宽光谱和高帧速成像等特点。
但由于电视摄像管属于真空管器件,其重量、体积及功耗均较大。
CCD是目前机器视觉最为常用的图像传感器。
它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。
CCD的突出特点是以电荷作为信号,而不同于其器件是以电流或者电压为信号。
这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。
典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、模拟/数字信号处理电路组成。
下图为CCD相机的原理框图。
CCD作为一种功能器件,与真空管相比,具有无灼伤、无滞后、低电压工作、低功耗等优点。
CMOS(Complementary Metal Oxide Semiconductor)图像传感器的开发最早出现在20世纪70 年代初。
90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。
CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部象素的编程随机访问的优点。
目前,CMOS图像传感器以其良好的集成性、低功耗、宽动态范围和输出图像几乎无拖影等特点而得到广泛应用。
图像的处理和分析在机器视觉系统中,相机的主要功能光敏元所接收到的光信号转换为电压的幅值信号输出。
若要得到被计算机处理与识别的数字信号,还需对视频信息进行量化处理。
图像采集卡是进行视频信息量化处理的重要工具。
■图像采集/处理卡图像采集卡主要完成对模拟视频信号的数字化过程。
视频信号首先经低通滤波器滤波,转换为在时间上连续的模拟信号;按照应用系统对图像分辨率的要求,得用采样/保持电路对边疆的视频信号在时间上进行间隔采样,把视频信号转换为离散的模拟信号;然后再由A/D转换器转变为数字信号输出。
而图像采集/处理卡在具有模数转换功能的同时,还具有对视频图像分析、处理功能,并同时可对相机进行有效的控制。
■图像处理处理软件机器视觉系统中,视觉信息的处理技术主要依赖于图像处理方法,它包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。
经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。
机器视觉系统的应用机器视觉系统是实现仪器设备精密控制、智能化、自动化有有效途径,堪称现代工业生产的“机器眼睛”。
其最大优点为:(1)实现非接触测量。
对观测与被观测者都不会产生任何损伤,从而提高了系统的可靠性;(2)具有较宽的光谱响应范围。
机器视觉则可以利用专用的光敏元件,可以观察到人类无法看到的世界,从而扩展了人类的视觉范围。
(3)长时间工作。
人类难以长时间地对同一对象进行观察。
机器视觉系统则可以长时间地执行观测、分析与识别任务,并可应用于恶劣的工作环境。