机械密封磨损量和使用寿命的规定
机械密封的主要性能参数

[ρcv]/(MPa•m/s)
SiC-石墨
18
SiC-SiC
14. 5
WC-石墨
7~15
WC-WC
4. 4
WC-填充四氟
5
WC-青铜
2
Al2O3石墨墨
3~7. 5
Cr203 涂层石墨 15
(4) 泄漏率机械密封的泄漏率是指单位时间内通过主密封和辅助密封泄漏的流体 总量,是评定密封性能的主要参数。泄漏率的大小取决于许多因素.其中主要的是密 封运行时的摩擦状态。在没有液膜存在而完全由固体接触情况下机械密封的泄漏率 接近为零.但通常是不允许在这种摩擦状态下运行,因为这时密封环的磨损率很高。 为了保证密封具有足够寿命,密封面应处于良好的润滑状态。因此必然存在一定程 度的泄漏.其最小泄漏率等于密封面润滑所必需的流量,这种泄漏是为了在密封面间 建立合理的润滑状态所付出的代价。所有正常运转的机械密封都有一定泄漏,所谓 “零泄漏”是指用现有仪器测量不到的泄漏率,实际上也有微量的泄漏。
③许用[ρcv]值。许用[ρcv]值是极限值除以安全系数获得的数值。所谓极限[ρcv] 值是指密封失效时达到的它是密封技术发展水平的重要标志。不同材料组合具有不 同的许用[ρcv]值。表2-6为常用材料组合的许用[ρcv]值,它是以密封端面磨损速 度小于或等于0.4μm/h前提的试验结果。 表2-6常用材料摩擦副材料的许用[ρcv]值
密封形式 内装式 外装式 —般介质 0.3~0.6 低黏度介质 0.2~0.4 0.15~0.4 高黏度介质 0.4~0.7
(2) 端面摩擦热及功率消耗机械密封在运行过程中,不仅摩擦副因摩擦生热,而 且旋转组件与流体摩擦也会生热。摩擦热不仅会使密封环产生热变形而影响密封性 能,同时还会使密封端面间液膜汽化,导致摩擦工况的恶化,密封端面产生急剧磨 损,甚至密封失效。 机械密封的功率消耗包括密封端面的摩擦功率和旋转组件对流体的搅拌功率。一般 情况后者比前者小得多,而且难以准确计算,通常可以忽略,但对于高速机械密封, 则必须考虑搅拌功率及其可能造成的危害。 (3)ρv值 密封端面的摩擦功率同时取决于压力和速度,因此,工程上常用两者的 乘积表示,即ρv值。ρv值常被用作选择、使用和设计机械密封的重要参数。但实 际中由于所取的压力不同,值的含义和数值就有所不同,即表达机械密封的功能特 性不同。 ① 工况ρv值。工况ρv值是密封腔工作压力ρ与密封端面平均线速度v的乘积, 说明机械密封的使用条件、工况和工作难度。密封的工况仰值应小于该密封的最大 允许工况抑值。 ②工作ρcv值。工作值是端面比压心与密封端面平均线速度u的乘积,表征密封端面 实际工作状态。端面的发热量和摩擦功率直接与久〃值成正比,该值过大时会引起 端面液膜的强烈汽化或者使边界膜失向(破坏了极性分子的定向排列)而造成吸附 膜脱落,结果导致端面摩擦副直接接触产生急剧磨损。
机械密封的优缺点

机械密封的优缺点1、优点(1)结构可靠,泄漏量可以限制到很少,只要主密封面的表面粗糙度和平直度能保证达到要求,只要材料耐磨性好,机械密封可以达到很少泄漏量,甚至肉眼看不见泄漏。
(2)寿命长。
在机械密封中,主要磨损部分是密封摩擦副端面,因为密封端面的磨损量在正常工作条件下不大,一般可以连续使用1~2年,特殊场合下也有用到5~10年。
(3)运转中无需调整。
由于机械密封靠弹簧力和流体压力使摩擦副贴合,在运转中自动保持接触,装配后就不用像普通软填料那样需调整压紧。
(4)具有耐耐振性。
在转速为3000r∕min下最大振幅不超过0.05mm使用PV值不断提高。
(5)功率损失小。
填料密封是靠盘根的压紧在轴上或轴套上起作用的。
填料密封与轴直接摩擦,填料压的越紧摩擦力就越大、消耗功率也就越大。
而机械密封的摩擦是处于半液摩擦状态,摩擦系数非常的小,机械密封的功率损失是填料密封的10-50%o(6)波纹管密封轴或轴套不受磨损,对旋转轴的振摆和轴对壳体的偏斜不敏感。
(7)适用范围广。
当介质易燃、易爆、有毒有害时,采用机械密封可保证密封。
它还适用于高温、低温、高压、真空各种转速的及腐蚀介质的设备密封。
2、缺点(1)如结构比填料密封复杂,加工精度要求高,并要求一定的安装技术等,特别是干气密封的安装要求更高。
而且密封技术发展的很快,新技术不断出现给我们维修带来了新的课题。
(2)结构复杂、拆装不便。
与其它密封比较,机械端面密封的零件数目多,要求精密,结构复杂。
特别是在装配方面较困难,拆装时要从轴端抽出密封环,必须把机器部分(联轴器)或全部拆卸。
这一问题目前己作了某些改进,例如采用拆装方便并可保证装配质量的剖分式和集装式机械密封等。
机械密封技术规格书

机械密封技术规格书编制:审核:批准:×年×月×日一、总则1.1 项目概述:本技术规格书适用于XXX工作。
1.2 本技术要求内容包括机械密封的设计、结构、性能、制造、安装和试验等方面,本技术要求提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准和规范的条文,卖方应保证提供符合本技术要求和相关国际国内标准的优质产品及其相应的服务。
1.3 乙方对甲方在本技术规格书上所提条文没有异议,甲方可以认为乙方提出的产品完全符合本技术规格书的要求(即无偏差);1.4 本技术规格书所使用的标准,如遇与乙方所执行的标准发生矛盾时,按较高标准执行;1.5 乙方需提供高质量的备件,确保是国内领先技术水平、成熟可靠的产品;二、项目描述及要求2.1 本次项目主要内容:XXX2.2 项目要求:在合同签定后,甲方有权因规范、标准、规程发生变化而提出一些补充要求,具体内容双方共同商定。
三、设计依据(现场条件)四、机械密封相关标准4.1机械密封制作应遵守下述(但不限于)标准、规范和规定(最新版);如卖方采用自身工厂标准,应将相关标准提交招标方认可。
五、机械密封设计、制造及材料5.1 供应商要求5.1.1要求供应商有专业的机械密封技术工程师不少于5名,并列出技术工程师姓名、专业、工作年限、职称、职务、业绩等供参考;有对进口机封的设计、国产化改造相关业绩近一年内不少于3项,并附合同复印件。
5.1.2能够为客户设计制作各种非标机械密封件,并为客户提供现场机械密封产品的改进、测绘、维修技术方案等技术支持。
5.1.3有专业的机械密封维修部门,具备齐全的机封制造、试验与检验的设备设施,可提供各种进口机械密封维修改造,并对机械密封进行国产化设计制造。
5.2选型、设计、制造及材料选择遵照上述标准执行。
5.3机械密封最低性能要求5.3.1泄漏量当被密封介质为有毒、有害、易燃、易爆性质时,不允许有可见泄漏。
机械密封端面摩擦特性参数及测试技术

机械密封端面摩擦特性参数及测试技术机械密封端面摩擦特性是决定机械密封工作寿命和密封性能好坏的关键因素,机械密封端面摩擦特性参数的测试是机械密封试验研究和产品质量评价中的关键技术。
分析了表征机械密封端面摩擦特性的常用性能参数,介绍了端面摩擦扭矩、端面磨损量、端面温度、端面流体膜厚及端面流体膜压的测试技术,探讨了常用测试方法的优缺点及难点。
指出了消除测试过程中外部较大的干扰信号是提高测试精度和可靠性的关键,而基于传感技术的计算机数据采集与处理是机械密封端面摩擦特性参数测试技术的发展趋势。
机械密封端面摩擦特性长久以来都是机械密封研究人员最为关心的问题之一,因为它是决定机械密封工作寿命和密封性能好坏的关键因素。
近年来,机械密封的端面摩擦特性研究虽然已取得了很大的进展,但由于密封结构和工况千差万别,至今尚未形成完整的理论体系,学术界对密封摩擦机制的分析理解还很不一致。
机械密封端面摩擦特性试验研究无论对密封理论体系的建立,或是对指导产品的设计、检验和使用均十分必要,而端面摩擦特性参数的测试则是试验中的关键技术。
1、表征机械密封端面摩擦特性的常用性能参数与机械密封端面摩擦特性直接有关的性能参数主要包括端面摩擦扭矩、端面磨损量、端面温度、端面流体膜厚及膜压。
1.1、端面摩擦扭矩端面摩擦扭矩是影响机械密封工作性能的重要参数,决定着机械密封运转时的摩擦功耗、端面磨损量、摩擦发热量以及端面温度等工作参数。
随着机械密封技术的不断发展,机械密封的使用量越来越大,提高机械密封的密封性能和工作寿命,一直是人们密切关注的问题。
端面摩擦扭矩反映了机械密封端面状况,端面摩擦扭矩大,磨损相对增大,工作寿命缩短。
端面摩擦扭矩的测试与控制,对保证机械密封性能和延长使用寿命,有着十分重要的现实意义。
1.2、端面磨损量磨损量是指机械密封运转一定时间后,密封端面在轴向长度上的磨损值。
机械密封摩擦副端面的磨损是运转过程中发生摩擦的必然结果,也是机械密封的主要失效形式,因此,端面磨损是影响机械密封正常工作寿命的重要因素。
机械密封漏量的经验法则

机械密封泄漏量性能要求及使用寿命1.泄漏量1)泄漏量的测定方法按照HG2099的规定。
其泄漏量为该压力下当量液体的体积,规定为:轴径大于80mm时,泄漏量不大于10mL/h;轴径不大于80mm 时,泄漏量不大于8mL/h。
单端面机械密封只对泄漏量做定性检查,以肉眼观察无明显气泡为合格。
2)被密封介质为液体时,平均泄漏量规定同上。
2.磨损量的大小要满足釜用机械密封使用期的要求,一般情况下,运转100h,软质材料的密封环磨损量不大于0.03mm。
3.在选型合理、安装使用正确的情况下,被密封介质为中性、弱腐蚀其他或液体时,机械密封的使用期一般为8000h;被密封介质为较强腐蚀性或易挥发气体时,机械密封的使用周期一般为4000h,特殊情况不受此限。
机械密封许允泄漏量、失效时泄漏量的经验法则一.中国1.泵用机械密封归类和基本属性:轻型机械密封、被密封介质为液体。
2.引用标准:JB/T 4127.1- 1985/1999 《机械密封技术条件》范围,本标准规定了轻型机械密封产品质量有关技术,性能,试验,验收,标志及包装等技术条件。
本标准适用于离心泵及其它类似旋转式机械的机械密封。
其工作参数一般为:工作压力为0~1.6MPa (指密封腔内实际压力) 工作温度为–20~80℃(指密封腔内实际温度) ;轴 (或轴套) 外径为10~120mm;转速不大于 3000r/min;介质为清水、油类和一般腐蚀性液体。
3.机械密封性能要求:1)泄漏量,当被密封介质为液体时,平均泄漏量规定如下:轴(或轴套)外径大于50mm 时,不大于5mL/h;轴(或轴套)外径不大于 50mm 时,不大于3mL/h. 对于特殊条件及被密封介质为气体时不受此限。
2)在试验台上试验条件:常温清水、转速不大于3000 r/min、封腔压力2.0MPa。
二.日本(JIS B2405-1977/2003):介质为液体时泄漏量不大于3mL/h对于特殊条件及被密封介质为气体时不受此限。
机械密封的安装和使用

机械密封的安装和使用一、密封失效原因中哪些属于使用不当在“问答178"的“密封失效原因统计”表37中属“介质本身”的原因占25 .7%,就是说它们是介质及工作条件不好,直接属于使用方面的原因。
例如介质腐蚀、介质中含有固体颗粒、介质中有结晶析出、介质粘度太大,以及泵抽空等。
此外,由于各种原因造成的泵振动过大之类的“泵的问题”和“安装问题”,实质上仍然是使用方面的原因。
在“问答178“的表中,“铺助设施”例如“没有冲洗”、‘冲洗管堵塞”以及“冷却水结垢”等也是使用方面的原因。
如此说来,除了密封本身方面的原因外其余65.5%的失效原因都是“使用不当”。
上述统计是I982年的数字,近几年使用技术水平有所提高,但是因使用不当引起的密封失效仍不低于50%。
这个数字可能让人大吃一惊,但事实如此,只是没有引起人们的注意。
二、泵的振动是怎样影响密封性的由于制造和安装精度等原因,所有的离心泵都存在着振动,所有的密封端面和轴中心都存在一定的垂直度误差。
垂直度误差使动环旋转时产生一轴向振摆,振摆的幅度取决于误差的大小,而其频率则取决于弹簧刚度及动环组件的质量,与泵的转速无关。
经对国产104和B104型机械密封初步估算,其振摆频率在1000~1800次/分,也就是说这两种型号的密封用在1475r/min时追随性尚可,用在2950r/min 时追随性较差。
泵振动的原因很多,振动原因主要为转子不平衡,也有其它原因,例如泵和电机不同心、滚动轴承故障等。
振动原因不同振动频率也不同,绝大部分泵振动频率等于工作转速,而振动幅度差别很大,从轴承箱表面测到的最大振幅不能大于0.06mm,超过该值就要停泵处理。
振动可分解为三个方向,即垂直、水平和轴向,其中以轴向振动对密封的危害最大。
大多数工艺流程泵的转速在2950r/min左右,由于密封的追随性较差,泵的振动加剧了动静环的分离。
瞬间的分离在液膜压力作用下致使密封面开启,出现大量泄漏,这种情况在平衡型密封中更容易发生。
机械密封主要参数

机械密封主要参数机械密封主要参数端面液膜压力为了保证端面间有一层稳定的液膜(半液体润滑或边界润滑膜),就必须控制端面承受的载荷W,而W值究竟多大合适,是与液膜承载能力密切相关的。
与平面轴承类似,机械密封端面间隙液膜的承载能力,称为端面液膜的压力,它包括了液膜的压力和液膜动压力两部分。
液膜静压力当密封间隙有微量泄漏时,由于密封环内、外径处的压差促使流体流动,而流体通过缝隙受到密封面的节流作用,压力将逐步降低。
假设密封端面间隙内流体流动的单位阻力沿半径方向是不变的,则流体沿半径r的压力降呈线性分布(图7-11)。
例如中等粘度的流体(如水),其沿径向的压力就近似于三角形分布,低粘度液体(如液态丙烷等)则呈凹形,高粘度液体(如重油)压力缝补呈凸形。
端面间的液膜静压力是力图使端面开启的力,设沿半径方向r处,宽度为dr的环面积上液膜静压力为pr,设密封流体压力为p,则作用于密封面上的开启力R为液膜动压力机械密封环端面即使经过精细的研磨加工,在微观上仍然存在一定的波度,当两个端彼此相对滑动时,由于液膜作用会产生动压效应。
有纳威斯托克斯(Novier-Stokes)方程:如图7-13,设二平面间存在一定的斜楔,随着间隙减小,液压增大,而斜楔的进出口处压差为零,故有—液压最大值,对应该处的液膜厚度为h0,则流量关于机械密封液体动压效应的形成和分析,有许多不同的观点和力学模型。
由于密封面微观状态的影响因素很多,以及实验技术的困难,目前还不能提出能直接用于设计计算的公式。
但对于机械密封设计的正确分析,具有一定的理论指导意义。
载荷系数机械密封的载荷系数是在摩擦副轴向力平衡下,各项轴向力与密封上最大介质压力的比值,它反应了各种轴向力的作用和大小。
载荷系数也可以用面积比来表示:介质压力作用在补偿环上使之与非补偿环趋于闭合的有效作用面积A e与密封端面面积A之比为载荷系数K.载荷系数的大小,表示介质压力加到密封端面的载荷程度,通常可通过在轴或轴套上设置台阶,减小A e改变K值。
密封技术条件与密封结构设计

第六篇
密封技术条件与密封结构设计
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
求
()机械密封静压试验其试验压力为产品最高使用压力的 " % !) 倍,持续 "#&*+,其指标为轴(或轴套)外径
和
试 大于 )#&& 时,折算泄漏量不大于 )&,-$;轴(或轴套)外径不大于 )#&& 时,折算泄漏量不大于 ’&,-$。
验
))机械密封新产品必须按 ./- 0 "(!!"—"11’ 进行型试试验、出厂前的静压试验和运转试验
:3 或 ;3。
零
%)静止环密封端面对与静止环辅助密封圈接触的外圆的垂直度,旋转环密封端面对与旋转环辅助密封
件
圈接触的内孔的垂直度,均按 9"# $ &&3% 的 ( 级公差。
技
<)石墨环、填充聚四氟乙烯环及组装的旋转环、静止环要做水压检验。其检验压力为工作压力的 & ) ’<
术
倍,持续 &+478 不应有渗漏。
")安装机械密封部位的轴(或轴套)的径向圆跳动、表面粗糙度和外径尺寸公差按下表规定。
轴(轴套)外径- & & "# 4 )#
6 )# 4 "!#
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械密封磨损量和使用寿命的规定
(1)磨损量
磨损量是指离心泵机械密封运转一定时间后,密封端面在轴向长度上的磨损值。
磨损量的大小要满足机械密封使用寿命的要求。
JB/T4127.1-1999《机械密封技术条件》规定以清水为介质进行试验,运转1OOh软质材料的密封环磨损量不大于0.02mm。
磨损率是材料是否耐磨,即在一定的摩擦条件下抵抗磨损能力的评定指标。
当发生粘着磨损或磨粒磨损时,材料的磨损率与材料的压缩屈服极限或硬度成反比,即材料越硬越耐磨。
而有一类减摩材料则是依靠低的摩擦因数,而不是高硬度获得优良的耐磨特性。
例如具有自润滑性的石墨、聚四氟乙烯等软质材料就具有优良的减摩特性,在某些条件下,甚至比硬材料有更长的寿命。
在轻烃等易产生干摩擦的介质环境中,软密封环选用软质的高纯电化石墨就比选用硬质碳石墨能获得更低的磨损率。
值得注意的是,材料的磨损特性并不是材料的固有特性,而是与磨损过程的工作条件(如载荷、速度、温度)、配对材料性质、接触介质性能、摩擦状态等因素有关的摩擦学系统特性。
合理选择配对材料,提供良好的润滑和冷却条件是保证机械密封摩擦副获得低磨损率的重要措施。
2)使用寿命
离心泵机械密封的使用寿命是指机械密封从开始工作到失效累积运行的时间。
机械密封很少是由于长时间磨损而失效的,其他因素则往往能促使其过早地失效。
因此,密封的寿命应视为一个统计学量,难以得到精确值。
密封的有效工作时间在很大程度上取决于应用情况。
JB/T4127.1-1999《机械密封技术条件》规定:在选型合理、安装使用正确的情况下,被密封介质为清水、油类及类似介质时,机械密封的使用期一般不少于l年;被密封介质为腐蚀性介质时,机械密封的使用期一般为六个月到l年;但在使用条件苛刻时不受此限。
JB/T8723-2008《机械密封》规定:在选型合理、安装使用正确、系统工作良好、设备运行稳定的情况下,机械密封使用期不少于8000h,特殊工况例外。
为延长机械密封使用寿命应注意以下几点:①在密封腔中建立适宜的工作环境,如有效地控制温度,排除固体颗粒,在密封端面间形成有效液膜(在必要时应采用双端面密封和封液);②满足密封的技术规范要求;③采用具有刚性壳体、刚性轴、高质量支承系统的机泵。