人工智能之遗传算法论文含源代码
遗传算法毕业论文

目录1 引言 (1)2 问题描述 (2)3 基于遗传算法TSP算法 (2)3.1 基于遗传算法的TSP算法总体框架 (2)3.2算法的详细设计 (3)3.2.1 解空间的表示方式 (3)3.2.2 种群初始化 (4)3.2.3适应度函数 (4)3.2.4选择操作 (4)3.2.5交叉操作 (5)3.2.6变异操作 (6)3.2.7进化逆转操作 (6)3.3 实验结果分析 (7)4 基于模拟退火算法的TSP算法 (10)4.1 SA算法的实现过程 (10)4.2 算法流程图 (10)4.3模拟退火算法的实现过程 (10)4.4实验结果 (11)5 对两种算法的评价 (14)5.1遗传算法优缺点 (14)5.2 模拟退火算法的优缺点 (15)6结语 (15)参考文献 (17)附录: ...............................................................................................................错误!未定义书签。
廊坊师范学院本科生毕业论文论文题目:基于遗传算法与模拟退火算法的TSP算法求解10大城市最短旅途论文摘要:TSP问题为组合优化中的经典的NP完全问题.本论文以某旅行社为中国十大旅游城市--珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海制定最短旅途为例,分别利用基于遗传算法的TSP算法与基于模拟退火算法的TSP算法求解10大城市旅游路线问题.本论文给出了遗传算法与模拟退火算法中各算子的实现方法,并展示出求解系统的结构和求解系统基于MATLAB的实现机制.利用MATLAB软件编程,运行出结果,并对基于遗传算法的TSP算法结果与基于模拟退火算法的TSP算法的结果进行比较,描述其优缺点,并选择最为恰当的TSP算法,实现最短旅途的最优解.关键词:遗传算法;模拟退火算法;TSP;最短路径;Title:TSP Algorithm Based on Genetic Algorithm or Simulated Annealing Algorithm for Solving the Shortest Journey of 10 CitiesAbstract:TSP problem is a classic NP problem about combinatorial optimization.This article takes a travel agency looking for the shortesttrip of ten tourist cities in China-Zhuhai,Xi'an,Hangzhou,Lhasa,Beijing,Lijiang,Kunming,Chengdu,Luoyang and Weihai forinstance,and solves this problem by TSP algorithm based on geneticalgorithm and simulated annealing algorithm.The article gives theimplementations of every operator of genetic algorithm and simulatedannealing algorithm and demonstrates the architecture and theimplementation mechanism of the solving system based on MATLAB.Iprogram and operate the results by MATLAB software,and compare theresults based on genetic algorithm and simulated annealingalgorithm.And describe their advantages and disadvantages so thatchoose the most appropriate TSP algorithm to achieve the optimalsolution for the shortest path.Keywords:genetic algorithm;simulated annealing algorithm;TSP;the shortest path1 引言TSP问题为组合优化中的经典问题,已经证明为一NP完全问题[1],即其最坏情况下的时间复杂性随着问题规模的扩大,按指数方式增长[2],到目前为止不能找到一个多项式时间的有效算法.TSP问题可描述为:已知n个城市相互之间的距离,某一旅行商从某个城市出发访问每个城市一次且仅一次,最后回到出发城市,如何安排才使其所走路线最短.TSP问题不仅仅是一个简单的组合优化问题,其他许多的NP完全问题可以归结为TSP问题,如邮路问题、装配线上的螺帽问题和产品的生产安排问题等,使得TSP问题的有效求解具有重要的意义.本文中的TSP算法主要采用遗传算法与模拟退火算法.遗传算法是一种进化算法,其基本原理是仿效生物界中的“物竞天择,适者生存”的演化法则[3].遗传算法把问题参数编码为染色体,再按照所选择的适应度函数,利用迭代的方式进行选择、交叉、变异以及进化逆转等运算对个体进行筛选和进化,使适应值大的个体被保留,适应值小的个体被淘汰[4],新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至满足条件,最后留下来的个体集中分布在最优解的周围,筛选出最优个体作为问题的解.模拟退火算法的出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性[5],该算法是一种优化算法,其物理退火过程由三部分组成,分别为:加温过程、等温过程、冷却过程.其中,加温过程对应算法设定初温,等温过程对应算法的Metropolis[6]抽样过程,冷却过程对应控制参数的下降.这里能量的变化就是目标函数,要得到的最优解就是能量最低态[7].Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis 准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱.2 问题描述本案例为某旅行社为中国十大旅游城市,分别为珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海,根据全程路径最短为目的,制定最优的旅游顺序依次游玩这十个城市.这类问题就由TSP算法来解决,寻找出一条最短遍历这10个城市的路径.利用google地图找到城市坐标,下表为这十个城市的位置坐标如表2-1所示.表2-1 10个城市的位置坐标3 基于遗传算法TSP算法3.1 基于遗传算法的TSP算法总体框架TSP问题的遗传算法包括编码设计、种群初始化、适应度函数选择、终止条件设定、选择操作设定、交叉操作设定以及变异操作设定和进化逆转操作.为简化TSP问题的求解,假设每个城市和其它任意一个城市之间都以欧氏距离[8]直接相连.遗传算法TSP问题的流程图如图2-1所示.N图2-1算法流程框架图3.2 算法的详细设计3.2.1 解空间的表示方式遗传算法对解空间的表示大多采用二进制编码形式,但是二进制编码方式不适合TSP问题的解的表示,因为它要求特殊的修补算子[9]来修复变化算子所产生的非法路径(即不可行路径).给出城市编号,用十进制数编码来表示解更合适,例如:近邻表示、次序表示和路径表示等等.这里采用了最简单的路径表示法.它是最自然、最接近人类思维的表示法.因此对十大旅游城市按照珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海顺序依次编号为1,2,3,4,5,6,7,8,9,10,例如,下面的路径(闭合的):5→1→2→4→3→6→7→9→8→10→5表示从城市5出发,经过1,2,4,3,6,7,9,8,10最后回到城市5的一条路径,可以自然地用一维数组来表示:(5,1,2,4,3,6,7,9,8,10)10个旅游城市的TSP问题,如果将种群规模设为200,则解空间就用二维数组来表示:Path[200][10].3.2.2 种群初始化种群的规模选择应适当,盲目的增大种群规模不能使算法得到改进,反而大大增加了计算的开销.10个城市TSP 问题,可以选择小规模的种群(例如200),种群初始化时,先产生1,2,…,10的一条规则路径,然后在这条路径中随机选两个数,将它们交换位置,这样做若干次(本文采用200次),保证这条路径变成了一条随机的路径.以这条随机路径为基础,对一些随机的位,做两两交换,这样产生了一个个体;同样地产生种群里其它的个体.3.2.3 适应度函数适应度表明个体或解的优劣性[10],不同的问题,适应度函数的定义方式也不同,本文设12610| k ||k ||k k 为一个采用整数编码的染色体,i j k k D 为城市i k 到城市j k 的欧氏距离,则该个体的适应度为[11]:1111i j n n k k k k i fitness DD -==+∑ (1)即适应度函数为恰好走遍10个城市,在回到出发城市的总距离的倒数.优化的目标就是选择适应度函数值尽可能大的染色体,适应度函数值越大的染色体越优质,反之越劣质.求得种群中所有个体的适应值后,将适应值最大的个体保存起来,到演化完毕时,这个个体就是最后要求的最优解.3.2.4 选择操作选择操作的目的是为了从当前群体中以一定的概率选择优良个体到新群体中,将选择算子作用于群体,从而使优化的个体有机会直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代;个体被选中的概率与适应度值有关,适应度值越大,被选中的概率也就越大[12],而适应度值越大的染色体越优质.本案例选择轮盘赌法,即基于适应度比例的选择策略,个体i 被选中的概率为:1ii N jj F p F==∑ (2) 其中,i F 为个体i 的适应度值;N 为种群个体数目.3.2.5 交叉操作交叉操作是遗传算法中最主要的遗传操作,通过交叉操作可以得到新一代个体,新个体结合了其父辈个体的特性,交叉体现了信息交换的思想.利用不同映射杂交,确定交叉操作的父代,将父代样本两两分组,每组重复以下过程:(1)产生两个[1,10]区间的随机整数1r 和2r ,确定两个位置,对两个位置的中间数据进行交叉,如14r =,27r =5 1 2 4 367 98 1010 6 2 3 5 8 9 4 1 7交叉为:* 1 2 3 5 8 9 * * 1010 * 2 4 3 6 7 * 1 *(2)交叉后,对同一个个体中有重复的城市编号,不重复的数字保留,有冲突的数字(带*的位置)采用部分映射的方法消除冲突,即利用中间段的对应关系进行映射.结果为:4 1 2 35 8 967 1010 5 2 4 3 6 7 8 1 9交叉是希望不同的个体在产生下一代时,能够结合各自的优势基因,产生更好质量的下一代.3.2.6 变异操作变异可以看作是外界对种群的影响.变异是为了引入新的因素,希望个体在外界的作用下,能够实现自我优化,生好的基因.将变异算子作用于群体.即是对群体中的个体串的某些基因位置上的基因值作变动.变异算子采用了简单的倒序变换,以10城市为例,随机的产生两个小于10的整数,对某个个体进行分割,假设14r=,27r=,将分割段倒序并放回原来的位置即可,如下数组所示:5 1 2 4 367 98 10得到的新解为:5 1 2 7 36 4 9 8 10由于这种变异算子仍能保持个体中的路径片段,即倒序前后这个切割段的路径是一样的,只是两端点与整个路径的连接颠倒了,这使得变异不是漫无边际,而是有所取舍的.这种简单反序可以保证后代仍然是一条合法途径.3.2.7进化逆转操作为了改善遗传算法的局部搜索能力,在选择、交叉、变异之后引进连续多次的进化逆转操作,这里的“进化”是指逆转算子的单方向性[13],即只有经逆转后,适应度值有所提高的才接受下来,否则逆转无效.产生两个[1,10]区间内的随机整数1r和2r,确定两个位置,将其对换位置,例如14r=,27r=5 1 2 4 367 98 10进化逆转后为:5 1 2 7 36 4 9 8 10对每个个体进行交叉变异,然后代入适应度函数进行评估,x选择出适应值大的个体进行下一代交叉和变异以及进化逆转操作循环操作:判断是否满足设定的最大遗传代数MAXGEN[14],不满足则跳入适应度值计算;否则结束遗传操作.3.3 实验结果分析1-10的十个数字按顺序为珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海的编号.利用各城市坐标构成的102的矩阵及初始化随机值和DrawPath函数画出闭合路径图,为优化前的随机路线轨迹图,如图3-1所示:图3-1随机路线轨迹图图中三角标注的数字6代表起点,依次按照箭头方向遍历,最终再次回到起点6.初始种群中的一个随机值:6—>3—>7—>8—>5—>1—>2—>4—>9—>10—>6总距离:165.2494对照1-10数字编号所代表的的城市,随机路线为:丽江—>杭州—>昆明—>成都—>北京—>珠海—>西安—>拉萨—>洛阳—>威海—>丽江.优化后的最优路线图如图3-2所示:图3-2 最优路线图最优解:4—>6—>7—>1—>3—>10—>5—>9—>2—>8—>4总距离:77.1532即最优路线如下所示:拉萨—>丽江—>昆明—>珠海—>杭州—>威海—>北京—>洛阳—>西安—>成都—>拉萨此遗传算法在解决TSP问题过程中的优化迭代过程如下图3-3所示:图3-3 优化过程其中横坐标表示迭代次数,纵坐标为优化过程中路线长度.由该优化过程图可知,优化前后路径长度有了很大的改进,20代以后路径长度基本上已经保持不变了,可以认为是最优解了.总距离由原来的165.2494变为77.1532,降低为原来的46.69%,表明利用遗传算法解决TSP问题可以起到较好的作用.4 基于模拟退火算法的TSP 算法 4.1 SA 算法的实现过程 4.2 算法流程图4.3模拟退火算法的实现过程 (1)控制参数的设置需要设置的主要控制参数有降温速率q 、取初始温度0T 足够大,令T =0T ,任取初始解1S ,确定每个T 时的迭代次数,即Metropolis 链长L ,如图表4-1所示.表4-1参数设定(2)初始解对于10个城市的TSP 问题,得到的解为1~n 一个排序,其中每个数字为对应城市的编号,10个城市的TSP 问题{1,2,3,4,5,6,7,8,9,10},则|1|2|3|4|5|6|7|8|9|10就为一个合法解,采用随机排列的方法产生一个初始解1S . (3)解变换生成新解通过对当前解1S 进行变换,产生新路径的数组即新解,这里采用的变换是产生随机数的方法来产生将要交换的两个城市,用二邻域变换法[15]产生新的路径,即新的可行解2S .例如n=10时,产生两个[1,10]范围内的随机整数1r 和2r 确定两个位置,将其对换位置,如1r =4, 2r =75 1 2 4 367 98 10得到的新解为:5 1 2 7 36 4 9 8 10(4)Metropolis 准则若路径长度函数为()f S ,则当前解的路径为1()f S ,新解的路径为2()f S ,路径差为df =2()f S -1()f S [16],则Metropolis 准则为[17]:1exp()P df T⎧⎪=⎨-⎪⎩ (3)若0df <,则接受2S 作为新的当前解,即1S 2S =;否则计算2S 的接受概率exp(/)df T -,即随机产生的(0,1)区间上均匀分布的随机数rand ,若exp(/)df T rand->[18],也接受2S 作为新的当前解,1S 2S =;否则保留当前解1S .(5)降温利用降温速率q 进行降温,即T=qT ,则T 小于结束温度,则停止迭代输出当前解1S 为最优解,结束程序,否则按衰减函数衰减T 后逐渐降低控制温度,重复Metropolis 过程,继续迭代,直至满足结束准则,求出最优解. 4.4实验结果利用各城市坐标构成的102⨯的矩阵及初始化随机值和DrawPath 函数分别画出优化前的随机路径轨迹图与优化后的最优闭合路径图,以及优化过程图.并利用计时器记录了运行结果所花费的时间.为优化前的随机路线轨迹图,如图4-2所示.图4-2随机路线轨迹图初始种群中的一个随机值:8—>1—>7—>4—>3—>6—>10—>2—>9—>5—>8总距离:149.0742优化后的最优路线轨迹图如图4-3所示.图4-3 最优路线轨迹图最优解:9—>2—>8—>4—>6—>7—>1—>3—>10—>5—>9总距离:77.1532即最优路线如下所示:洛阳—>西安—>成都—>拉萨—>丽江—>昆明—>珠海—>杭州—>威海—>北京—>洛阳本次运行的时间如下所示:Elapsed time is 12.232553 seconds.优化过程如图4-4所示:图4-4优化过程由图4-4可以看出,优化前后的路径长度得到很大的改进,由优化前的149.0742变为77.1532,变为原来的51.75%,50代以后路径长度基本上已经保持不变了,可以认为是最优解了.5 对两种算法的评价5.1遗传算法优缺点遗传算法优点:(1)对可行解表示的广泛性;(2)群体搜索特性;(3)不需要辅助信息;(4)内在启发式随机搜索特性;(5)遗传算法在搜索过程中不容易陷入局部最优,即使在所定义的适应度函数是不连续的,非规则的或有噪音的情况下,也能以很大的概率找到全局最优解;(6)遗传算法具有固有的并行性和并行计算能力;(7)遗传算法具有可扩展性,易于同别的技术混合.遗传算法缺点:(1)编码不规则或编码存在表示的不规则性;(2)单一的遗传算法编码不能全面的将优化问题的约束表示出来;(3)遗传算法通常的效率比比其他传统的优化方法低;(4)遗传算法容易出现过早收敛;(5)遗传算法对算法的精度,可信度,计算复杂性等方面,还没有有效的定量分析方法.5.2 模拟退火算法的优缺点模拟退火法优点:(1)它能够处理具有任意程度的非线性、不连续性、随机性的目标函数;(2)目标函数可以具有任意的边界条件和约束;(3)比其他线性优化方法,SA的编程工作量小,且易于实现;(4)统计上可以保证找到全局最优解.模拟退火算法缺点:(1)找到最优解需要耗费非常多的时间;(2)相对于其他一些技术对某一个具体问题的求解需要更困难的参数调整;(3)使用不当致使降温过快,导致模拟退火变为了模拟淬火(SQ),而SQ是无法从统计学上保证找到最优解的.6结语遗传算法利用自然界的“物竞天择、适者生存”的演化法则,把问题参数编码为染色体,再利用迭代的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体.实践证明,遗传算法在搜索优秀解的过程中模拟生物遗传,实现优中选优的过程,在解空间中快速收敛到优秀解.遗传算法对于解决TSP问题等组合优化问题具有较好的寻优性能.模拟退火算法是利用自适应启发式概率性搜索的算法,可以用以求解不同的非线性问题,对不可微甚至不连续的函数优化,能以较大的概率求得全局最优解,并且能处理不同类型的优化设计变量(离散的,连续的,混合型的),不需要任何的辅助信息,对目标函数和约束函数没有任何要求.利用Metropolis算法适当地控制温度的下降过程,在优化问题中具有很强的竞争力,但是其优化过程效率略低于遗传算法.因此,解空间较小的情况下,遗传算法与模拟退火算法均可采用,但是解空间较大时,考虑结果运行时间,应采用遗传算法.参考文献[1]毕晓君.信息智能处理技术[M].北京:电子工业出版社.2010.[2]储理才.基于MATLAB的遗传算法程序设计及TSP问题求解[J].集美大学学报:2001,6(01):14-19[3]代桂平,王勇,侯亚荣.基于遗传算法的TSP问题求解算法及其系统[J].微计算机信息,2010(04):15-16,19[4]Negnevistsky,M.顾力栩,沈晋惠译.人工智能——智能系统指南[M].北京:机械工业出版社.2010.[5]任春玉.基于混合遗传算法的TSP问题优化研究[J].哈尔滨商业大学学报.2007.[6] Michalewicz Z. Genetic Algorithms +Data Structure=Evolution Programs.Springer-Verlag,Berlin. 2011[7] 易敬,王平,李哲. 基于遗传算法的TSP问题研究[J]. 信息技术,2006,30(7): 110-112.[8]邓辉文.离散数学[M].北京:清华大学出版社.2006.[9]刘雁兵,刘付显.基于遗传算法的TSP问题求解与仿真[J].电光与控制.2007.[10]张春霞,王蕊.基于遗传算法求解TSP问题的算法设计[J].安阳工学院学报.2007.[11]郑阿奇.MATLAB 实用教程[M].北京:电子工业出版社.2004.[12]李飞,白艳萍.用遗传算法求解旅行商问题[J].中北大学学报.2007.[13]翟梅梅.基于交叉算子改进的遗传算法求解TSP问题[J].淮南师范学院学报.2009.[14]Merz P.A comparison of recombination operators forthe traveling salesmanproblem[A].Proceedings of the Genetic and Evolutionary Conference.2007 [15] 周涛. 基于改进遗传算法的TSP问题研究[J]. 微电子学与计算机,2006,23(10): 104-107.[16]Jung S,Moon B R. Toward Minimal Restriction of Genetic En-coding andCrossovers for the Two-Dimensional Euclidean TSP [J].IEEE Transactions onEvolutionary Computation,2011,6 ( 12) :557~565[17]Tsai Cheng-Fa ,Tsai Chun-Wei ,Yang Tzer . A Modified Mul-tiple-Searching Method to Genetic Algorithms for Solving Travel-ing Salesman Problem[J].IEEE Transactions on Systems ,Man and Cybernetics ,2011 ,3(10) :6~12[18] Write A H. Genetic Algorithms for Real Parameter Optimization.FoundationofGeneticAlgorithms.Sanmateo,GA.2010:205-218附录:遗传算法的TSP方法代码:1 种群初始化函数InitPop的代码:%% 初始化种群%输入:% NIND:种群大小% N:个体染色体长度(这里为城市的个数)%输出:%初始种群function Chrom=InitPop(NIND,N)Chrom=zeros(NIND,N);%用于存储种群for i=1:NINDChrom(i,:)=randperm(N);%随机生成初始种群end2 种群个体的适应度函数Fitness的代码: %% 适配值函数%输入:%个体的长度(TSP的距离)%输出:%个体的适应度值function FitnV=Fitness(len)FitnV=1./len;3选择操作函数的Select的代码:%% 选择操作%输入%Chrom 种群%FitnV 适应度值%GGAP:代沟%输出%SelCh 被选择的个体function SelCh=Select(Chrom,FitnV,GGAP) NIND=size(Chrom,1);NSel=max(floor(NIND*GGAP+.5),2);ChrIx=Sus(FitnV,NSel);SelCh=Chrom(ChrIx,:);其中,函数Sus的代码为:% 输入:%FitnV 个体的适应度值%Nsel 被选择个体的数目% 输出:%NewChrIx 被选择个体的索引号function NewChrIx = Sus(FitnV,Nsel)[Nind,ans] = size(FitnV);cumfit = cumsum(FitnV);trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)');Mf = cumfit(:, ones(1, Nsel));Mt = trials(:, ones(1, Nind))';[NewChrIx, ans] = find(Mt < Mf & [ zeros(1, Nsel); Mf(1:Nind-1, :) ] <= Mt);[ans, shuf] = sort(rand(Nsel, 1));NewChrIx = NewChrIx(shuf);4 交叉操作函数Recombin的代码:%% 交叉操作% 输入%SelCh 被选择的个体%Pc 交叉概率%输出:% SelCh 交叉后的个体function SelCh=Recombin(SelCh,Pc)NSel=size(SelCh,1);for i=1:2:NSel-mod(NSel,2)if Pc>=rand %交叉概率Pc[SelCh(i,:),SelCh(i+1,:)]=intercross(SelCh(i,:),SelCh(i+1,:)); endend%输入:%a和b为两个待交叉的个体%输出:%a和b为交叉后得到的两个个体其中intercross函数代码:function [a,b]=intercross(a,b)L=length(a);r1=randsrc(1,1,[1:L]);r2=randsrc(1,1,[1:L]);if r1~=r2a0=a;b0=b;s=min([r1,r2]);e=max([r1,r2]);for i=s:ea1=a;b1=b;a(i)=b0(i);b(i)=a0(i);x=find(a==a(i));y=find(b==b(i));i1=x(x~=i);i2=y(y~=i);if ~isempty(i1)a(i1)=a1(i);endif ~isempty(i2)b(i2)=b1(i);endendend5变异操作函数Mutate的代码:%% 变异操作%输入:%SelCh 被选择的个体%Pm 变异概率%输出:% SelCh 变异后的个体function SelCh=Mutate(SelCh,Pm)[NSel,L]=size(SelCh);for i=1:NSelif Pm>=randR=randperm(L);SelCh(i,R(1:2))=SelCh(i,R(2:-1:1)); endend6进化逆转操作函数Reverse代码:%% 进化逆转函数%输入%SelCh 被选择的个体%D 个城市的距离矩阵%输出%SelCh 进化逆转后的个体function SelCh=Reverse(SelCh,D)[row,col]=size(SelCh);ObjV=PathLength(D,SelCh); %计算路径长度SelCh1=SelCh;for i=1:rowr1=randsrc(1,1,[1:col]);r2=randsrc(1,1,[1:col]);mininverse=min([r1 r2]);maxinverse=max([r1 r2]);SelCh1(i,mininverse:maxinverse)=SelCh1(i,maxinverse:-1:mininverse); endObjV1=PathLength(D,SelCh1); %计算路径长度index=ObjV1<ObjV;SelCh(index,:)=SelCh1(index,:);7画出所给路线的轨迹图函数DrawPath的代码:%% 画路径函数%输入% Chrom 待画路径% X 各城市坐标位置function DrawPath(Chrom,X)R=[Chrom(1,:) Chrom(1,1)]; %一个随机解(个体)figure;hold onplot(X(:,1),X(:,2),'o','color',[0.5,0.5,0.5])plot(X(Chrom(1,1),1),X(Chrom(1,1),2),'rv','MarkerSize',20)for i=1:size(X,1)text(X(i,1)+0.05,X(i,2)+0.05,num2str(i),'color',[1,0,0]);endA=X(R,:);row=size(A,1);for i=2:row[arrowx,arrowy] = dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2));%坐标转换annotation('textarrow',arrowx,arrowy,'HeadWidth',8,'color',[0,0,1]); endhold offxlabel('横坐标')ylabel('纵坐标')title('轨迹图')box on8遗传算法的主函数代码:%遗传算法求解TSP问题(为选择操作从新设计后程序)%输入:%D 距离矩阵%NIND 为种群个数%X 参数是中国10个城市的坐标(初始给定)%MAXGEN 为停止代数,遗传到第MAXGEN代时程序停止,MAXGEN的具体取值视问题的规模和耗费的时间而定%m 为适值淘汰加速指数,最好取为1,2,3,4,不宜太大%Pc 交叉概率%Pm 变异概率%输出:%R 为最短路径%Rlength 为路径长度clearclcclose allX=[22.31 113.5834.37 108.9530.29 120.1629.66 91.1439.95 116.4126.86 100.2324.89 102.8330.59 104.0734.65 112.4637.53 122.13];D=Distanse(X); %生成距离矩阵N=size(D,1); %城市个数%% 遗传参数NIND=100; %种群大小MAXGEN=200; %最大遗传代数Pc=0.9; %交叉概率Pm=0.05; %变异概率GGAP=0.9; %代沟%% 初始化种群Chrom=InitPop(NIND,N);%% 画出随机解的路径图DrawPath(Chrom(1,:),X)titlepause(0.0001)%% 输出随机解的路径和总距离disp('初始种群中的一个随机值:')OutputPath(Chrom(1,:));Rlength=PathLength(D,Chrom(1,:));disp(['总距离:',num2str(Rlength)]);disp('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~')%% 优化gen=0;figure;hold on;box onxlim([0,MAXGEN])title('优化过程')xlabel('代数')ylabel('最优值')ObjV=PathLength(D,Chrom); %计算路径长度preObjV=min(ObjV);while gen<MAXGEN%% 计算适应度ObjV=PathLength(D,Chrom); %计算路径长度% fprintf('%d %1.10f\n',gen,min(ObjV))line([gen-1,gen],[preObjV,min(ObjV)]);pause(0.0001)preObjV=min(ObjV);FitnV=Fitness(ObjV);%% 选择SelCh=Select(Chrom,FitnV,GGAP);%% 交叉操作SelCh=Recombin(SelCh,Pc);%% 变异SelCh=Mutate(SelCh,Pm);%% 逆转操作SelCh=Reverse(SelCh,D);%% 重插入子代的新种群Chrom=Reins(Chrom,SelCh,ObjV);%% 更新迭代次数gen=gen+1 ;end%% 画出最优解的路径图ObjV=PathLength(D,Chrom); %计算路径长度[minObjV,minInd]=min(ObjV);DrawPath(Chrom(minInd(1),:),X)%% 输出最优解的路径和总距离disp('最优解:')p=OutputPath(Chrom(minInd(1),:));disp(['总距离:',num2str(ObjV(minInd(1)))]);disp('-------------------------------------------------------------')其中用到的函数如下:计算距离函数Distence代码:%% 计算两两城市之间的距离%输入 a 各城市的位置坐标%输出 D 两两城市之间的距离function D=Distanse(a)row=size(a,1);D=zeros(row,row);for i=1:rowfor j=i+1:rowD(i,j)=((a(i,1)-a(j,1))^2+(a(i,2)-a(j,2))^2)^0.5; D(j,i)=D(i,j);endend输出路线函数OutputPath代码:%% 输出路径函数%输入:R 路径function p=OutputPath(R)R=[R,R(1)];N=length(R);p=num2str(R(1));for i=2:Np=[p,'—>',num2str(R(i))];enddisp(p)计算个体路线长度函数PathLength代码:%% 计算各个体的路径长度% 输入:% D 两两城市之间的距离% Chrom 个体的轨迹function len=PathLength(D,Chrom)[row,col]=size(D);NIND=size(Chrom,1);len=zeros(NIND,1);for i=1:NINDp=[Chrom(i,:) Chrom(i,1)];i1=p(1:end-1);i2=p(2:end);len(i,1)=sum(D((i1-1)*col+i2));end重插入子代得到新种群的函数Reins代码:%% 重插入子代的新种群%输入:%Chrom 父代的种群%SelCh 子代种群%ObjV 父代适应度%输出% Chrom 组合父代与子代后得到的新种群function Chrom=Reins(Chrom,SelCh,ObjV)NIND=size(Chrom,1);NSel=size(SelCh,1);[TobjV,index]=sort(ObjV);Chrom=[Chrom(index(1:NIND-NSel),:);SelCh];模拟退火算法的TSP方法代码:生成新解:function S2=NewAnswer(S1)%% 输入% S1:当前解%% 输出% S2:新解N=length(S1);S2=S1;a=round(rand(1,2)*(N-1)+1);W=S2(a(1));S2(a(1))=S2(a(2));S2(a(2))=W;Metropolis准则函数function [S,R]=Metropolis(S1,S2,D,T)%% 输入% S1:当前解% S2: 新解% D: 距离矩阵(两两城市的之间的距离)% T: 当前温度%% 输出% S:下一个当前解% R:下一个当前解的路线距离%%R1=PathLength(D,S1); %计算路线长度N=length(S1); %得到城市的个数R2=PathLength(D,S2); %计算路线长度dC=R2-R1; %计算能力之差if dC<0 %如果能力降低接受新路线S=S2;R=R2;elseif exp(-dC/T)>=rand %以exp(-dC/T)概率接受新路线 S=S2;R=R2;else %不接受新路线S=S1;R=R1;Endfunction varargout = dsxy2figxy(varargin)if length(varargin{1}) == 1 && ishandle(varargin{1}) ...&& strcmp(get(varargin{1},'type'),'axes') hAx = varargin{1};varargin = varargin(2:end);elsehAx = gca;end;if length(varargin) == 1pos = varargin{1};else[x,y] = deal(varargin{:});endaxun = get(hAx,'Units');set(hAx,'Units','normalized');axpos = get(hAx,'Position');axlim = axis(hAx);axwidth = diff(axlim(1:2));axheight = diff(axlim(3:4));if exist('x','var')varargout{1} = (x - axlim(1)) * axpos(3) / axwidth + axpos(1); varargout{2} = (y - axlim(3)) * axpos(4) / axheight + axpos(2); elsepos(1) = (pos(1) - axlim(1)) / axwidth * axpos(3) + axpos(1);pos(2) = (pos(2) - axlim(3)) / axheight * axpos(4) + axpos(2); pos(3) = pos(3) * axpos(3) / axwidth;pos(4) = pos(4) * axpos(4 )/ axheight;varargout{1} = pos;endset(hAx,'Units',axun)模拟退火算法主函数:clc;clear;close all;%%ticT0=1000; % 初始温度Tend=1e-3; % 终止温度L=500; % 各温度下的迭代次数(链长)q=0.9; %降温速率X=[22.31 113.5834.37 108.9530.29 120.1629.66 91.1439.95 116.4126.86 100.2324.89 102.8330.59 104.0734.65 112.4637.53 122.13];%%D=Distanse(X); %计算距离矩阵N=size(D,1); %城市的个数%% 初始解S1=randperm(N); %随机产生一个初始路线%% 画出随机解的路径图DrawPath(S1,X)pause(0.0001)%% 输出随机解的路径和总距离disp('初始种群中的一个随机值:')OutputPath(S1);Rlength=PathLength(D,S1);disp(['总距离:',num2str(Rlength)]);%% 计算迭代的次数TimeTime=ceil(double(solve(['1000*(0.9)^x=',num2str(Tend)]))); count=0; %迭代计数Obj=zeros(Time,1); %目标值矩阵初始化track=zeros(Time,N); %每代的最优路线矩阵初始化%% 迭代while T0>Tendcount=count+1; %更新迭代次数temp=zeros(L,N+1);for k=1:L%% 产生新解S2=NewAnswer(S1);%% Metropolis法则判断是否接受新解[S1,R]=Metropolis(S1,S2,D,T0); %Metropolis 抽样算法temp(k,:)=[S1 R]; %记录下一路线的及其路程end%% 记录每次迭代过程的最优路线[d0,index]=min(temp(:,end)); %找出当前温度下最优路线if count==1 || d0<Obj(count-1)Obj(count)=d0; %如果当前温度下最优路程小于上一路程则记录当前路程 elseObj(count)=Obj(count-1);%如果当前温度下最优路程大于上一路程则记录上一路程endtrack(count,:)=temp(index,1:end-1); %记录当前温度的最优路线T0=q*T0; %降温fprintf(1,'%d\n',count) %输出当前迭代次数end%% 优化过程迭代图figureplot(1:count,Obj)xlabel('迭代次数')ylabel('距离')title('优化过程')%% 最优解的路径图DrawPath(track(end,:),X)%% 输出最优解的路线和总距离disp('最优解:')S=track(end,:);p=OutputPath(S);disp(['总距离:',num2str(PathLength(D,S))]);disp('-------------------------------------------------------------')。
遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。
本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。
在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。
因此,这些猴子需要“无限的时间"。
而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。
当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。
下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。
之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。
这里就直接用框架。
把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。
(完整版)遗传算法c语言代码

}
}
}
//拷贝种群
for(i=0;i<num;i++)
{
grouptemp[i].adapt=group[i].adapt;
grouptemp[i].p=group[i].p;
for(j=0;j<cities;j++)
grouptemp[i].city[j]=group[i].city[j];
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
}
for(i=0;i<num;i++)
group[i].p=group[i].p/biggestp;
//求最佳路劲
bestsolution=0;
for(i=0;i<num;i++)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
遗传算法代码
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<time.h>
#define cities 10 //城市的个数
人工智能导论实验(遗传算法)-参考模板

环境配置1.安装anaconda,并配置环境变量2.Win+R运行cmd打开命令行窗口,在命令行中创建并激活所需的Python环境,也可直接使用默认的base环境a)创建:conda create -n [新环境的名字] python=[Python版本号]比如:conda create -n myEnv python=3.7b)激活环境:conda activate [环境名]。
激活成功后命令行前面会有个括号显示当前使用的环境名:3.检查当前环境下是否已有需要用到的库,若没有,则需要安装a)查询命令:conda listb)安装新的库:conda install [库名]也可指定库的版本号:conda install [库名]=[版本号]4.执行指定的python文件:python [.py文件名]如果.py文件不在当前路径下,需要指定文件的完整路径完成下列实验1,2以及3、4、5任选其二。
实验1:产生式系统1.基本要求1.1掌握产生式系统的基本原理1.2运行产生式系统的示例代码1.3尝试向示例代码中添加新数据,并完成相应的推理2.实验报告2.1总结产生式系统的基本原理2.2产生式系统的源代码分析与实验记录2.3尝试向示例代码中添加新数据,并完成相应的推理3.作业无实验2:AStar求解八数码问题1.基本要求1.1掌握AStar算法的基本原理1.2编写并运行AStar算法求解八数码问题的示例代码。
给定矩阵初始状态,允许将0与相邻的4个数字之一交换,直到矩阵转变为目标状态。
输出每一步交换后的矩阵例12.实验报告2.1 总结AStar算法的基本原理2.2 如何描述八数码问题中两个状态间的距离?2.2 如何根据状态距离将八数码问题转换为AStar寻路问题?3.作业提交编写的AStar求解八数码问题代码实验3:AStar求解迷宫寻路问题1.基本要求1.1掌握AStar算法的基本原理1.2编写并运行AStar算法求解迷宫寻路问题的示例代码。
遗传算法多目标优化matlab源代码

遗传算法多目标优化matlab源代码遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
在多目标优化问题中,GA也可以被应用。
本文将介绍如何使用Matlab实现遗传算法多目标优化,并提供源代码。
一、多目标优化1.1 多目标优化概述在实际问题中,往往存在多个冲突的目标函数需要同时优化。
这就是多目标优化(Multi-Objective Optimization, MOO)问题。
MOO不同于单一目标优化(Single Objective Optimization, SOO),因为在MOO中不存在一个全局最优解,而是存在一系列的Pareto最优解。
Pareto最优解指的是,在不降低任何一个目标函数的情况下,无法找到更好的解决方案。
因此,在MOO中我们需要寻找Pareto前沿(Pareto Front),即所有Pareto最优解组成的集合。
1.2 MOO方法常见的MOO方法有以下几种:(1)加权和法:将每个目标函数乘以一个权重系数,并将其加和作为综合评价指标。
(2)约束法:通过添加约束条件来限制可行域,并在可行域内寻找最优解。
(3)多目标遗传算法:通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
1.3 MOO评价指标在MOO中,我们需要使用一些指标来评价算法的性能。
以下是常见的MOO评价指标:(1)Pareto前沿覆盖率:Pareto前沿中被算法找到的解占总解数的比例。
(2)Pareto前沿距离:所有被算法找到的解与真实Pareto前沿之间的平均距离。
(3)收敛性:算法是否能够快速收敛到Pareto前沿。
二、遗传算法2.1 遗传算法概述遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。
它通过模拟生物进化过程,利用交叉、变异等操作来搜索问题的最优解。
遗传算法MATLAB完整代码(不用工具箱)

遗传算法MATLAB完整代码(不用工具箱)遗传算法解决简单问题%主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2,2];precision=0.0001;boundsbegin=bounds(:,1);boundsend=bounds(:,2);%计算如果满足求解精度至少需要多长的染色体BitLength=ceil(log2((boundsend-boundsbegin)'./precision));popsize=50; %初始种群大小Generationmax=12; %最大代数pcrossover=0.90; %交配概率pmutation=0.09; %变异概率%产生初始种群population=round(rand(popsize,BitLength));%计算适应度,返回适应度Fitvalue和累计概率cumsump[Fitvalue,cumsump]=fitnessfun(population);Generation=1;while Generation<generationmax+1< p="">for j=1:2:popsize%选择操作seln=selection(population,cumsump);%交叉操作scro=crossover(population,seln,pcrossover);scnew(j,:)=scro(1,:);scnew(j+1,:)=scro(2,:);%变异操作smnew(j,:)=mutation(scnew(j,:),pmutation);smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);endpopulation=scnew; %产生了新的种群%计算新种群的适应度[Fitvalue,cumsump]=fitnessfun(population);%记录当前代最好的适应度和平均适应度[fmax,nmax]=max(Fitvalue);fmean=mean(Fitvalue);ymax(Generation)=fmax;ymean(Generation)=fmean;%记录当前代的最佳染色体个体x=transform2to10(population(nmax,:));%自变量取值范围是[-2,2],需要把经过遗传运算的最佳染色体整合到[-2,2]区间xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);%绘制经过遗传运算后的适应度曲线。
遗传算法matlab程序代码

遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。
在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。
人工智能遗传算法论文

人工智能遗传算法论文本文对遗传算法在人工智能方面的应用进行介绍,通过遗传算法对全局运动估计的解决方案进行分析,最后就人工智能在算法的发展方向方面进行了展望和总结。
以下是店铺整理分享的人工智能遗传算法论文的相关资料,欢迎阅读!人工智能遗传算法论文篇一摘要:本文对遗传算法在人工智能方面的应用进行介绍,通过遗传算法对全局运动估计的解决方案进行分析,最后就人工智能在算法的发展方向方面进行了展望和总结。
所谓人工智能,就是人工的方法通过计算机实现智能化功能,或者说是人们使用机器模拟人类的智能。
由于人工智能是在机器上实现的,所以又称为机器智能。
从另一个角度来看,人工智能是研究怎样使计算机来模仿人脑从事的推理、证明、识别、理解、设计、学习、思考、规划及问题求解等思维活动,来解决人类专家才能处理的复杂问题。
人工智能的算法很多,包括遗传算法、进化算法、蚁群算法和专家系统、神经网络等。
1 遗传算法遗传算法的思想是先确定编码方案,对待寻优的缺陷特征参数进行编码,按一定规模初始化种群,种群中的每一个各体就代表了一个可能的解;然后根据适应度值函数计算每一个各体的适应度值并依此决定遗传操作。
根据预先确定好的种群选择方案,按一定的概率对种群进行交叉、变异得到下一代,直到遗传算法的终止条件得到满足。
与传统的优化算法相比,具有的优缺点如下:1.1 遗传算法优点。
不是从单个点,而是从多个点构成的群体开始搜索。
之所以说是从多点而不是从单点出发,那是因为整个算法的开始是从一个初始种群开始搜索演练最优解,是从多个点开始搜索进化寻找,这样的做的一个好处是避免局部寻找最优解,从任一解出发,按照某种机制,以一定的概率在整个求解空间中探索最优解。
由于它们可以把搜索空间扩展到整个问题空间,因而具有全局优化性能。
同时也缩短了整个搜寻额时间,整体上效率更高、结果更接近最优解。
实现简单,没有复杂的数学计算,在算法中,一般都有大量且复杂的计算作为整个算法的支撑,同时数学计算也是一步比较耗资源和时间的操作,然后在遗传算法中,在搜索最优解过程中,只需要由目标函数值转换得来的适应度信息再加上简单的比较,而不需要导数等其它辅助信息,操作流程也比较简单,没有过多的转换控制操作,中间也没有多少中间变量,算法具有较强的自适应性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30维线性方程求解
摘要:非线性方程组的求解是数值计算领域中最困难的问题,大多数的数值求解算法例如牛顿法的收敛性和性能特征在很大程度上依赖于初始点。
但是对于很多高维的非线性方程组,选择好的初始点是一件非常困难的事情。
本文采用了遗传算法的思想,提出了一种用于求解非线性方程组的混合遗传算法。
该混合算法充分发挥了遗传算法的群体搜索和全局收敛性。
选择了几个典型非线性方程组,考察它们的最适宜解。
关键词:非线性方程组;混合遗传算法;优化
1. 引言
遗传算法是一种通用搜索算法,它基于自然选择机制和自然遗传规律来模拟自然界的进化过程,从而演化出解决问题的最优方法。
它将适者生存、结构化但同时又是随机的信息交换以及算法设计人的创造才能结合起来,形成一种独特的搜索算法,把一些解决方案用一定的方式来表示,放在一起成为群体。
每一个方案的优劣程度即为适应性,根据自然界进化“优胜劣汰”的原则,逐步产生它们的后代,使后代具有更强的适应性,这样不断演化下去,就能得到更优解决方案。
随着现代自然科学和技术的发展,以及新学科、新领域的出现,非线性科学在工农业、经济政治、科学研究方面逐渐占有极其重要的位置。
在理论研究和应用实践中,几乎绝大多数的问题都最终能化为方程或方程组,或者说,都离不开方程和方程组的求解。
因此,在非线性问题中尤以非线性方程和非线性方程组的求解最为基本和重要。
传统的解决方法,如简单迭代法、牛顿法、割线法、延拓法、搜索法、梯度法、共轭方向法、变尺度法,无论从算法的选择还是算法本身的构造都与所要解决的问题的特性有很大的关系。
很多情况下,算法中算子的构造及其有效性成为我们解决问题的巨大障碍。
而遗传算法无需过多地考虑问题的具体形式,因为它是一种灵活的自适应算法,尤其在一些非线性方程组没有精确解的时候,遗传算法显得更为有效。
而且,遗传算法是一种高度并行的算法,且算法结构简单,非常便于在计算机上实现。
本文所研究的正是将遗传算法应用于求解非线性方程组的问题。
2. 遗传算法解非线性方程组
为了直观地观察用遗传算法求解非线性方程组的效果,我们这里用代数非线性方程组作为求解的对象
问题描述:
非线性方程组指的是有n个变量(为了简化讨论,这里只讨论实变量方程组)的方程组
中含有非线性方程。
其求解是指在其定义域内找出一组数能满足方程组中的每一
个方程。
这里,我们将方程组转化为一个函数
则求解方程组就转化为求一组值使得成立。
即求使函数取得最小值0的一组数,
于是方程组求解问题就转变为函数优化问题
3. 遗传算子
遗传算子设计包括交叉算子、变异算子和选择算子的设计。
(1)交叉算子
算术交叉算子是实数编码遗传算法中应用最广泛的一种算子, 该算子描述如下:
假设在两个体X 1 和X 2 之间进行算术交叉, 则交叉运算后所产生出的两个新个体为
其中a是在[0,1]区间内的参数,它可以是一个常数,也可以是由进化所决定的变量,本文选择为[ 0,1] 区间上的随机数。
(2)变异算子
设被选中变异的个体的染色体为 , 随机产生一个扰动方向 , 整个变异操作的过程是
以为起点, 沿方向寻求最优点作为新的染色体, 即完成如下一维搜索运算: 本文以黄金分割方法搜索得到最优步长 , 则变异后个体的新染色体
(3)选择算子
传统的标准选择算子一方面要求适应度函数大于零, 给适应度函数的选择带了一定的困难; 另一方面基于适应值的排序选择算子是造成算法早熟、收敛速度慢的主要原因。
为避免上述问题, 本文采用了既具有较高确定性和一定随机性的联赛竞争法为选择算子, 联赛规模取为3。
由于遗传算法中有许多随机因素
的影响, 当前群体的最好个体可能会被破坏, 影响算法的运行效率和收敛性, 因此采用了最优保存策略, 即当前群体中最优个体不参与交叉运算和变异运算, 而是用它来替代本代群体中经过交叉、变异操作后所产生的最差个体。
4. 实例验证
我们为了验证这个遗传算法是否能够找到我们需要的合适解,选取下面的非线性方程组来验证:
运行得到的结果为:得出来的结果为逼近准确解
ans = 0 -2 1
由此可知能找到合适的解的。
参考文献:
[1]陈明. 基于进化遗传算法的优化计算[J]. 软件学报, Vol.9 No.11, 1998.11:876-879.
[2]陈火旺. 遗传程序设计(之一)[J]. 计算机科学, 1995.22(6:12-15.
[3]冯果忱. 非线形方程组迭代解法[M]. 上海科学技术出版社, 1989.
附件:实验源代码
function [popold,valParents,F,CR]=jde(F,CR,popold,problem,valParents
%-------- Parameters Declination------------
% F and CR: are self-adaptive parameters coming from jde
% popold and valparameters: the evolutionary group and its fitness
% problem and lu: to be solved problem and its bound.
% omiga: the shifting vector for problem
% flag: the sign to be shifted.
% FES: the number of evaluation.
global lu %全局变量
tau1=0.1;tau2=0.1;
[ps,n]=size(popold;
pop=popold;
Fold = F; CRold = CR;
IF = rand(ps, 1 < tau1; ICR = rand(ps, 1 < tau2;
F(IF = 0.1 + 0.9 * rand(sum(IF, 1; CR(ICR = 0.0 + 1.0 * rand(sum(ICR, 1;
% == == == == == = Mutation == == == == == == == == =
index= gnvect(randperm(ps,3; % generate three mutual vectors.
vi = pop(index(1,:, : + F(:, ones(1, n .* (pop(index(2,:, : -pop(index(3,:, :; %变异算法
vi = boundConstraint(vi, lu;
% == == == == = Crossover == == == == =
mask = rand(ps, n > CR(:, ones(1, n; % mask is used to indicate which elements of ui comes from the parent
rows = (1:ps'; cols = floor(rand(ps, 1 * n + 1; % choose one position where the element of ui doesn't come from the parent
jrand = sub2ind([ps n], rows, cols; mask(jrand = false;
ui = vi;
ui(mask = pop(mask;
valOffspring =benchmark_func(ui,problem; % evaluate
% == == == == == = Selection == == == == == =
% I == 1: the parent is better; I == 2: the offspring is better
[valParents, I] = min([valParents, valOffspring], [], 2; % fitness values are replaced popold = pop;
popold(I == 2, : = ui(I == 2, :; % some individuals are replaced
F(I == 1 = Fold(I == 1; % refreshing F and CR.
CR(I == 1 = CRold(I == 1;
return;。