离散型随机变量的分布列3
2.2 离散型随机变量及其分布

}
满足下列性质 性质: 满足下列性质:
pk ≥ 0 (k = 1,2,⋯);
概率论与数理统计 数学科学学院 徐 鑫
∑p
k =1
∞
k
常用来确定分布律中的待定参数] 常用来确定分布律中的待定参数 = 1 [常用来确定分布律中的待定参数
这两条也是非负 数列能为某随机 变量分布律的充 要条件
离散型随机变量分布列的求法 求法: 离散型随机变量分布列的求法: 利用古典概率、 利用古典概率、条件概率等计算方法及运算 性质求事件{X=x 概率; 性质求事件{X=xk}概率; 利用已知的重要分布的分布列; 利用已知的重要分布的分布列; 利用分布函数. 利用分布函数. 离散型随机变量分布列的应用 应用: 离散型随机变量分布列的应用: 确定分布列中的待定参数; 确定分布列中的待定参数; 求分布函数; 求分布函数; 求随机事件的概率. 求随机事件的概率.
概率论与数理统计 数学科学学院 徐 鑫
四、几种重要的离散型随机变量 1、(0-1)分布[两点分布] (0-1)分布 两点分布] 分布[ 定义2 定义2 设随机变量X只取0,1两值, 设随机变量X只取0,1两值,且其分布律为 0,1两值
P{X = k} = p (1 − p) (k = 0,1;0 < p < 1)
(−∞, x1 ), [ x1 , x2 ), [ x2 , x3 ) ⋯, [ xk ,+∞)
分别求出F(x)的值,即就x 分别求出F(x)的值,即就x落在上述各区间内计算 F(x)的值 {X≤x}所含可能值概率的累积和; {X≤x}所含可能值概率的累积和; 所含可能值概率的累积和 离散型随机变量X的分布函数是一个右连续的阶梯 离散型随机变量X 函数. 函数.
2离散型随机变量的分布列

X的所有可能取值是0,1,2,3.
P(X=0)=
C36 C130
=
20 120
=
1 6
,
P(X=1)=
C62C14 C130
=
60 120
=
1 2
,
P(X=2)=
C
2 4
C16
C130
=
36 120
=
3 10
,
P(X=3)=
C34 C130
=
4 120
=
1 30
.
∴X的分布列为
X
0
1
2
3
1
1
3
1
P
6
栏目索引
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时
也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)分布列的性质
(i)pi③ ≥0 ,i=1,2,3,…,n;
n
(ii) pi 1. i 1
栏目索引
3.常见的离散型随机变量的概率分布
η
0
1
2
P
0.1
0.3
0.3
栏目索引
3 0.3
栏目索引
1-2 (2015北京朝阳一模改编)如图所示,某班一次数学测试成绩的茎叶 图和频率分布直方图都受到了不同程度的污损,其中,频率分布直方图 的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答以 下问题. (1)求全班人数及分数在[80,100]之间的频率; (2)现从分数在[80,100]之间的试卷中任取3份分析学生的失分情况,设 抽取的试卷分数在[90,100]的份数为X,求X的分布列.
离散型随机变量及其分布列

p2
„
„
基础知识梳理
称为离散型随机变量X的概率分布 列,简称X的分布列.有时为了表达简 单,也用等式 P(X=xi)=pi,i=1,2, …,n 表示X的分布列. (2)离散型随机变量分布列的性质 ① pi≥0,i=1,2,…,n ;
② i=1 . ③一般地,离散型随机变量在某一 范围内取值的概率等于这个范围内每个 随机变量值的概率 之和 .
pi=1
n
基础知识梳理
如何求离散型随机变量的分 布列? 【思考·提示】 首先确定 随机变量的取值,求出离散型随 机变量的每一个值对应的概率, 最后列成表格.
基础知识梳理
2.常见离散型随机变量的分布列 (1)两点分布 若随机变量X的分布列是 X P 0 1-p 1 p
则这样的分布列称为两点分布列. 如果随机变量X的分布列为两点分 布列,就称X服从 两点 分布,而称p= P(X=1)为成功概率.
课堂互动讲练
课堂互动讲练
所以随机变量X的概率分布列为
X P 2 1 30 3 2 15 4 3 10 5 8 15
【名师点评】 分布列的求解应 注意以下几点:(1)搞清随机变量每个 取值对应的随机事件;(2)计算必须准 确无误;(3)注意运用分布列的两条性 质检验所求的分布列是否正确.
课堂互动讲练
【解】 (1)法一:“一次取出的 3
3 1
个小球上的数字互不相同”的事件记 为 A,则
1 1 C5 C2 C2 C2 2 P(A)= = . 3 C10 3
课堂互动讲练
法二:“一次取出的3个小球上的 数字互不相同”的事件记为A,“一次 取出的3个小球上有两个数字相同”的 事件记为B,则事件A和事件B是互斥 事件. C51C22C81 1 因为 P(B)= = , 3 C10 3 1 2 所以 P(A)=1-P(B)=1- = . 3 3
离散型随机变量x的分布列

§2 离散型随机变量X 的分布列(3课时) 一、目的要求1、理解离散型的随机变量的分布列的意义,会用某些简单的离散型随机变量的分布列。
2、掌握离散型随机变量的分布的两个基本性质,并会用它来解决一些简单的问题。
教学重点:(1)利用概率知识与分布列(2)利用随机变量的分布列性质求参数。
二、教学过程1、复习提问:离散型随机变量概念。
2、分布列定义:设离散型随机变量X 的取值。
12,,,(1,2,)i i a a X a P i = 随机变量取的概率为记作()i i P x a P i === (1)为随机变量X 的分布列如果随机变量X 的分布列为表(2)或(1)式,则使随机变量X 服从这一分布(列),记为1212,,,,a a X P P ⎛⎫ ⎪⎝⎭总结:任一离散型随机变量的分布列的两个简单性质: (1)0,1,2,i P i >= (2)121P P ++=试求常数C 。
(3) 3、已知随机变量X 的分布列为1(),(24)2k P X k P X ==<≤则=( )A A .316 B .14 C .116 D .5164、设离散型随机变量X 的分布列为()(1,2,,)2aP X k k N N=== ,则a= 。
2 5、设随机变量X 的分布列为1()(),1,2,3,3k P X k a k a ===则= ,若*k N ∈,则a= 。
(27213)6、设随机变量的分布列()(1,2,3,4,5)5kP X ak k ===。
(1)求常数a 的值。
(115)(2)求17132()()()1010555P X P X P X <<==+==7、有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻有n 个人正在使用电话或等待使用的概率为P(n),且P(n)与时间t 无关,统计得到1()(0)15()206nP n P n n ⎧⋅≤≤⎪=⎨⎪≥⎩,那么在某一时刻,这个公用电话亭里一个人也没有的概率(0)P 的值为 。
离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。
离散型随机变量可以用分布列来描述其概率分布特征。
离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。
其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。
离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。
2. 取值之间具有间隔或间距。
3. 每个取值对应一个概率,概率分布可用概率分布列来体现。
4. 概率之和为1。
离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。
其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。
其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。
3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。
其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。
总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。
掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。
人教A版必修第三册课件2.1.2离散型随机变量的分布列

(2)从盒子中随机取出4个球,其中红球个数记为X,求随 机变量X的分布列.
【解题指南】(1)计算取出2个球的基本事件总数,计算 取出2个相同颜色的球的基本事件数,结合古典概型计
算公式,计算概率,即可. (2)分别计算出X=0,1,2,3,4对应的概率,列出分布列即 可.
【解析】(1)一个盒子里装有9个球,其中有4个红球,3
答案:①②③
2.甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个 不同的岗位服务,每个岗位至少有一名志愿者.设随机 变量ξ为这五名志愿者中参加A岗位服务的人数,则ξ 的分布列为________.
【解析】随机变量ξ可能取的值为1,2.
事件“ξ=1”是指有1人参加A岗位服务,则P(ξ=1)
=
C15C42A33
的可能取值为0,1,2,3,4,P(X=0)= C54 P5 (,X=1)=
PC(C14XC94 =35 4P)26=03(X,CC9444=21)21=6所,以随CC24机C94P52(变X1量2=013,X)的= 分C布94 列12为C6C34C:94 15
10 , 63
【方法总结】求离散型随机变量的分布列的步骤
A.(-∞,2]
B.[1,2]
C.(1,2]
D.(1,2)
【解析】选C.由随机变量X的分布列知:P(X<-1)= 0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当 P(X<a)=0.8时,实数a的取值范围是(1,2].
2.下列表格中,不是某个随机变量的分布列的是( )
张,每张可获价值10元的奖品;其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的 分布列.
人教版A版高中数学选修2-3:2.1.1 离散型随机变量(3)
4.二项分布的均值: 若X~B(n,p),则EX=np
例3.一次单元测验由20个选择题构成,每个选择题有4个选 项,其中有且仅有一个选项是正确答案,每题选择正确答 案得5分,不作出选择或选错不得分,满分100分.学生甲 选对任一题的概率为0.9,学生乙则在测验中对每题都从4个 选项中随机地选择一个.求学生甲和学生乙在这次英语单 元测验中的成绩的均值.
xi
…
P
p1
p2
…
pi
…
则称 EX=x1 p1+x2 p2+…+xi pi+… 为X的均值或数 学期望,数学期望又简称为期望.
2.离散型随机变量的均值的性质: E(aX+b)=aEX+b
3.两点分布的均值: 若X服从两点分布,则EX=p
4.二项分布的均值: 若X~B(n,p),则EX=np
六、布置作业
方法二:先求解解答一个选择题的得分的均值,再 乘以20即可.
思考7:甲同学一定能得90分吗?
90分代表什么呢?
四、针对性训练
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4 .
(2)若η=2ξ+1,则Eη= 5.8.
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
Eξ=7.5,则a= 0.1 b= 0.4.
3、 一个袋子里装有大小相同的3 个红 球和2个黄球,从中有放回地取每次一个, 共取5次,则取到红球次数的期望 是 3.
五、小结巩固
掌握离散型随机变量的均值的概念、性质及计算: 1.离散型随机变量的均值 一般地,若离散型随机变量X的分布列为
X
x1
x2
2.3 离散型随机变量的分布列及其期望
2.3 离散型随机变量的分布列及其期望基础梳理1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.(3)分布列设离散型随机变量X可能取得值为x1,x2,…,x i,…x n,X取每一个值x i(i=1,2,…,n)的概率为P(X=x i)=p i,则称表X x1x2…x i…x nP p1p2…p i…p n为随机变量X的概率分布列,简称X的分布列.(4)分布列的两个性质①p i≥0,i=1,2,…,n;②p1+p2+…+p n=_1_.2.两点分布如果随机变量X的分布列为X 10P p q其中0<p<1,q=1-p,则称离散型随机变量X服从参数为p的两点分布.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为:P(X=k)=C k M C n-kN-MC n N(k=0,1,2,…,m),其中m=min{M,n},且n≤N,M≤N,n、M、N∈N*,则称分布列X 01…mP C0M·C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N为超几何分布列.4.二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 5.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n Pp 1p 2…p i…p n基础训练1.抛掷均匀硬币一次,随机变量为( ).A .出现正面的次数B .出现正面或反面的次数C .掷硬币的次数D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( ). A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ). A .25 B .10 C .7 D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________. 6.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.227由统计数据求离散型随机变量的分布列【例1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:投资成功 投资失败 192次8次则该公司一年后估计可获收益的期望是________.(1)可设出随机变量Y ,并确定随机变量的所有可能取值作为第一行数据;(2)由统计数据利用事件发生的频率近似地表示该事件的概率作为第二行数据.由统计数据得到分布列可帮助我们更好理解分布列的作用和意义.【训练1】某射手进行射击训练,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列【例2】►某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A 饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.而超几何分布就是此类问题中的一种.【训练2】着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E(ξ).【例3】►(某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=112,则随机变量X的数学期望E(X)=________.本题考查了相互独立事件同时发生的概率求法以及分布列,期望的相关知识,公式应用,计算准确是解题的关键.【训练3】某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).【例4】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.【训练4】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.巩固提升1、设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.,则同一工作日至少3人需使用设备的概率为______________;2、甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6、0.5、0.4,能通过面试的概率分别是0.6、0.6、0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后,至少有一人被该高校预录取的概率.3.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.4.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列、数学期望和方差.。
专题离散型随机变量及其分布列(三)——比赛问题-讲义
专题:离散型随机变量的概率分布(三)——比赛问题一、甲乙二人进行乒乓球比赛,已知打一局比赛甲胜乙的概率是.23(1)分别计算三局两胜制和五局三胜制下,甲获胜的概率并指出比赛局数对甲乙二人的影响;(2)设随机变量X 表示三局两胜制下甲获胜的局数,求X 的分布列及期望.二、甲、乙两队各派5名选手参加围棋擂台赛,假设各队参赛选手的出场顺序确定.(1)求甲队的主将出场且甲队取得了擂台赛胜利的概率;(2)设甲队出场人数为X ,求X 的分布列及其期望.三、亚洲杯足球赛共有16支球队参赛,这16支球队先分成4个小组循环赛,每个小组4支球队,根据以往战绩先选定4支球队为种子队,分别担任A、B、C、D4个小组的种子球队,中国队没有成为种子球队.(1)求这16支球队分组的总方法数;(2)求中国队与日本队分在同一小组的概率(日本队是种子球队)(3)除4个种子球队外,中国队不希望与甲、乙、丙这3支球队分在同一组,设X表示甲、乙、丙这三支球队与中国队分在同一组的个数,求X的分布列与期望.四、6名奥运会志愿者全部参加A、B、C、D4个场馆的活动,每个场馆至少有1人参加,任意一人只能参加一个场馆的活动(1)求甲乙二人在同一场馆的概率;(2)场馆A的活动有两名志愿者参加的概率;(3)记参加场馆A活动的志愿者人数为X,求X的分布列.课后拓展练习注:此部分为老师根据本讲课程内容为大家精选的课下拓展题目,故不在课堂中讲解,请同学们课下自己练习并对照详解进行自测.题一题面:某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到ξ过的通道,直至走完迷宫为止.令表示走出迷宫所需的时间.ξ(1)求的分布列;ξ(2)求的数学期望.题二题面:某市某房地产公司售楼部,对最近100位采用分期付款的购房者进行统计,统计结果如下表所示:付款方式分1期分2期分3期分4期分5期频数4020a10b已知分3期付款的频率为0.2,售楼部销售一套某户型的住房,顾客分1期付款,其利润为10万元;分2期、3期付款其利润都为15万元;分4期、5期付款其利润都为20万元,用表示销售一套该户型住房的利润.η(1)求上表中a ,b 的值;(2)若以频率分为概率,求事件A :“购买该户型住房的3位顾客中,至多有1位采用分3期付款”的概率P (A );(3)若以频率作为概率,求的分布列及数学期望E .ηη题三题面:某人居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事A B 件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如算作两个路段:路段发生堵车事件A C D →→AC 的概率为,路段发生堵车事件的概率为).15CD 18(Ⅰ)请你为其选择一条由到的最短路线(即此人只A B 选择从西向东和从南向北的路线),使得途中发生 堵车事件的概率最小;(Ⅱ)若记路线中遇到堵车次数为随机变量,求的数学期望.A C FB →→→ξξE ξACDB FE 121101415181316讲义参考答案金题精讲题一答案:(1)三局两胜制下,甲获胜的概率为;五局三胜制下,甲获胜的概率为,20276481因此,比赛局数越多对甲越有利E (X )=4427题二答案:(1)518E (X )=143题三答案:(1) 8870400 (2)14(3) X 的分布列为X 012P28552455355E (X ) =611题四答案:(1)(2)213926(3) X 的分布列X 123P1526926226E (X )=3926详解:(1)分组情况1、1、1、3;1、1、2、2总分法: 311141122463214654243223221560C C C C A C C C C A A A A ⨯⨯⨯⨯⨯⨯⨯⨯+=⨯甲乙在同一场馆的分法:11114211343214421332324240C C C C A C C C A A A ⋅⋅⋅⋅⋅⋅⋅⋅+=∴所求概率P 1=2402=156013(2)场馆A 有2人:211324213622540C C C A C A ⋅⋅⋅⋅=∴所求概率P 1=5409156026=(3)X 的可取值为1、2、3P (X =1)=113123154354362222(900151560156026C C A C C A C A A ⋅⋅⋅⋅⋅+==P (X =2)=5409156026=P (X =3)=336312021560156026C A ⋅==X 的分布列X 123P1526926226E (X )=15+18+6392626=课后拓展练习题一答案:(1) 的分布列ξξ1346p13161613(2)72详解:由已知:可以取的值有1,3,4,6.ξ,,∴1(1)3p ξ==111(3)326p ξ==⋅=111(4)326p ξ==⋅=11111(6)32323p ξ==⋅+⋅=的分布列为:∴ξξ1346p13161613的数学期望(小时).∴ξ11117134636632E ξ=⋅+⋅+⋅+⋅=题二答案:(1) (2) 20,10a b ==()0.896P A =(3) 的分布列ηη101520P 0.40.40.2E =14η详解:(1)由得0.2100a=20a =40201010010a b b ++++=∴= (2)“购买该户型住房的3位顾客中至多有1位采用了3期付款”的概率:3123()0.80.2(10.2)0.896P A C =+⨯-=(3)记分期付款的期数为,则=1,2,3,4,5.且有ξξ40(1)0.4,(2)0.2,(3)0.2100(4)0.1,(5)0.1P P P P P ξξξξξ=========== 的可能取值为:10,15,20η 且()()()()()()()()1010.415230.420450.2P P P P P P P P ηξηξξηξξ=======+=====+==故的分布列为ηη101520P0.40.40.2(万元)100.4150.4200.214E η∴=⨯+⨯+⨯=题三答案:(Ⅰ) 路线发生堵车事件的概率最小A C FB →→→ (Ⅱ) 3760E ξ=详解:(Ⅰ)由到的最短路线有条,A B 3即为:,,.A C DB →→→AC F B →→→A E F B →→→;47264()1583120P A C D B →→→=-⨯⨯=;43560()1546120P A C F B →→→=-⨯⨯=.1207565109211)(=⨯⨯-=→→→B F E A P 故路线发生堵车事件的概率最小.A C FB →→→(Ⅱ)路线中遇到堵车次数可取值为.;AC F B →→→ξ0,1,2,34331(0)5462P ξ==⨯⨯= ;135********(1)546546546120P ξ==⨯⨯+⨯⨯+⨯⨯=;11513141112(2)546546546120P ξ==⨯⨯+⨯⨯+⨯⨯=η101520P0.40.40.2. 1111(3)546120P ξ==⨯⨯=故.147121370123212012012060E ξ=⨯+⨯+⨯+⨯=。
离散型随机变量的分布列
练 2 篮球运动员在比赛中每次罚球命中得 1 分,不中 得 0 分.已知某运动员罚球命中的概率为 0.7,求他罚球一 次的得分的分布列.
[解] 用随机变量 X 表示“每次罚球得分值”,根据 题意,X 可能的取值为 0、1,且取这两个值的概率分别为 0.7、0.3,因此所求的分布列是 X 1 0 P 0.7 0.3
练 3 在 10 件产品中,有 3 件一等品,4 件二等品,3 件三等品.从这 10 件产品中任取 3 件,求: (1)取出的 3 件产品中一等品件数 X 的分布列; (2)取出的 3 件产品中一等品件数多于二等品件数的概 率.
(1)从 10 件产品中取出 3 件,这 3 件产品中恰有 Ck C3-k 3 7 k 件一等品的概率 P(X=k)= 3 (k=0,1,2,3). C10 所以,随机变量 X 的分布列是 [解] X 0 1 2 3 7 21 7 1 P 24 40 40 120
由本例可知, 利用离散型随机变量分布列可以求随机变 量在某个范围内取值的概率, 此时只需根据随机变量的取值 范围确定随机变量可取哪几个值, 再利用分布列即可得到它 的概率, 注意分布列随机变量取不同的值时所表示的随机事 件彼此互斥,因此利用概率的加法公式即可求出其概率.
i 练 1 设随机变量 X 的分布列为:P(X=i)= (i= 10 1,2,3,4),求: (1)P(X=1 或 X=2); 1 7 (2)P( <X< ). 2 2
思 维 激 活
离散型随机变量的分布列的性质 k 例 1 设随机变量 ξ 的分布列 P(ξ= )=ak(k=1,2,3,4,5). 5 3 1 7 (1)求常数 a 的值;(2)求 P(ξ≥ );(3)求 P( <ξ< ). 5 10 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岁月不知人间多少的忧伤,何不潇走一回。我曾经被这首歌感动过,颇为感慨,歌词的作者生活阅历丰富,否则是写不出让人感慨的歌词。美女们在用青春赌明天,其实是在梦里,但愿梦里有人追随,用真情换你的一生。这种用青春赌明天 的婚姻或游戏,其中的“忧伤”只有自己知道,她们除了“赌”以外,实际是一种交换,我用青春、美貌来换取自己需要的物质与欲望,这被称之为“傍大款”。霍曼斯是美国社会学家,社会交换论的 代表人物之一,他强调人和人的动机的重要作用,认为人与人之间的互动,从根本上说是一种交换过程,把社会学的研究还原为微观的社会心理研究。他把社会看作是个人行动和行为交换的结果,社会 结构是个人行为的集合。要是用霍曼斯的社会交换理论来解释婚姻,则婚姻也是一种互利互惠的交换,双方之所以乐意交换,一定是图对方点什么,彼此都从对方那里获得自己想要的,这就导致社会成 员与社会地位、经济地位、价值等理念上,选自己需要的对象进行交换,以达到某种心理或价值上的平衡,其结果往往就是门不当,户不对,这是交换选择的结果,不能用道德一概而论。这是一种交换 形式,另一种则相反,他(她)们交换的对象是各种条件与自己旗鼓相当,即:相貌、身高、学历、经济条件及社会地位;他们的双方家庭也相差不多,或略有差别,不是说一定要在交换中“大赚”, 但一定不能“太亏”,这样的婚姻被称之为“门当户对”,双方各自都得到自己需要的,并达到某种心理或价值上的平衡。网上巴黎人