二次根式及一元二次方程综合测试题

合集下载

一元二次方程测试题(一二)(试卷版)

一元二次方程测试题(一二)(试卷版)

九年级数学第二十二章一元二次方程测试题(一)清华附中初三备课组提供一、选择题1.下列方程中,关于x 的一元二次方程是( )A.()()23121x x +=+ B.21120xx+-=C.20ax bx c ++=D. 2221x x x +=-2.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.2 3.方程22x x =的解为( )A.x =2B. x 1=x 2=0C. x 1=2,x 2=0D. x =0 4.解方程2(51)3(51)x x -=-的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5.用配方法解下列方程时,配方有错误..的是( )A.x 2-2x -99=0化为(x -1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2-7t -4=0化为2781()416t -=D.3y 2-4y -2=0化为2210()39y -=6.下面是李明同学在一次测验中解答的填空题,其中答对的是( )A.若x 2=4,则x =2B.方程x (2x -1)=2x -1的解为x =1C.若x 2-5xy-6y 2=0(xy≠),则x y=6或x y=-1 D.若分式2321x x x-+-值为零,则x =1,2 7.用配方法解一元二次方程20ax bx c ++=,此方程可变形为( )A.222424b b ac x a a -⎛⎫-= ⎪⎝⎭B.222424b ac b x a a -⎛⎫-= ⎪⎝⎭ C.222424b b ac x a a -⎛⎫+= ⎪⎝⎭D.222424b ac b x a a -⎛⎫+= ⎪⎝⎭8.据《武汉市2002年国民经济和社会发展统计公报》报告:武汉市2002年国内生产总值达1493亿元,比2001年增长11.8%.下列说法:① 2001年国内生产总值为1493(1-11.8%)亿元;②2001年国内生产总值为1493111.8%-亿元;③2001年 国内生产总值为1493111.8%+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是( )A.③④B.②④C.①④D.①②③9.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是 ( )A.9cm 2B.68cm 2C.8cm 2D.64cm 2二、填空题10.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 . 11.把方程(2x+1)(x —2)=5-3x 整理成一般形式后,得 , 其中二次项系数是 ,一次项系数是 ,常数项是 .12.配方:x 2 -3x+ = (x - )2; 4x 2-12x+15 = 4( )2+6 13.一元二次方程ax 2+bx+c=0 (a≠0)的求根公式是: . 14.认真观察下列方程,指出使用何种方法解比较适当:(1) 4x 2+16x =5,应选用 法;(2) 2(x +2)(x -1)=(x +2)(x +4),应选用 法; (3) 2x 2-3x -3=0,应选用 法.15.方程23x x =的解是____;方程()()230x x -+=的解是______________. 16.已知代数式7x (x +5)+10与代数式9x -9的值互为相反数,则x = . 17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 三、解答题18.用开平方法解方程:2(1)4x -=19.用配方法解方程:x 2—4x +1=020.用公式法解方程:3x2+5(2x+1)=021.用因式分解法解方程:3(x-5)2=2(5-x)四、应用题22.某校2005年捐款1万元给希望工程,以后每年都捐款,计划到2007年共捐款4.75万元,问该校捐款的平均年增长率是多少?23.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.五、综合题24.已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根.求此三角形的周长.九年级数学第二十二章一元二次方程测试题(二)清华附中初三备课组提供一、选择题1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( )A .2m =±B .m =2C .m= -2D .2m ≠± 2.若方程()24x a -=有解,则a 的取值范围是( )A .0a ≤B .0a ≥C .0a >D .无法确定3.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=3,x 2=1,那么这个一元二次方程 是( )A. x 2+3x +4=0 B.x 2+4x -3=0 C.x 2-4x +3=0 D. x 2+3x -4=04.一元二次方程()224260m x m x m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 5.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 6.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 7.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠08.若t 是一元二次方程20(0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定9.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .310.三角形两边的长分别是8和6,第三边的长是一元二次方程216600x x -+=的一个实数根,则该三角形的面积是 ( )A .24B .24或C .48D .二、填空题11.一元二次方程(x +1)(3x -2)=10的一般形式是 . 12.当m 时,关于x 的方程27(3)5mm x x ---=是一元二次方程;当m 时,此方程是一元一次方程.13.如果一元二次方程ax 2-bx +c =0有一个根为0,则c = ;关于x 的一元二次方程2x 2-ax -a 2=0有一个根为-1,则a = .14.把一元二次方程3x 2-2x -3=0化成3(x+m )2=n 的形式是 ;若多项式x 2-ax +2a -3是一个完全平方式,则a = .15.若方程20x m -=有整数根,则m 的值可以是 (只填一个). 16.已知两个连续奇数的积是15,则这两个数是__________. 17.已知2222(1)(3)5x y x y +++-=,则22x y +的值等于 . 18.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .19.当x = 时,. 三、解答题20.用配方法证明245x x -+的值不小于1.21.已知a 、b 、c 2|1|(3)0b c +++=,求方程20ax bx c ++=的根.四、应用题22.合肥百货大搂服装柜在销售中发现:―宝乐‖牌童装平均每天可售出20件,每件盈利40元.为了迎接―十·一‖国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?五、综合题23.设m为整数,且4<m<40,方程22--+-+=有两个不相等的整数根,x m x m m2(23)41480求m的值及方程的根.第二十二章一元二次方程测试题(一)参考答案一、选择题1.A 2.C 3.C 4.D 5.B 6.C 7.C 8.B 9.D 二、填空题10.m ≠3 11.2270x -= 2 0 —7 12.232⎛⎫⎪⎝⎭32;32x -13.240)2x b ac a=-≥ 14.(1)配方;(2)因式分解;(3)公式法15.120,3x x ==;122,3x x ==- 16.151142--或 17.10三、解答题18.解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-. 19.解:移项,得241,x x -=-配方,得2443x x -+=,2(2)3x -=,2x -=1222x x =+=-.20.解:方程化为一般形式,得231050x x ++=,223,10,5,41043540,a b c b ac ===-=-⨯⨯=2363x ===⨯1233x x ==.21.解:移项,得23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --=503130,x x -=-=或 12135,3x x ==.四、应用题22.解:设该校捐款的平均年增长率是x ,则211(1)1(1) 4.75x x +⨯++⨯+=,整理,得23 1.75x x +=,解得120.550%, 3.5(,)x x ===-不合题意舍去, 答:该校捐款的平均年增长率是50%.23.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得(352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米. 五、综合题24.解:解方程x 2-17x +66=0,得126,11x x ==,当x =6时,3+8>6,8-3<6,可以构成三角形; 当x =11时,3+8=11,不能构成三角形. 所以三角形的周长为3+8+6=17.第二十二章一元二次方程测试题(二)参考答案一、选择题1.B 2.B 3.C 4.D 5.B 6.A 7.C 8.A 9.C 10.B 二、填空题11.23120x x +-= 12.3 3±±或 13.0 —1或2 14.2110333x ⎛⎫-= ⎪⎝⎭ 2或6 15.m 为完全平方数均可,如取0,或1,或4等 16.3和5或—3和—5 17.4 18.2 19.—5 三、解答题20.证明:245x x -+=2(2)1x -+, ∵2(2)0,x -≥∴2(2)1x -+≥1, ∴245x x -+的值不小于1.2120,|1|0,(3)0b c ≥+≥+≥,又∵2|1|(3)0b c +++=,∴2|1|(3)0b c =+=+=, ∴a =1,b =-1,c =-3,∴方程20ax bx c ++=为230x x --=,解得1222x x ==四、应用题22.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 五、综合题23.解:解方程222(23)41480x m x m m --+-+=,得(23)2x m ==-±∵原方程有两个不相等的整数根,∴2m +1为完全平方数, 又∵m 为整数,且4<m <40, ∴m =12或24.∴当m =12时,243215x =-±=±,1226,16x x ==;当m =24时,12483457,52,38x x x =-±±==。

一元二次方程解法,解答,比例的性质,二次根式计算中考题

一元二次方程解法,解答,比例的性质,二次根式计算中考题

试卷第1页,总6页绝密★启用前2018年06月06日公共体验号的初中数学组卷试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I 卷的文字说明一.选择题(共13小题) 1.计算﹣•的结果是( ) A .B .C .D .2.下列计算,正确的是( ) A .B .C .D .3.下列计算正确的是( ) A .=× B .=﹣C .=D .=4.计算(﹣2)(+2)的结果是( ) A .﹣1 B .1 C .3D .5.已知,那么下列等式中,不成立的是( ) A . B .C .D .4x=3y6.已知,那么下列式子中一定成立的是( ) A .x +y=5B .2x=3yC .D .试卷第2页,总6页7.已知,那么的值为( )A .B .C .D .8.已知2a=3b ,则a :b 的值是( ) A . B . C . D . 9.若2x=3y ,则的值为( ) A . B . C . D . 10.已知=,则的值为( )A .B .C .﹣D .﹣11.已知x :y=3:2,则下列各式中不正确的是( ) A . B .C .D .12.已知,则代数式的值为( )A .B .C .D . 13.已知,则的值是( )A .B .C .D .﹣试卷第3页,总6页第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共3小题) 14.若=,则= .15.已知2x=3y (y ≠0),那么= .16.已知5a=4b ,那么= .三.解答题(共34小题) 17.计算:÷﹣×+. 18.计算:.19.计算 (1)(2﹣1)2+(+2)(﹣2) (2)(﹣2)×﹣6.20.计算:×+.21.计算:()•22.计算: (1)3﹣﹣(2)(2+4﹣3)23.计算 (1)﹣+(2)(5+)(5﹣2) 24.计算:×3﹣+|1﹣|.25.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0.(1)若方程有两个不相等的实数根,求k 的取值范围;试卷第4页,总6页(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长.26.解方程:x 2﹣5x +3=0.27.已知关于x 的方程x 2+ax +a ﹣2=0. (1)若该方程的一个根为1,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根. 28.解方程:x (x ﹣1)=4x +6.29.已知关于x 的一元二次方程(x ﹣m )2﹣2(x ﹣m )=0(m 为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m 的值.30.已知关于x 的一元二次方程x 2﹣(m +3)x +m +2=0. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程有一个根的平方等于4,求m 的值. 31.解方程:x 2﹣6x +5=0.32.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.33.解下列方程: (1)x 2+10x +25=0 (2)x 2﹣x ﹣1=0.34.已知关于x 的方程mx 2+(3﹣m )x ﹣3=0(m 为实数,m ≠0). (1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数m 的值.35.已知关于x 的方程x 2﹣2mx +m 2+m ﹣2=0有两个不相等的实数根. (1)求m 的取值范围.(2)当m 为正整数时,求方程的根.36.已知:关于x 的一元二次方程x 2﹣(2m +3)x +m 2+3m +2=0. (1)已知x=2是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为△ABC 中AB 、AC (AB <AC )的边长,当BC=时,△ABC 是等腰三角形,求此时m 的值.试卷第5页,总6页37.解下列方程: (1)x 2﹣2x ﹣2=0; (2)(x ﹣1)(x ﹣3)=8.38.已知关于x 的方程x 2﹣(2k +1)x +k 2﹣2=0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)若方程的两个实数根x 1,x 2满足+=﹣,求k 的值.39.已知关于x 的方程(k +1)x 2﹣2(k ﹣1)x +k=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若x 1+x 2=x 1x 2+2,求k 的值. 40.已知关于x 的方程x 2+(k +3)x +=0有两个不相等的实数根.(1)求k 的取值范围;(2)若方程两根为x 1,x 2,那么是否存在实数k ,使得等式=﹣1成立?若存在,求出k 的值;若不存在,请说明理由.41.已知关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个实数根x 1、x 2. (1)求m 的取值范围;(2)若x 12+x 22=6x 1x 2,求m 的值.42.已知:关于x 的方程x 2﹣4mx +4m 2﹣1=0. (1)不解方程:判断方程的根的情况;(2)若△ABC 为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.43.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)当方程有一个根为1时,求k 的值. 44.已知关于x 的方程x 2﹣(k +1)x ﹣6=0.(1)求证:无论k 取任何实数,该方程总有两个不相等的实数根; (2)若方程的一根为2,试求出k 的值和另一根. 45.已知关于x 的方程x 2﹣(m +2)x +2m ﹣1=0(Ⅰ)求证:无论m 取何值,方程恒有两个不相等的实数根; (Ⅱ)若此方程的一个根为1,请求出方程的另一个根.46.已知关于x 的一元二次方程(m ﹣2)x 2+2mx +m +3=0有两个不相等的实数根.试卷第6页,总6页(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根. 47.(1)计算:+6cos30°﹣(+2)0(2)解方程:(x +2)(x +3)=2x +16.48.已知关于x 的一元二次方程x 2﹣(m ﹣1)x +2m ﹣6=0. (1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m 的取值范围.49.已知关于x 的一元二次方程x 2﹣4x +2k ﹣1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围; (2)若x 1﹣x 2=2,求k 的值.50.已知关于x 的一元二次方程x 2﹣(m ﹣2)x ﹣m=0. (1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x 1,x 2,且x 1+x 2﹣x 1x 2=7,求m 的值.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

二次根式和一元二次方程综合测试题

二次根式和一元二次方程综合测试题

姓名: 、选择题(每小题 2分,共 1 .函数y = J x -9中自变量 A. x> 0 B .x >0 二次根式和一元二次方程综合检测题(本卷满分120分; 20 分)x 的取值范围是( C . x>9 2.下列方程中,有两个不相等实数根的是( 测试时间100分钟) 分数: .x > 9 2 2 A. x -2x -1 =0 B . x -2x +3 =0 x 2 243x-3 D . X 2-4x + 4 = 0 3.下列运算正确的是() A . + yf 2 = B .寸3 X 42 = J 6 e -1)2 =3-1 D .加-32 =5-3 2 4.方程x =0的解的个数为( ) A. 0 B.1 C.2 D.1 5、如果关于x 的方程ax 2+x - 1=有实数根,则a 11 1 -B.a >- - C.a -且 a 丰 0 D.a >- 4 4 4 x 2— 7x + 12 --- 9一 的值为0,则x 的值为( ) x 9 或2 的取值范围是 A.a >- 6、若分式 A.3、4 B.—3、一 4 C.3 D.4 7.关于x的一元二次方程 X 2 +nx+m =0的两根中只有一个等于 1 -且 a z0,则下列条件正确的是()A. m=0, n=0B. m=0, n^OC. mHO, n=0D. mHO, n^O 8. 已知关于x 的方程(a 2 - 1) x 2- ( a + 1 ) x + 1 = 0 的两实根互为倒数,则 a 的值为() 入±眾 B 、-眾 C D - 1 9. 生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了果全组有x 名同学,则根据题意列出的方程是A. x (x + 1) = 18B. x (x10 .某商品连续两次降价, 每次都降 () 1) = 182 C. 2x ( x + 1) = 182 20%后的价格为 m 元,则原价是 182件,如 D. x (x — 1) = 182 X 2 ) A. m 元 B.1.2 1.22 二、填空题(每空 2分, 共 20 分) 1.方程(x + 2)(x — 1)=0的解为 3.化简兽 5.当aC. 元 0.82D.0.8 ;2.当 a= V 3 时,贝U J l5 +a 24.在实数的范围内分解因式4 -x -9时,方程(a 2— 1)x 2+ 3ax + 1 = 0是一元二次方程6.若方程X 2+ px +q =0的两个根是-2和3,贝U P,q 的值分别为 7.若代数式4x 2 -2x-5与2x 2+1的值互为相反数,则x 的值是 8. 已知关于x 的一元二次方程 x 2+kx+k=0的一个根是-2,那么k=9. 如果关于x 的方程2x 2-(4k+1)x + 2 k 2- 1 = 0有实数根,那么k 的取值范围是 10. 一个直角三角形的两条直角边的长刚好是方程的斜边长为 _____________ 三.计算题(共28分)1. 化简下列各式(每小题 4分,共12分)四.解答题(共52 分)1.已知等腰三角形底边长为 8,腰长是方程 X 2 -9x +20=0的一个根,求这个三角形的面积.(5分):X 2- 7x + 12=0的两个根,则该直角三角形(1)侦-725 + ^/5(2) J3a~2b~2.用适当的方法解下列一元二次方程(每小题 4分,共16 分)(1)(X+4)2 =5(x+4) (2) (x+3)2 =(1-2x)2(3) 2x 2-10x =32(4) x +3x-4 = 02.若 a =3 +2J2 , b =3 _2J2,求 a2b -ab2的值(5 分)13.若的整数部分为a,小数部分为b,求a --的值(5 分)b1 ----- F------ 1 ---- /-------2 2 4.若X =-( J3a 帖b +U3a —5b),y =刁(J3a +5b -J3a-5b),求x +xy +y 的值(6 分)25.已知方程X+3x+m=0的两根之差为5. (1)求两根之和与两根之积(2)求m的值(6分)6.两个数的和为8,积为9.75,求这两个数?(6 分)7. 某种手表原来每只售价 96元,经过连续2次降价后,现在每只售价54元,平均每次降价的百分率 是多少?( 6分)8.已知关于x 的一元二次方程X 2 —(2m+3)x + m 2= 0 (6分)9•一辆汽车以20米每秒的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行了 停车.(7分)(1 )从刹车到停车用了多少时间?(2) 从刹车到停车平均每秒减速减少多少?(3) 刹车后汽车滑行到 15米时约用了多少时间?(精确到 0.1秒)?(1 )当m 取何值时,方程式有实数解?(2)当m 取何值时,方程没有实数解25米后。

2014年九年级数学下册复习测试题(二次根式、一元二次方程、圆、二次函数、相似)

2014年九年级数学下册复习测试题(二次根式、一元二次方程、圆、二次函数、相似)

九年级数学下册期末(二次根式、一元二次方程、圆、二次函数、相似)复习测试数学试卷(时间:120分钟,满分120分)一、选择题(每小题3分,共36分).1x 的取值范围是( )A .1x >B .1x ≥C .1x ≤D .1x <2的相反数是( ) A. BC.2- D.23.一元二次方程的2650x x +-=左边配成完全平方式后所得的方程为 ( )A .2(3)14x -=B .2(3)14x +=C .21(6)2x +=D .以上答案都不对 4.(2008湖北)下列方程中,有两个不等实数根的是( ) A .238x x =- B .2510x x +=- C .271470x x -+= D .2753x x x -=-+5.若b b -=-3)3(2,则( ) A .b>3 B .b<3 C .b ≥3 D .b ≤36.如图,△ABC 内接于⊙O ,∠A=400,则∠OBC 的度数为 ( )A. 200B. 400C. 500D. 707.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长是3,则弦AB 的长是 ( )8.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为 ( )A 、-1或3B 、-1C 、3D 、无法确定9.二次函数m x m x y 4)1(22++-=的图象与x 轴 ( )A 、没有交点B 、只有一个交点C 、只有两个交点D 、至少有一个交点10.二次函数222+-=x x y 有 ( )A 、最大值1 B 、最大值2 C 、最小值1 D 、最小值211.已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个12.将一个矩形纸片ABCD 沿AD 和BC 的中点的连线对折,要使矩形AEFB 与原矩形相似,则原矩形的长和宽的比应为( ) A .2:1 B .1:3 C .1:2 D .1:1图二、填空题:(每小题3分,共30分)13.当x __________时,式子31-x 有意义. 14.a -12-a 的有理化因式是____________.15.当1<x <4时,|x -4|+122+-x x =________________.16.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.17.已知a 2+3a=7,b 2+3b=7,且a≠b,则a+b=_______.18.已知210x x +-=,则323x x x +-+的值为19.将抛物线 y =2x 2 向下平移 2 个单位,所得的抛物线的解析式为 。

二次根式和一元二次方程测试题(附完整答案及解析)

二次根式和一元二次方程测试题(附完整答案及解析)

二次根式和一元二次方程测试题一.选择题(36分)1。

下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个2。

当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-23.下列二次根式:2xy ,8,a b 2,35x y ,x y +,12,其中最简二次根式共有( ) A 。

2个 B. 3个 C 。

4个 D 。

5个4。

化简二次根式a a a -+12的结果是 ( ) A 。

--a 1 B 。

---a 1C 。

a -1D 。

--a 1 5. 式子错误!+错误!有意义的条件是 ( )A 。

x ≥0B 。

x ≤0且x ≠-2C 。

x ≠-2D 。

x ≤0 6。

计算abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1 D .ab b 7。

下列方程中,一元二次方程是( ) (A )221xx +(B)bx ax +2(C )()()121=+-x x (D )052322=--y xy x 8。

已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) (A )21- (B)2 (C)21 (D)-2 9.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围( )(A) k <1 (B )k ≠0 (C )k <1且k ≠0 (D ) k >110某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x ,则所列方程应为( )A .100(1+x)2=800B 。

100+100×2x=800C .100+100×3x=800 D.100[1+(1+x)+(1+x)2]=80011。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。

答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。

答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。

答案:4√2
2. 解方程:
√x + 3 = 7。

答案:x = 16
四、证明题
1. 证明√2是一个无理数。

答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。

答案:边长为√50厘米,即5√2厘米。

六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。

七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。

《二次根式与一元二次方程》专题练习含解析

《二次根式及一元二次方程》一、选择题1.估算的值〔〕A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.要使+有意义,那么x应满足〔〕A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.方程x2+bx+a=0有一个根是﹣a〔a≠0〕,那么以下代数式的值恒为常数的是〔〕A.ab B.C.a+b D.a﹣b4.a,b,c分别是三角形的三边,那么方程〔a+b〕x2+2cx+〔a+b〕=0的根的情况是〔〕A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.市2016年国生产总值〔GDP〕比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,假设这两年GDP年平均增长率为x%,那么x%满足的关系是〔〕A.12%+7%=x% B.〔1+12%〕〔1+7%〕=2〔1+x%〕C.12%+7%=2•x% D.〔1+12%〕〔1+7%〕=〔1+x%〕26.以下各式计算正确的选项是〔〕A.B.〔a<1〕C.D.7.关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满足〔〕A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,那么a2+2a+b的值为〔〕A.2014 B.2017 C.2015 D.20169.方程〔x﹣3〕〔x+1〕=x﹣3的解是〔〕A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,那么这个三角形的周长为〔〕A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0〔a≠0〕满足a+b+c=0,那么我们称这个方程为“凤凰〞方程.ax2+bx+c=0〔a≠0〕是“凤凰〞方程,且有两个相等的实数根,那么以下结论正确的选项是〔〕A.a=c B.a=b C.b=c D.a=b=c12.如图,双曲线y=〔k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为〔〕A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,那么实数a的取值围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,那么x12+3x1x2+x22的值为.18.x=1是一元二次方程x2+mx+n=0的一个根,那么m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.〔答案不唯一〕20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,那么〔x1﹣x2〕2的值是.21.假设把代数式x2﹣2x﹣3化为〔x﹣m〕2+k的形式,其中m,k为常数,那么m+k=.22.将根号外面的因式移进根号后等于.23.假设正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.假设正方形OABC的面积为1,那么k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0.〔1〕求证:无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.一元二次方程x2﹣2x+m=0.〔1〕假设方程有两个实数根,求m的围;〔2〕假设方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.关于x的一元二次方程x2=2〔1﹣m〕x﹣m2的两实数根为x1,x2〔1〕求m的取值围;〔2〕设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值〔〕A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的围,再估算的围即可.【解答】解:∵5<<6∴3<<4应选C.【点评】此题主要考察了利用平方根的定义来估算无理数的大小,解题关键是估算的整数局部和小数局部.2.要使+有意义,那么x应满足〔〕A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.应选:D.【点评】此题考察的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.方程x2+bx+a=0有一个根是﹣a〔a≠0〕,那么以下代数式的值恒为常数的是〔〕A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】此题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a〔a≠0〕,∴〔﹣a〕2+b〔﹣a〕+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故此题选D.【点评】此题考察的重点是方程根的定义,分析问题的方向比拟明确,就是由入手推导、发现新的结论.4.a,b,c分别是三角形的三边,那么方程〔a+b〕x2+2cx+〔a+b〕=0的根的情况是〔〕A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=〔2c〕2﹣4〔a+b〕2=4[c2﹣〔a+b〕2]=4〔a+b+c〕〔c﹣a﹣b〕,根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.应选A.【点评】此题是方程与几何的综合题.主要考察了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对〔2c〕2﹣4〔a+b〕〔a+b〕进展因式分解.5.市2016年国生产总值〔GDP〕比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,假设这两年GDP年平均增长率为x%,那么x%满足的关系是〔〕A.12%+7%=x% B.〔1+12%〕〔1+7%〕=2〔1+x%〕C.12%+7%=2•x% D.〔1+12%〕〔1+7%〕=〔1+x%〕2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×〔1+增长率〕,然后用平均增长率和实际增长率分别求出今年的国生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:假设设2015年的国生产总值为y,那么根据实际增长率和平均增长率分别得到2010年和今年的国生产总值分别为:2016年国生产总值:y〔1+x%〕或y〔1+12%〕,所以1+x%=1+12%,今年的国生产总值:y〔1+x%〕2或y〔1+12%〕〔1+7%〕,所以〔1+x%〕2=〔1+12%〕〔1+7%〕.应选D.【点评】此题主要考察增长率问题,然后根据增长率和条件抽象出一元二次方程.6.以下各式计算正确的选项是〔〕A.B.〔a<1〕C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法那么的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进展乘方运算再合并最后化简就可以了;D、先进展分母有理化,再进展合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、〔a<1〕,本答案正确;C、,本答案错误;D、==4≠2,本答案错误.应选B.【点评】此题考察了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满足〔〕A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么分两种情况:〔1〕当a﹣5=0时,方程一定有实数根;〔2〕当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根∴16+4〔a﹣5〕≥0,∴a≥1.∴a的取值围为a≥1.应选:A.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,那么a2+2a+b的值为〔〕A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=〔a2+a〕+〔a+b〕,故根据方程的解的意义,求得〔a2+a〕的值,由根与系数的关系得到〔a+b〕的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=〔a2+a〕+〔a+b〕=2016﹣1=2015.应选:C.【点评】此题综合考察了一元二次方程的解的定义及根与系数的关系,要正确解答此题还要能对代数式进展恒等变形.9.方程〔x﹣3〕〔x+1〕=x﹣3的解是〔〕A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为〔x﹣3〕,提公因式,降次即可求得.【解答】解:∵〔x﹣3〕〔x+1〕=x﹣3∴〔x﹣3〕〔x+1〕﹣〔x﹣3〕=0∴〔x﹣3〕〔x+1﹣1〕=0∴x1=0,x2=3.应选D.【点评】此题考察了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以到达事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,那么这个三角形的周长为〔〕A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15应选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0〔a≠0〕满足a+b+c=0,那么我们称这个方程为“凤凰〞方程.ax2+bx+c=0〔a≠0〕是“凤凰〞方程,且有两个相等的实数根,那么以下结论正确的选项是〔〕A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得〔﹣a﹣c〕2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0〔a≠0〕有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得〔﹣a﹣c〕2﹣4ac=0,即〔a+c〕2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=〔a﹣c〕2=0,∴a=c.应选A【点评】一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.12.如图,双曲线y=〔k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为〔〕A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为〔﹣6,4〕,根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为〔﹣6,4〕,∴D〔﹣3,2〕,∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.应选B.【点评】此题考察了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式.性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考察了算术平方根的定义,此题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】此题考察了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数一样的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数一样的二次根式进展合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,那么实数a的取值围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足以下条件:〔1〕二次项系数不为零;〔2〕在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】此题考察了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,那么x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=〔x1+x2〕2+x1x2进一步代值求解.原式=〔x1+x2〕2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.x=1是一元二次方程x2+mx+n=0的一个根,那么m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=〔m+n〕2=〔﹣1〕2=1.故答案为:1.【点评】此题主要考察了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .〔答案不唯一〕【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故此题答案不唯一,如x2=1等.【点评】此题属于开放性试题,主要考察一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如〔y﹣1〕〔y+2〕=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,那么〔x1﹣x2〕2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m〔需注意m的值应符合此方程的根的判别式〕;然后再代值求解.那么:〔x1+x2〕2=x12+x22+2x1x2,即m2=7+2〔2m﹣1〕,解得m=﹣1,m=5;当m=5时,△=m2﹣4〔2m﹣1〕=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴〔x1﹣x2〕2=〔x1+x2〕2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.此题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.假设把代数式x2﹣2x﹣3化为〔x﹣m〕2+k的形式,其中m,k为常数,那么m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=〔x﹣1〕2﹣4,可知m=1.k=﹣4,那么m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=〔x﹣1〕2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】此题主要考察完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:〔a±b〕2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣〔﹣a〕•=﹣=﹣.故答案为﹣.【点评】此题考察了二次根式的性质与化简:〔a≥0〕为二次根式; =|a|;=•〔a≥0,b≥0〕等.23.假设正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.假设正方形OABC的面积为1,那么k的值为 1 ;点E的坐标为〔+,﹣〕.【考点】反比例函数系数k的几何意义.【分析】〔1〕根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1,得出B点坐标,即可得出反比例函数的解析式;〔2〕由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=〔x>0〕求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:〔1,1〕,设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,那么E〔1+a,a〕,代入反比例函数y=〔x>0〕得:1=〔1+a〕a,又a>0,解得:a=﹣.∴点E的坐标为:〔 +,﹣〕.【点评】此题考察了反比例函数与正方形性质结合的综合应用,考察了数形结合的思想,利用xy=k得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】此题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】此题考察实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,那么方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x=1,.1【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.此题考察用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0〔a≠0〕的形式,然后再配方求解.26.关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0.〔1〕求证:无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】〔1〕根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:〔1〕关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0,△=〔2k+1〕2﹣4〔4k﹣3〕=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,那么b+c=2k+1②,bc=4k﹣3③,因为〔b+c〕2﹣2bc=b2+c2=31,即〔2k+1〕2﹣2〔4k﹣3〕=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2〔舍去〕,那么b+c=2k+1=7,又因为a=,那么△ABC的周长=a+b+c=+7.【点评】此题考察了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明〔1〕,再根据勾股定理和根与系数的关系列出方程组进展解答.27.一元二次方程x2﹣2x+m=0.〔1〕假设方程有两个实数根,求m的围;〔2〕假设方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】〔1〕一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的围;〔2〕利用两根关系,x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:〔1〕∵方程x2﹣2x+m=0有两个实数根,∴△=〔﹣2〕2﹣4m≥0,解得m≤1;〔2〕由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】此题考察了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.关于x的一元二次方程x2=2〔1﹣m〕x﹣m2的两实数根为x1,x2〔1〕求m的取值围;〔2〕设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】〔1〕假设一元二次方程有两不等根,那么根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值围;〔2〕根据根与系数的关系可得出x 1+x 2的表达式,进而可得出y 、m 的函数关系式,根据函数的性质及〔1〕题得出的自变量的取值围,即可求出y 的最小值及对应的m 值. 【解答】解:〔1〕将原方程整理为x 2+2〔m ﹣1〕x+m 2=0; ∵原方程有两个实数根,∴△=[2〔m ﹣1〕]2﹣4m 2=﹣8m+4≥0,得m ≤;〔2〕∵x 1,x 2为一元二次方程x 2=2〔1﹣m 〕x ﹣m 2,即x 2+2〔m ﹣1〕x+m 2=0的两根, ∴y=x 1+x 2=﹣2m+2,且m ≤;因而y 随m 的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答〔2〕题的关键.。

二次根式同步测试题及答案

二次根式1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。

当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 概念:式子a (a≥0)叫二次根式。

a (a≥0)是一个非负数。

2、二次根式有意义的条件:(1)被开方数是一个非负数。

(2)分母不能为零。

练习题1、判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y +、x y +(x≥0,y •≥0).(2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y +=--++中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个(3)下列各式一定是二次根式的是( ) A.7- B.32m C. 21a + D.a b2、二次根式有意义的条件1.要使根式3-x 有意义,则字母x 的取值范围是______.2.当x ______时,式子121-x 有意义.3.要使根式234+-x x有意义,则字母x 的取值范围是______.4.若14+a 有意义,则a 能取得的最小整数值是______.5.若x x -+有意义,则=+1x ______.6.使等式032=-⋅+x x 成立的x 的值为______.8.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0 (B)32->x (C)23-≥x (D)32-≥x 9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1 (B)x >1且x ≠-2 (C)x ≠-2 (D)x ≥1且x ≠-210.x 为实数,下列式子一定有意义的是( )(A)21x (B)x x +2(C)112-x (D)12+x13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x +--21 (3)232+x (4)x x 2)1(- (5)222++x x17.(1)已知05|3|=-++y x ,求yx的值;(2)已知01442=+++++y x y y ,求y x 的值.问题探究:已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.二次根式(2)掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =.填空题:1.当a ≥0时,=2a ______;当a <0时,2a =______. 2.当a ≤0时,=23a ______;=-2)23(______.3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______.6.若22)()(y x y x -=-,则x 、y 应满足的条件是______.7.若0)2(|4|2=-+++x y x ,则3x +2y =______.8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.9.请你观察、思考下列计算过程: 图4 因为112=121,所以11121=,同样,因为1112=12321,所以=12321111,……由此猜想=76543211234567898______.选择题:10.36的平方根是( )(A)6(B)±6(C)6(D)±611.化简2)2(-的结果是( )(A)-2 (B)±2 (C)2(D)412.下列式子中,不成立的是( )(A)6)6(2= (B)6)6(2=--(C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a a a 的值是( )(A)1(B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2(C)-x +2(D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2 (B)x <2 (C)x ≥2 (D)x >216.若a a -=2,则数a 在数轴上对应的点的位置应是( )(A)原点(B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2x x +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2(B)2<13<3(C)3<13<4(D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6(B)8(C)35(D)37解答题: 20.计算:(1);)12(|3|)2(02---+- (2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x (2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.25.阅读下面的文字后,回答问题:小明和小芳解答题目:先化简下式,再求值:221a a a +-+,其中a =9时,得出了不同的答案.小明的解答是:原式=1)1()1(2=-+=-+a a a a ;小芳的解答是:原式=1719212)1()1(2=-⨯=-=--=-+a a a a a .(1)______的解答是错误的;(2)说明错误的原因.26.细心观察图5,认真分析各式,然后解决问题.图5;21,21)1(12==+S ;22,31)2(22==+S;23,41)3(32==+S…… ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出21024232221S S S S S +++++ 的值. 27.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:⋅≈5ht (1)已知h =100米,求落下所用的时间t ;(结果精确到0.01)(2)一人手持一物体从五楼让它自由落到地面,约需多少时间?(每层楼高约3.5米,手拿物体高为1.5米)(结果精确到0.01)(3)如果一物体落地的时间为3.6秒,求物体开始下落时的高度.问题探究:同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是:蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的推导却让你大吃一惊:蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,则x +y =2a . 两边同乘以(x -y ),得(x +y )(x -y )=2a (x -y ), 即x 2-y 2=2ax -2ay .可变形为x 2-2ax =y 2-2ay .两边都加上a 2,得(x -a )2=(y -a )2. 两边开平方,得x -a =y -a . 所以x =y .这里竟然得出了蚂蚁和大象一样重,岂不荒唐!那么毛病究竟出在哪里呢?亲爱的同学,你能找出来吗?二次根式的乘除理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性 填空题:1.计算:ab a ⋅=______.2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______.5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______.选择题:7.化简20的结果是( ) (A)25(B)52(C)102(D)548.化简5x -的结果是( )(A)x x2- (B)x x--2(C)x x-2(D)x x29.若a ≤0,则3)1(a -化简后为( )(A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯- (5));25.22(321-⨯ (6);656)3122(43⨯-⨯ (7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅ (13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图121.2 二次根式的乘除(2)理解二次根式除法运算法则,即b aba =(a ≥0,b >0)的合理性 填空题: 1.在4,21,8,6中,是最简二次根式的是______. 2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm .3.2-3的倒数是______,65+的倒数是______. 4.使式子3333+-=+-x xx x 成立的条件是______. 选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( ) (A)1个 (B)2个(C)3个(D)4个7.化简273-的结果是( ) (A)27- (B)27+(C))27(3-(D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确(C)甲、乙的解法都正确(D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( ) (A)22(B)2(C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于()图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(baa b a b b a ÷的正确结果是( ) (A)ba(B)ab(C)22ba(D)112.若ab ≠0,则等式aba b a 135-⋅=--成立的条件是( ) (A)a >0,b >0(B)a <0,b >0(C)a >0,b <0(D)a <0,b <0解答题: 13.计算:(1);51 (2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344c b a c b a -÷(11);152)1021(23÷⨯(12);521431252313⨯÷ (13);653034y xy xy ⋅÷(14);3)23(235ab b a ab b ÷-⋅ (15));1843(3211233xyxy x -÷⋅(16)⋅-÷+)2332()2332(14.已知一个圆的半径是cm,90一个矩形的长是135πcm ,若该圆的面积与矩形的面积相等,求矩形的宽是多少?15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12(2).016.016.已知:如图2,在△ABC 中,∠A =60°,∠B =45°,AB =8.求△ABC 的面积.图217.阅读下列解题过程,根据要求回答问题:化简:)0(2323<<+--a b a ba ab b a b a解:原式a b a b ab a 2)(--= ①aba b a b a --=)(②ab aa )1(⋅=③ ab =④(1)上面解答过程是否正确?若不正确,请指出是哪几步出现了错误? (2)请你写出你认为正确的解答过程.18.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是glT π2=,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内这台座钟大约发出了多少次滴答声?(π取3.14)问题探究:借助计算器计算下列各题:(1);211- (2);221111- (3);222111111- (4).222211111111-仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?与同学交流一下想法.并用所发现的规律直接写出下面的结果:个个10012002222111⋅⋅⋅-⋅⋅⋅=______.21.3 二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 选择题: 7.计算312-的结果是( ) (A)3(B)3(C)32(D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab (D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+(B)15354=- (C)y x y x +=+22(D)52045=-12.若121,121+=-=b a 则)(ab b a ab -的值为( ) (A)2 (B)-2(C)2(D)22解答题:13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++- (8);5.0753128132-+--(9))455112()3127(+--+; (10)231)13(3-++; (11)a a a aaa a 1084333273123-+-;问题探究 教师节到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2.他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2米金彩带,请你帮忙算一算,他的金彩带够用吗?如果不够用,还需买多长的金彩带?(2=1.414,保留整数)21.3 二次根式的加减(2)学习要求会进行简单的二次根式的加、减、乘、除四则运算的混合运算. 做一做: 填空题: 选择题:9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2(D)110.下列计算中正确的是( )(A)2323182=⨯= (B)134916916=-=-=- (C)24312312=== (D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825 (C)48与8.4 (D)125.0与12812.化简)22(28+-得( )(A)-2(B)22-(C)2(D)224-13.下列计算中,正确的是( )(A)562432=+ (B)3327=÷(C)632333=⨯ (D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=-(B)1)52)(52(=+-(C)23226=-(D)228=-15.化简aa a a a a 149164212-+的值必定是( ) (A)正数(B)负数(C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a ab ,则22-+-++baa b b a a b 的值为( ) (A)22 (B)2(C)22-(D)32解答题:17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-; (6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2mn m n m n m m n ÷-.18.如图2,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.图219.阅读下面的解答过程,然后答题:已知a 为实数,化简aa a 13---. 解:原式.)1(1a a a aa a a --=-⋅--= (1)上述解答是否有错误?答:____________;(2)若有错误,错在______步,错误的原因是____________; (3)写出正确的解答过程.20.阅读理解题:如果按一定次序排列的三个数a ,A ,b 满足A -a =b -A ,即,2ba A +=则称A 为a ,b 的等差中项.如果按一定次序排列的三个数a ,G ,b 满足,Gba G =即G 2=ab (a ,b 同号),则称G 为a ,b 的等比中项.根据前面给出的概念,求25-和25+的等差中项和等比中项.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+因为347)32(2-=-,所以,32347-=-请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习学习要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算和化简. 做一做: 填空题: 选择题: 10.使根式x x 1+有意义的字母x 的取值范围是( )(A)x >-1(B)x <-1(C)x ≥-1且x ≠0(D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a (C)a +b (D)-a -b12.在32,9,,,45222xa y x xy +-中,最简二次根式的个数是( ) (A)1(B)2(C)3(D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18(B)3.0(C)30(D)30014.计算28-的结果是( )(A)6(B)2(C)2(D)1.415.估算37(误差小于0.1)的大小是( ) (A)6 (B)6.0~6.1(C)6.3(D)6.816.下列运算正确的是( )(A)171251251252222=+=+=+ (B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯-(D)1535)3()5(22=⨯=-⨯-17.下列运算中,错误..的是( ) (A)632=⨯(B)2221=(C)252322=+ (D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( ) (A)a -- (B)a -(C)a -(D)a19.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⋅; ③;1.12a aa a a== ④.23a a a =-做错的题是( ) (A)①(B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n(B)a ≥n 且a ≤m(C)a ≤m(D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( ) (A)P <Q (B)P =Q(C)P >Q(D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)m m m m m m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =0.81时,求31441y yx y x x ---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分) 1.函数1-=x xy 的自变量x 的取值范围是______.2.当x ______时,x x -+-31有意义. 3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______.9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(. ______.12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______. 选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2x yx -的正确结果为( ) (A)y (B)y - (C)y -(D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a(D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xyx - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3(B)-3(C)1(D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1(D)3118.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个 (B)1个(C)2个 (D)3个 19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-4 20.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1 (B)1-a (C)1--a (D)a --1 21.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( ) (A)3a 与3b (B)2a 与2b (C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( )(A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠224.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE 对应的函数表达式是( ) (A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算: (1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b a b ab ab a26.若,03|9|22=--++m m n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx y xy y x y x +-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-== ⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式21.1 二次根式(1)1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.3 7.55+ 8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(- (2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去21.1 二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y7.-6 8.n 9.111111111 10.D 11.C 12.B 13.D14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6 (2)25 21.(1)2x +1 (2)y -x 22.1 23.2 24.(1))3)(3)(3(2-++x x x (2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA (3)222221024232221)210()23()22()21(S S S S S ++++=++++ 434241++=455410=++27.(1)4.47秒 (2)1.76秒 (3)64.8米问题探究:略21.2 二次根式的乘除(1)1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23 (2)37- (3)230- (4)30160 (5)15- (6)237- (7)1222- (8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)013.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2)(2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF21.2 二次根式的乘除(2)1.6 2.1054 3.56,32-+ 4.-3<x ≤3 5.B 6.B 7.B 8.C 9.C 10.A 11.A 12.B13.(1)55 (2)510 (3)22 (4)5510- (5)22- (6)2 (7)-6 (8)332- (9)a a b 52 (10)cab 23- (11)23 (12)210 (13)6y 3 (14)ab b a 2- (15)x xy 22-(16)625-- 14.cm 152 15.(1)a 5或a 25 (2)b a 52或a b 25 16.31648- 17.(1)不正确,第②③步出现了错误(2)原式ab ab aa ab a b b a a a b a b a b a =-⋅-=--=--=)1()()(2 18.42问题探究:(1)3 (2)33 (3)333 (4)3333个100133321.3 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+ 7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+- (4)3314 (5)52315- (6)523316- (7)24 (8)33132413+ (9)5514334- (10)1 (11)a a 32- 问题探究:不够用,还需买78cm 21.3 二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22-7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523- (6)6338559--- (7)2m m n - 18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1 a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+- 复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C 13.D 14.C15.B 16.D 17.D 18.A 19.D 20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a 1- (2) 4 (3)0 24.(1)58 (2)-2.45 (3)5418- 25.41 26.5 第二十一章 二次根式测试题 1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=154441541544154415443315441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。

二次根式和一元二次方程复习题

二次根式和一元二次方程复习题一.选择题1.式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1 2.下列根式中,不是最简二次根式的是()A.B.C.D.3.在式子,,,中,x可以取1和2的是()A.B.C.D.4.方程(m+1)x|m﹣1|+mx+2=0是关于x的一元二次方程,则()A.m=﹣1或3B.m=3C.m=﹣1D.m≠﹣1 5.下列各式中属于最简二次根式的是()A.B.C.D.6.下列各式计算正确的是()A.B.C.=5D.=7.下面计算正确的是()A.+=B.×=C.=﹣3D.﹣=8.下列二次根式中,是最简二次根式的是()A.B.C.D.9.下列计算正确的是()A.B.C.D.10.要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是11.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 12.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对13.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3 14.已知最简二次根式与可以合并成一项,则a、b的值分别为()A.a=1,b=2B.a=﹣1,b=0C.a=1,b=0D.a=﹣1,b=2 15.若y=﹣3,则x+y=()A.1B.5C.﹣5D.﹣116.方程(2x+3)(x﹣1)=1的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根17.方程(x+1)(x﹣3)=0的根是()A.x=﹣1B.x=3C.x1=1,x2=3D.x1=﹣1,x2=3 18.若关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0有一个根为0,则m的值是()A.1B.﹣1C.±1D.±219.已知a是方程2x2﹣4x﹣3=0的一个根,则代数式2a2﹣4a的值等于()A.3B.2C.0D.120.方程(x﹣2)(x+1)=(x+1)的解是()A.x=3B.x=﹣1C.x1=3,x2=﹣1D.x1=﹣3,x2=1 21.方程x2+6x﹣9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有一个根为﹣1D.没有实数根22.如果关于x的方程x2+k2﹣16=0和x2﹣3k+12=0有相同的实数根,那么k的值是()A.﹣7B.﹣7或4C.7D.423.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定24.已知m、n是方程x2+5x﹣2=0的两个实数根,则m2+6m+n﹣2mn的值为()A.1B.﹣1C.﹣5D.525.已知x、y为实数,且.则的值为()A.5B.6C.7D.8二.填空题26.计算的结果是.27.一元二次方程2x2=5x的解是.28.分解因式:2a2﹣4a+2=.29.关于x的一元二次方程(m+1)x2﹣x+m2=0有一个根为1,则m的值为.30.已知﹣=﹣,=,则a﹣b=.31.计算:=.32.若+|x﹣3|=0,则x+y的平方根为.33.已知三角形两边的长是2和3,第三边的长是方程x2﹣6x+8=0的根,则该三角形的周长是.34.计算:()2010•()2009=.35.若方程(m+3)x|m|﹣1+3mx=0是关于x的一元二次方程,求m=.36.要使代数式有意义,则x应该满足的条件是.37.若最简二次根式与可以合并,则x的值为.38.关于x的方程2x2+kx﹣1=0的一个根是﹣1,另一个根为.39.﹣()2=.40.已知﹣3是关于x的一元二次方程ax2﹣2x+3=0的一个解,则此方程的另一个解为.41.计算:=.42.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.43.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是.三.解答题44.(1)计算:(2)解方程:2x2﹣5x﹣3=045.①计算:②解方程:9x2﹣6x+1=046.计算:(1)+|﹣7|+()0+()﹣1 (2)(+2)(﹣2)+(+1)2﹣47.计算:(1)2+6﹣3(2)﹣(2+)2(2﹣)248.用适当的方法解方程(1)3x2﹣x﹣4=0 (2)(x+3)2=16(2﹣x)2 (3)x2+4x=1249.解下列方程:(1)2x2+x﹣6=0;(2)(x﹣5)2=2(5﹣x).50.解方程.(1)2x(x﹣2)=3x﹣6 (2)x2﹣2x=2x+1 (3)3x2﹣x﹣4=0.51.先化简,再求值:(a﹣)(a+)+a(5﹣a),其中a=+1.52.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.53.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.54.已知a=,b=,求的值.55.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根.(1)求m的取值范围;(2)若(x1﹣1)(x2﹣1)=28,求m的值.56.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.57.已知关于x的方程mx2﹣(2m﹣1)x+m﹣2=0;(1)当m为何值时,方程有两个不相等的实数根;(2)若m为满足(1)的最小正整数,求此时方程的两个根x1,x2.58.已知关于x的一元二次方程x2+(m+1)x+﹣2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18﹣,求m的值.。

精品 九年级数学上册 二次根式 一元二次方程 综合复习题


5
4. 2( x 2
1 1 ) 3( x ) 1 2 x x
5. x 2 x 2 0
6. x 2 (1 2 3 ) x 3 3 0
7.
x4 1 2 2 2 x 2x x 2x 4 x 2
8.
x 2 5 x 1 10 x 1 x2 5 3
14. 3 x 2 2(a 2b) x b 2 a 2 0
ቤተ መጻሕፍቲ ባይዱ
15. x 2 m(3 x 2m n) n 2 0
3
4.( a +
b ab a b ab )÷( + - ) (a≠b) . a b ab b ab a ab
5.计算(2 5 +1) (
1 10.已知 a,b 是方程 x2+x-1=0 的两根,求 a2+2a+ 的值. b
11.已知:关于x的方程x -(2k-3)x+(2k-4)=0. (1)无论k取任何实数,方程总有两个实数根. (2)当k取何值时,方程的两个根都是正数? (3)k为何值时,方程的两个实数根都比2大?
2
12.某商场销售一种产品,平均每天可售出20件,每件盈利40元.为了扩大销售,尽快减少库 存,商场决定采取适当的降价措施.经调查发现,如果每件产品每降价1元,商场平均每天可 多售出2件.若商场平均每天要盈利1200元,每件产品应降价多少元?
3 2 2 32 2 2 8.以 和 2 为根的整系数一元二次方程是______
2 2
9.已知实数 x、y 满足(x+y)(x+y+3)-4=0,则 x+y 的值是______ 2 10.已知 k 是正整数,并且关于 x 的方程 x +2x+k-1=0 有实数根,则 k 的值是___ 2 2 2 11.已知方程 x +x-1=0 的两根为 x1 和 x2,则(x1 +2x1-1)(x2 +2x2-1)的值为___ 12.若实数 x1、x2 满足 x12-3x1+1=0,x22-3x2+1=0,则 + 的值是_______
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式及一元二次方程综合测试题
选择题(每小题3分,共36分),请把每小题正确的答案填在本页表格中.
1x 的取值范围是( )
A .1x >
B .1x ≥
C .1x ≤
D .1x <
2 )
A .
B
C . D
3 )
A .-2
B .±2
C .2
D .4 4.一元二次方程的2
650x x +-=左边配成完全平方式后所得的方程为 ( ) A .2(3)14x -= B .2(3)14x += C .2
1
(6)2
x += D .以上答案都不对 5.下列计算错误..
的是 ( )
C.
D.3=
6.若0)1(2
=++-c bx x a 是关于x 的一元二次方程,则( )
A .a=1
B .a ≠1
C .a ≠-1
D .a ≠0且b ≠0
7是整数,则正整数n 的最小值是( )
A .4;
B .5;
C .6;
D .7 8.下列根式中属最简二次根式的是( )
9.下列方程,是一元二次方程的是( ) ①3x 2+x=20, ②2x 2-3xy+4=0, ③41
2
=-
x
x , ④ x 2=4-, ⑤ 0432=--x x A .①② B .①②④⑤ C .①③④ D .①④⑤ 10.(2008湖北)下列方程中,有两个不等实数根的是( ) A .2
38x x =-
B .2
510x x +=-
C .271470x x -+=
D .2
753x x x -=-+
11.若b b -=-3)3(2
,则( )
A .b>3
B .b<3
C .b ≥3
D .b ≤3 12.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点 沿纸箱爬到B 点,那么它所行的最短路线的长是( ) A .9 B .10 C .24 D .172
二、填空题(每小题3分,共30分)请把每小题正确的答案填在下面表格中. 1.方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是______.
2.已知2=
a ,则代数式12-a 的值是 .
3.如果2180a -=,那么a 的算术平方根是 . 4.若0)1(32=++-n m ,则m -n 的值为 .
5.2
2____)(_____3-=+-x x x
6.计算:825-= .
7.比较大小:32_______23-- (填“>”或“<”=)
8.如果最简二次根式a +1与24-a 是同类根式,那么a = . 9.若x<2,化简x x -+-3)2(2
的正确结果是 ___.
10.观察下列各式:①、312
311=+
,②、413412=+ ③、5
1
4513=+,…请写出第⑦个式子: ,用含n (n ≥1)的式子写出你猜想的规律: 。

三、计算或化简(每小题5分,共20分)
⑴ )65)(65(-+ ⑵ 13
327-+
⑶ 3
122112--

6

B
四、解下列方程(每小题5分,共30分)
⑴24x x = ⑵2(2)9x -=
⑶2
320x x -+= ⑷2
21035
x x -
+=
(5)2
210x x --= (6) 23(1)2(1)x x x -=-
四、解答题(第1、2、3题每小题8分,第4题10分,共34分) 1.已知:
x =,求2
56x x +-的值.
2.小明在微机上设计了一长方形图片,已知长方形的长是π140cm ,宽是π35cm ,他又想设计一个面积与其相等的圆,小明的想法能够实现吗?如果能,请你为小明提出设计方案.(要求写出有关计算过程)
3.某种植物的主干长出若干数目的支干,每个支干又长出与主干同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?(列方程解应用题)
4.请用两种方法解答下列问题.
海伦—秦九韶公式:如果一个三角形三边长分别为a ,b ,c ,设2
c
b a p ++=,则三角形的面积为))()((S
c p b p a p p ---=
,用公式计算下
图三角形的面积。

请你想一想是否有其他方法吗?试试看。

(如作最长边上的高,结合勾股定理。

)(10分)
A
C
B
6cm
5cm
4cm。

相关文档
最新文档