机械振动实验报告
《机械振动基础》实验报告

《机械振动基础》实验报告(2015年春季学期)姓名学号班级专业报告提交日期哈尔滨工业大学报告要求1.实验报告统一用该模板撰写,必须包含以下内容:(1)实验名称(2)实验器材(3)实验原理(4)实验过程(5)实验结果及分析(6)认识体会、意见与建议等2.正文格式:四号字体,行距为1.25倍行距;3.用A4纸单面打印;左侧装订;4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收齐,统一发送至:liuyingxiang868@。
5.此页不得删除。
评语:教师签名:年月日实验一报告正文一、 实验名称:机械振动的压电传感器测量及分析二、 实验器材1、机械振动综台实验装置(压电悬臂梁) 1套2、激振器 1套3、加速度传感器 1只4、电荷放大器 1台5、信号发生器 l 台6、示波器 l 台7、电脑 l 台8、NI9215数据采集测试软件 l 套9、NI9215数据采集卡 l 套三、 实验原理信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。
压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC 机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。
实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。
电荷放大器的内部等效电路如图1所示。
图1 加速度传感器经电荷放大的等效电路 压电悬臂梁的简谐振动振幅与频率测量实验原理如图2所示,实验连接图如图3所示。
功率放大器图2简谐振动振幅与频率测量图3 实验连接图四、 实验过程打开所有仪器电源,将DG-1022型信号发生器的幅值旋钮调至最小,采用正弦激励信号, DHF-2型电荷放大器设置为100mv/UNIT(YD64-310型加速度计的标定电荷灵敏度为13.2PC/ms-2,本实验中将电荷放大器的灵敏度人工设定为132PC/ms-2,并且增益调至10mV/Unit档,则该设定下电荷放大器的总增益为100mV/Unit。
机械振动实验报告分析

实验三:简谐振动幅值测量一、 实验目的1、了解振动位移、速度、加速度之间的关系。
2、学会用压电传感器测量简谐振动位移、速度、加速度幅值二、实验仪器安装示意图三、 实验原理由简谐振动方程:)sin()(ϕω-=t A t f简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :)sin(ϕω-=t X x)cos()cos(ϕωϕωω-=-==t V t X xv )sin()sin(2ϕωϕωω-=--==t A t X xa 式中:ω——振动角频率 ϕ——初相位 所以可以看出位移、速度和加速度幅值大小的关系是:X V A X V2ωωω===,。
振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。
在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD 卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大小。
DASP通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DASP 参数设置表中输入各通道的工程单位和标定值。
工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。
传感器灵敏度为K CH (PC/U )(PC/U 表示每个工程单位输出多少PC 的电荷,如是力,而且参数表中工程单位设为牛顿N ,则此处为PC/N ;如是加速度,而且参数表中工程单位设为m/s 2,则此处为PC/m/s 2);INV1601B 型振动教学试验仪输出增益为K E ;积分增益为K J (INV1601 型振动教学试验仪的一次积分和二次积分K J =1);INV1601B 型振动教学试验仪的输出增益:加速度:K E = 10(mV/PC)速度:K E = 1 位移:K E = 0.5则DASP 参数设置表中的标定值K 为:)/(U mV K K K K J E CH ⨯⨯=四、 实验步骤1、安装仪器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B 型振动教学试验放大仪的功放输出接口。
工厂振动测试实验报告(3篇)

第1篇一、引言随着工业自动化程度的不断提高,工厂生产过程中产生的振动问题日益受到重视。
振动不仅会影响设备的正常运行,还会对操作人员的安全和健康造成威胁。
为了确保工厂生产的安全和高效,本报告对工厂振动进行了系统测试,以了解振动源、振动传播路径以及振动对设备的影响,为振动控制提供科学依据。
二、实验目的1. 了解工厂振动产生的来源及传播路径。
2. 测量不同区域的振动强度和频率。
3. 分析振动对设备的影响。
4. 为振动控制提供科学依据。
三、实验设备与仪器1. 振动测试仪:用于测量振动强度和频率。
2. 激光测距仪:用于测量设备与振动源的距离。
3. 摄像头:用于观察振动现象。
4. 计算机软件:用于数据处理和分析。
四、实验方法1. 确定测试点:根据工厂布局,选取具有代表性的测试点,包括振动源附近、振动传播路径上以及设备附近。
2. 测试振动强度和频率:使用振动测试仪分别测量各个测试点的振动强度和频率。
3. 测量设备与振动源的距离:使用激光测距仪测量设备与振动源的距离。
4. 观察振动现象:使用摄像头观察振动现象,记录振动形态和频率。
5. 数据处理和分析:将测试数据输入计算机软件,进行数据处理和分析。
五、实验结果与分析1. 振动源:通过测试发现,工厂振动的主要来源为机械设备运行、物料运输以及空气流动等。
2. 振动传播路径:振动主要沿地面、墙壁以及设备本身传播。
3. 振动强度和频率:不同区域的振动强度和频率存在差异,振动源附近振动强度较大,频率较高;振动传播路径上振动强度逐渐减弱,频率降低;设备附近振动强度较小,频率较低。
4. 振动对设备的影响:振动可能导致设备疲劳、磨损,甚至损坏。
长期处于高振动环境下,设备的使用寿命将大大缩短。
六、振动控制措施1. 优化设备布局:将振动源与设备保持一定距离,减少振动传播。
2. 使用减振设备:在振动源附近安装减振垫、减振器等,降低振动强度。
3. 改善物料运输方式:采用低速、平稳的运输方式,减少物料运输过程中的振动。
声音产生振动实验报告

一、实验目的1. 验证声音是由物体振动产生的;2. 探究声音振动的传播特性;3. 了解声音振动的频率与音调、振幅与响度的关系。
二、实验原理声音是一种机械波,由物体的振动产生,通过介质(如空气、水、固体等)传播。
当物体振动时,会使周围的介质产生相应的振动,形成声波,从而产生声音。
声音的传播特性与介质的性质有关,如声速、衰减等。
声音的频率决定了音调,频率越高,音调越高;声音的振幅决定了响度,振幅越大,响度越大。
三、实验器材1. 音叉;2. 玻璃杯;3. 水盆;4. 纸屑;5. 秒表;6. 耳塞;7. 线;8. 直尺;9. 振动传感器(可选)。
四、实验步骤1. 振动产生声音:将音叉紧贴玻璃杯口,用锤子轻轻敲击音叉,观察音叉振动情况,并用耳塞听取声音。
2. 传播特性:将音叉放入水盆中,观察水中的振动情况,并用秒表测量声音在水中的传播时间。
3. 频率与音调:将音叉的频率与不同频率的音叉进行比较,观察音叉振动的快慢,并听取不同频率音叉的声音。
4. 振幅与响度:将音叉的振幅与不同振幅的音叉进行比较,观察音叉振动的幅度,并听取不同振幅音叉的声音。
5. 控制变量实验:将振动传感器固定在音叉上,通过改变音叉的振动频率和振幅,观察传感器输出的数据,分析频率与音调、振幅与响度的关系。
五、实验数据与分析1. 振动产生声音:实验过程中,音叉振动明显,耳塞可以听到声音。
2. 传播特性:将音叉放入水盆中,观察到水中的振动情况,声音在水中的传播时间为2秒。
3. 频率与音调:实验结果表明,音叉振动频率越高,音调越高;频率越低,音调越低。
4. 振幅与响度:实验结果表明,音叉振幅越大,响度越大;振幅越小,响度越小。
5. 控制变量实验:通过振动传感器,可以观察到音叉振动频率与音调、振幅与响度的关系,进一步验证了实验原理。
六、实验结论1. 声音是由物体振动产生的,振动停止,声音消失。
2. 声音可以在介质中传播,传播速度与介质性质有关。
3. 声音的频率决定了音调,频率越高,音调越高;振幅决定了响度,振幅越大,响度越大。
中南大学机械振动实验报告实验2

0.024 2n
3
2、用 matlab 拟合出加速度幅频特性曲线(见下图) ; 3、根据加速度幅频特性曲线,找出系统的固有频率; 4、根据公式计算阻尼比ξ 。 加速度 根据加速度幅频特性曲线得知,系统的固有频率为 25Hz。 2.计算阻尼比 由图可知: 1 24.2 Hz,
2 25.4 Hz, 2 - 1 1.3 Hz
二、 实验原理
双简支梁的简谐振动振幅与频率测量实验原理如图 2 所示:
图 2 机械振动系统固有频率测量原理图
1
三、 仪器及装置
1、机械振动综台实验装置(安装双简支梁) 2、激振器 3、加速度传感器 4、电荷放大器 5、信号发生器 6、电脑 7、测试软件 8、采集卡 1套 1套 1只 1台 l台 l台 l套 l套
四、 实验数据处理
1、将数据(见下表)交给老师确认(ω 为软件界面记录的频率,X 为对应的加速度。 ) ω X ω X 16 Hz 0.0093 24 Hz 0.1011 17 Hz 0.0112 25 Hz 0.1338 18 Hz 0.0112 26 Hz 0.0591 19 Hz 0.0151 27 Hz 0.0557 20Hz 0.0181 28 Hz 0.0717 21 Hz 0.0225 29 Hz 0.0503 22 Hz 0.0342 30 Hz 0.0303 23Hz 0.0498 31 Hz 0.0410
仪器及装置1机械振动综台实验装置安装双简支梁实验数据处理1将数据见下表交给老师确认为软件界面记录的频率x为对应的加速度
中南大学
机械振动实验报告
姓名: 学号: 成绩: 指导教师
实验名称:机械振动系统固有频率测量 一、 实验目的
1、 以双简支梁为例,了解和掌握机械振动系统幅频特性曲线的测量方法。 2、 观察共振产生的过程和条件; 3、 测量单自由度系统强迫振动并绘制幅频特性曲线; 4、 根据幅频特性曲线确定系统的固有频率和阻尼比。
振动测试实验报告范文(3篇)

第1篇一、实验目的1. 了解振动测试的基本原理和方法;2. 掌握振动测试仪器的使用方法;3. 学会分析振动测试结果,了解振动特性;4. 为振动测试在工程中的应用提供理论依据。
二、实验原理振动测试是研究物体在振动下的特性和行为的一种实验方法。
通过振动测试,可以了解物体的振动频率、振幅、相位等参数。
本实验采用加速度计和振动分析仪进行振动测试。
三、实验仪器1. 加速度计:用于测量振动加速度;2. 振动分析仪:用于分析振动信号,获取振动频率、振幅、相位等参数;3. 振动测试支架:用于固定加速度计和振动分析仪;4. 信号发生器:用于产生振动信号;5. 激励装置:用于驱动振动测试支架。
四、实验步骤1. 准备实验器材,将加速度计和振动分析仪固定在振动测试支架上;2. 将加速度计安装在激励装置上,调整加速度计的测量方向;3. 连接信号发生器和激励装置,设置振动信号的频率和幅值;4. 启动激励装置,开始振动测试;5. 利用振动分析仪实时采集加速度信号,并进行分析;6. 记录振动测试结果,包括振动频率、振幅、相位等参数;7. 分析振动测试结果,了解振动特性;8. 对比不同振动条件下的测试结果,研究振动对物体的影响。
五、实验结果与分析1. 振动频率:通过振动分析仪实时采集到的加速度信号,可以计算出振动频率。
在本实验中,振动频率约为100Hz。
2. 振幅:振动分析仪实时采集到的加速度信号,可以计算出振动幅值。
在本实验中,振动幅值约为0.5g。
3. 相位:振动分析仪实时采集到的加速度信号,可以计算出振动相位。
在本实验中,振动相位约为-90°。
4. 振动特性分析:通过对振动测试结果的分析,可以发现以下特点:(1)振动频率与激励信号的频率一致;(2)振动幅值随激励信号的幅值增大而增大;(3)振动相位与激励信号的相位差约为-90°。
六、实验结论1. 本实验验证了振动测试的基本原理和方法,掌握了振动测试仪器的使用方法;2. 通过振动测试,可以了解物体的振动特性,为振动测试在工程中的应用提供理论依据;3. 振动测试结果与激励信号的频率、幅值、相位等参数密切相关。
机械振动实验报告

机械振动实验报告一、实验目的本次机械振动实验旨在深入了解机械振动的基本特性和规律,通过实验测量和数据分析,掌握振动系统的频率、振幅、相位等重要参数的测量方法,探究振动系统在不同条件下的响应,为工程实际中的振动问题提供理论基础和实验依据。
二、实验原理机械振动是指物体在平衡位置附近做往复运动。
在本次实验中,我们主要研究简谐振动,其运动方程可以表示为:$x = A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。
对于一个弹簧振子系统,其振动周期$T$与振子的质量$m$和弹簧的劲度系数$k$有关,满足公式$T = 2\pi\sqrt{\frac{m}{k}}$。
通过测量振动系统的位移随时间的变化,可以得到振动的频率、振幅和相位等参数。
三、实验设备1、振动实验台2、弹簧3、质量块4、位移传感器5、数据采集系统6、计算机四、实验步骤1、安装实验设备将弹簧一端固定在振动实验台上,另一端连接质量块。
将位移传感器安装在合适位置,使其能够准确测量质量块的位移。
2、测量弹簧的劲度系数使用砝码和天平,对弹簧施加不同的力,测量弹簧的伸长量,通过胡克定律$F = kx$计算弹簧的劲度系数$k$。
3、调整实验系统确保质量块在振动过程中运动平稳,无卡顿和摩擦。
4、进行实验测量启动振动实验台,使质量块做简谐振动。
通过数据采集系统采集位移随时间的变化数据。
5、改变实验条件分别改变质量块的质量和弹簧的劲度系数,重复实验步骤 4,测量不同条件下的振动参数。
6、数据处理与分析将采集到的数据导入计算机,使用相关软件进行处理和分析,得到振动的频率、振幅和相位等参数。
五、实验数据与分析1、原始数据记录以下是在不同实验条件下测量得到的质量块位移随时间的变化数据:|实验条件|质量(kg)|弹簧劲度系数(N/m)|时间(s)|位移(m)||||||||实验 1|1|100|01|001||实验 1|1|100|02|002|||||||2、数据处理通过对原始数据进行拟合和分析,得到振动的频率、振幅和相位等参数。
机械振动实验报告

机械振动实验报告1. 实验目的本实验旨在通过对机械振动的实验研究,掌握机械振动的基本原理和特性,深入了解振动系统的参数对振动现象的影响。
2. 实验原理(1)简谐振动:当物体在受到外力作用下,沿着某一方向做来回运动时,称为简谐振动。
其数学表达式为x(t) = A*sin(ωt + φ),其中A 为振幅,ω为角频率,φ为初相位。
(2)受迫振动:在外力的作用下振动的振幅不断受到调节,导致振幅和相位角与外力作用间存在一定的关联关系。
(3)自由振动:在无外力作用下,振动系统的振幅呈指数幅度减小的振动现象。
3. 实验内容(1)测量弹簧振子的简谐振动周期并绘制振幅-周期曲线。
(2)通过改变绳长和质量对受迫振动的谐振频率进行测量。
(3)观察受外力激励时的自由振动现象。
4. 实验数据与结果(1)弹簧振子简谐振动周期测量结果如下:振幅(cm)周期(s)0.5 0.81.0 1.21.5 1.62.0 1.9(2)受迫振动的谐振频率测量结果如下:绳长(m)质量(kg)谐振频率(Hz)0.5 0.1 2.50.6 0.2 2.00.7 0.3 1.80.8 0.4 1.5(3)外力激励下的自由振动现象结果呈现出振幅逐渐减小的趋势。
5. 实验分析通过实验数据处理和结果分析,可以得出以下结论:(1)弹簧振子的振动周期与振幅呈线性关系,在一定范围内,振幅增大,周期相应增多。
(2)受迫振动的谐振频率随绳长和质量的增加而减小,表明振动系统的参数对谐振频率有一定的影响。
(3)外力激励下的自由振动现象符合指数幅度减小的规律,振幅随时间的增长呈现递减趋势。
6. 实验总结本实验通过测量和观察机械振动的不同现象,探究了振动系统的基本原理和特性。
实验结果表明振动系统的参数对振动现象产生了明显的影响,为进一步深入研究振动学提供了基础。
通过本次实验,我对机械振动的原理和特性有了更深入的了解,对实验数据处理和分析方法也有了更加熟练的掌握。
希望通过不断的实验学习,能够进一步提升自己对振动学理论的理解水平,为未来的科研工作打下坚实基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动实验报告
机械振动实验报告
引言:
机械振动是物体围绕平衡位置做周期性的往复运动。
振动现象广泛存在于自然
界和人类生活中,对于了解物体的动态特性和掌握工程实践中的振动控制具有
重要意义。
本实验旨在通过对机械振动的实验研究,探究振动的基本特性和影
响因素。
一、实验目的
本实验的主要目的是:
1. 了解机械振动的基本概念和特性;
2. 掌握振动系统的参数测量和分析方法;
3. 研究振动系统的自由振动和受迫振动。
二、实验装置和原理
本实验使用了一台简单的机械振动装置,该装置由弹簧、质量块和振动台组成。
通过改变质量块的位置和振动台的振幅,可以调节振动系统的参数。
实验原理
基于振动的力学模型,包括弹簧的胡克定律、质量块的运动方程和振动台的驱
动力。
三、实验步骤和结果
1. 自由振动实验
首先,将质量块固定在振动台上,并将振动台拉到一侧,使其产生初位移。
然后,释放振动台,观察振动的周期、频率和振幅。
通过实验测量和计算,得到
自由振动的周期和频率随振幅的变化关系。
2. 受迫振动实验
在受迫振动实验中,我们通过改变振动台的驱动频率来激励振动系统。
首先,
将振动台连接到一个电动机,调节电动机的转速,改变驱动频率。
然后,测量
振动台的振幅和相位差,以及电动机的转速和驱动频率之间的关系。
3. 参数测量和分析
在实验过程中,我们还测量了弹簧的劲度系数、质量块的质量和振动台的质量。
通过这些参数的测量和分析,我们可以计算出振动系统的固有频率、阻尼比和
共振频率。
四、实验结果分析
根据实验结果,我们可以得出以下结论:
1. 自由振动的周期和频率与振幅呈正相关关系,即振幅越大,周期和频率越大。
2. 受迫振动的振幅和相位差与驱动频率之间存在一定的关系,即在共振频率附近,振幅最大,相位差为零。
3. 振动系统的固有频率、阻尼比和共振频率与系统参数有关,可以通过参数测
量和分析得到。
五、实验结论
通过本次机械振动实验,我们深入了解了振动的基本概念和特性。
实验结果表明,振动的周期、频率、振幅和相位差与系统参数和外界驱动力密切相关。
掌
握振动系统的参数测量和分析方法,对于工程实践中的振动控制具有重要意义。
六、实验总结
机械振动是一种普遍存在的物理现象,对于了解物体的动态特性和掌握工程实
践中的振动控制具有重要意义。
本次实验通过对机械振动的实验研究,我们深
入了解了振动的基本特性和影响因素。
通过实验步骤和结果的分析,我们对振动系统的自由振动和受迫振动有了更深入的认识。
这对我们今后的学习和实践具有积极的指导意义。