多边形的外角和与内角和的关系

合集下载

多边形内角和与外角和

多边形内角和与外角和

课堂练习
求下列图形中x的值:
1400
x0
x0
(1)
800
1200
750
x0
(3)
1500
1200
2X 0
x0
(2)
D
E
x0
1500
600
C
1350
A (4) B
AB∥CD
巩固练习
1、十二边形的内角和是________;
2、若一个多边形的内角和是1620°,则此多边形的 边数是_________.
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权

文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
多端互通
抽奖特权 福利特权
其他特 VIP专享精彩活动

VIP专属身份标识
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停! 开通VIP后可在VIP福利专区定期领取多种福利礼券。 开通VIP后可以享受不定期的VIP优惠活动,活动多多,优惠多多。
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能阅读全文), 每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。

多边形内角和及角的计算

多边形内角和及角的计算

多边形内角和及角的计算多边形的内角和是指多边形内部所有角的度数的总和。

而多边形的外角和是指多边形外部所有角的度数的总和。

在本篇文章中,我们将讨论如何计算多边形的内角和和外角和。

首先,我们先来讨论如何计算多边形的内角和。

对于一个n边形来说,它的内角和可以通过以下公式来计算:内角和=(n-2)×180度这个公式的推导可以通过将多边形划分为n-2个三角形,每个三角形的内角和为180度来得到。

举个例子,对于一个三边形来说,它的内角和为(3-2)×180度=180度。

同样地,对于一个四边形来说,它的内角和为(4-2)×180度=360度。

我们可以根据这个公式,计算出各种多边形的内角和。

接下来,我们来讨论如何计算多边形的外角和。

对于一个n边形来说,它的外角和可以通过以下公式来计算:外角和=n×180度这个公式的推导可以通过将多边形划分为n个三角形,每个三角形的外角和为180度来得到。

举个例子,对于一个三边形来说,它的外角和为3×180度=540度。

同样地,对于一个四边形来说,它的外角和为4×180度=720度。

我们可以根据这个公式,计算出各种多边形的外角和。

除了使用公式计算多边形的内角和和外角和外,我们还可以通过其他方法来计算。

首先,对于一个正多边形来说,它的内角和和外角和有特定的计算方式。

对于一个正n边形来说,它的内角和和外角和可以通过以下公式来计算:内角和=(n-2)×180度外角和=n×180度举个例子,对于一个正三角形来说,它的内角和为(3-2)×180度=180度,外角和为3×180度=540度。

同样地,对于一个正四边形来说,它的内角和为(4-2)×180度=360度,外角和为4×180度=720度。

其次,对于一个凸多边形来说,我们可以通过以下公式计算多边形的内角和:内角和=(n-2)×180度其中,n是多边形的边数。

多边形的内角和与外角和

多边形的内角和与外角和

多边形的内角和与外角和多边形是一种有多个直角或不是直角的边的几何图形。

它由一系列线段组成,这些线段的端点称为顶点。

在一个多边形中,内角和与外角和是两个重要的概念。

一、内角和内角是多边形内部两条边所形成的角,可以通过计算多边形的内角和来了解多边形的性质。

多边形的内角和可以通过以下公式来计算:内角和 = (n - 2) × 180°其中,n表示多边形的边数。

可以看出,内角和与多边形的边数呈线性关系,边数越多,内角和也会增加。

例如,对于三角形(三边形),它有3个内角,内角和为180°。

对于四边形(四边形),它有4个内角,内角和为360°。

同理,五边形(五边形)的内角和为540°,六边形(六边形)的内角和为720°。

二、外角和外角是多边形内部一条边与其相邻边的延长线之间所形成的角。

多边形的外角和可以通过以下公式来计算:外角和 = 360°不论多边形的边数是多少,其外角和总是等于360°。

这是因为多边形的各个外角之间构成了一个完整的圆周角。

三、内角和与外角和的关系多边形的内角和与外角和之间存在一定的关系。

根据数学原理,多边形内角和与外角和相差180°。

证明如下:设多边形的边数为n,每个内角为a°,每个外角为b°。

多边形的内角和为 (n - 2) × 180°,外角和为360°。

根据角度的差值关系,可以得到:(n - 2) × 180° = n × a° - n × b°化简得到:360° = n × (a° - b°)因此,a° - b° = 180°,即内角和与外角和相差180°。

这个关系在解决一些几何问题时非常有用。

通过计算内角和和外角和,我们可以推导出多边形的各种性质和特点。

多边形的内角和与外角和

多边形的内角和与外角和

多边形的内角和与外角和多边形是数学中一个重要的概念,它是由若干条线段组成的封闭曲线。

每个多边形都有内角和与外角和,本文将详细介绍这两个概念以及它们之间的关系。

1. 多边形的内角和内角是指多边形内部相邻线段所形成的角度。

对于任意一个n边形(n≥3),其内角和可以用公式 (n-2) × 180°计算。

这是因为一个n边形可以被分割成n-2个三角形,而每个三角形内角和为180°。

所以,n 边形的内角和为 (n-2) × 180°。

2. 多边形的外角和外角是指多边形外部与相邻线段所形成的角度。

对于任意一个n边形,其外角和等于360°。

这是因为多边形的每个外角都与其相邻内角互补,而一个完整的圆周角为360°。

3. 内角和与外角和的关系多边形的内角和与外角和有一个重要的关系,即它们的和等于n个直角。

这可以通过数学归纳法来证明。

对于一个三角形来说,它的内角和为180°,外角和为360°,两者的和正好等于一个直角。

假设对于任意一个n边形,其内角和与外角和的关系成立,即内角和加上外角和等于n个直角。

现在考虑一个n+1边形,我们可以通过在原来的n边形的任意一个顶点处添加一个顶点来构造它。

根据我们的假设,原来的n边形的内角和与外角和的和等于n个直角。

对于新添加的顶点,它对应的内角为180°,外角为360°。

所以,我们可以得到新的n+1边形的内角和为原来n边形的内角和加上180°,外角和为原来n边形的外角和加上360°。

将它们相加,得到新的内角和加上外角和为原来n个直角加上180°加上360°,即n+1个直角。

综上所述,对于任意一个多边形,它的内角和与外角和的和等于顶点数目乘以直角的个数。

因此,内角和与外角和是有确定关系的,可以相互转换。

总结起来,多边形的内角和等于顶点数目减去2乘以180°,外角和等于360°,而内角和与外角和的和等于顶点数目乘以直角的个数。

多边形的内角和与外角和

多边形的内角和与外角和

例:一个正多边形的一个内角为150°,它是几 边形?
解法一:依题意可得 (n-2)·180°=n·150
解得n=12 答:它是十二边形。
解法二:依题意可得 它的每一个外角 180°-150°=30°
n=360°÷30°=12
课后作业
1.(1)如图,小陈从点O出发,前进5m后向右转20°,再前进
5m后又向右转20°,…,这样一直走下去,他第一次回到出
0
5.【分类讨论思想】(2018·聊城)如果一个正 方形被截掉一个角后,得到一个多边形,那么
这个多边形的内角和是 180°或360°.或540°
6.(自贡·中考)一个多边形截取一个角后, 形成的另一个多边形的内角和是1620°,则原 来多边形的边数是( D ). A.10 B.11 C.12 D.以上都有可能
边形的边数是___2__4___
2.若一个十边形的每个外角都相等,则它的每个外角的
度数为__3_6_____度,每个内角的度数为__1_4__4___度.
3.若一个多边形的内角和等于它的外角和,
则它的边数是_____4__.
4.多边形的边数增加1,则内角和增加
_1_8__0_度.外角和增加_____度
第六章 平行四边形
6.4 多边形的内角和与外角和
1.能说出多边形的有关概念及多边形内角和定理. 2.能说出正多边形的定义. 3.能熟练运用多边形的内角和定理解决问题. 4.能说出并会熟练运用多边形的外角和定理解决问题.
知识回顾 问题1:你还记得三角形内角和是多少度吗? (三角形内角和 180°)
4
计算规律 1 ×180° 2 ×180° 3 ×180° 4 ×180°

… … … … …

多边形内角与外角和公式

多边形内角与外角和公式

多边形内角与外角和公式在我们学习数学的旅程中,多边形内角和与外角和公式就像是一把神奇的钥匙,能打开许多几何谜题的大门。

先来说说多边形的内角和公式。

对于一个 n 边形,其内角和等于 (n - 2)×180°。

这看起来好像挺抽象的,但咱们举个例子就好懂多啦。

比如说一个三角形,这是最简单的多边形啦,那 n = 3,代入公式算算,(3 - 2)×180° = 180°,这是不是和咱们熟悉的三角形内角和 180°完全对上啦!我记得有一次给学生们讲这个知识点的时候,有个特别调皮的小家伙,怎么都不相信这个公式。

我就随手在黑板上画了个六边形,然后带着大家一起把这个六边形分割成了 4 个三角形。

通过一步步的计算和推导,这小家伙终于恍然大悟,眼睛瞪得圆圆的,那种从疑惑到明白的表情,真的太有趣啦!再说说多边形的外角和。

不管是三角形、四边形,还是更多边的多边形,它们的外角和永远都是 360°。

这个结论是不是有点让人意外又惊喜呢?有一回,我带着学生们到操场上做了一个有趣的小实验。

让大家沿着操场的边缘走,每走到一个角就记录下外角的度数。

一圈走下来,把所有的外角度数加起来,嘿,还真就是 360°!当时同学们都兴奋得不行,觉得数学原来这么神奇,就在我们身边。

咱们来深入理解一下这两个公式的应用。

比如说,知道了一个多边形的内角和,就能算出它有几条边;或者知道了边数,就能求出内角和。

在解决几何问题、设计图案、建筑规划等等方面,这两个公式都大有用处。

就像上次我去参观一个新小区的规划图,设计师们就是运用了多边形的内角和与外角和公式,来设计小区里各种形状的花园和休闲区域,让整个小区看起来既美观又合理。

在数学的世界里,多边形内角和与外角和公式就像是坚固的基石,支撑着我们去探索更广阔、更复杂的几何天地。

它们虽然简单,却蕴含着无尽的智慧和乐趣。

所以啊,同学们可别小看这两个公式,好好掌握它们,能让我们在数学的海洋里畅游得更加畅快!。

多边形的内角和外角计算

多边形的内角和外角计算

多边形的内角和外角计算多边形是几何学中的重要概念,它由若干条边和相应的顶点组成。

在研究多边形的性质时,我们经常会遇到内角和外角的计算问题。

本文将介绍多边形内角和外角的定义和计算方法。

一、多边形的内角和外角定义多边形的内角是指由多边形的两条边所夹角度,而外角是指多边形内一条边的延长线和下一条边所夹角度。

二、多边形内角和外角的计算方法1. 内角的计算方法:对于n边形,内角和的计算公式为:(n-2)×180°。

例如,三角形的内角和为(3-2)×180°=180°,四边形的内角和为(4-2)×180°=360°。

2. 外角的计算方法:外角和的计算公式为360°。

每个外角可通过360°除以n来得到。

例如,对于正五边形,每个外角为360°/5=72°。

三、多边形内角和外角的举例说明1. 三角形的内角和:三角形是最简单的多边形,由三条边和三个顶点组成。

根据前述计算方法,三角形的内角和为180°。

2. 四边形的内角和:四边形是常见的多边形,例如矩形、正方形和平行四边形等。

根据前述计算方法,四边形的内角和为360°。

3. 五边形的内角和和外角:五边形是一种五边形多边形,常见的有正五边形和不规则五边形。

根据前述计算方法,五边形的内角和为540°,每个外角为72°。

四、多边形内角和外角计算的意义1. 内角和:多边形的内角和是多边形几何性质的重要指标,它能反映出多边形的形状和结构。

通过计算多边形的内角和,我们可以判断多边形是凸多边形还是凹多边形,并进一步研究多边形的各种性质和规律。

2. 外角和:多边形的外角和也是多边形几何性质的重要指标,它与内角和之间存在着一定的数学关系。

通过计算多边形的外角和,我们可以推导出内角和与外角和的关系公式,并应用于解决复杂的多边形计算问题。

多边形内角和和外角和的公式

多边形内角和和外角和的公式

多边形内角和和外角和的公式多边形是指由三个或更多条线段组成的封闭图形。

在数学中,多边形的内角和和外角和是一个重要的概念。

本文将介绍多边形的内角和和外角和的公式,并解释其含义和应用。

1. 多边形的内角和公式多边形的内角和指的是多边形内部所有角的和。

对于任意n边形(其中n大于等于3),其内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180度这个公式的推导可以通过将多边形分割成n-2个三角形来进行。

每个三角形的内角和为180度,因此n边形的内角和就是(n-2)个三角形的内角和之和。

举例来说,对于一个三角形(3边形),其内角和为180度。

对于一个四边形(四边形),其内角和为360度。

对于一个五边形(五边形),其内角和为540度。

依此类推,随着边数的增加,多边形的内角和也会增加。

2. 多边形的外角和公式多边形的外角和指的是多边形外部所有角的和。

对于任意n边形,其外角和可以通过以下公式计算得出:外角和 = 360度这个公式的推导可以通过将多边形的每个外角和其相邻的内角相加得到。

根据三角形的性质可知,三角形的外角和为360度。

因此,不论多边形的边数是多少,其外角和始终为360度。

举例来说,对于一个三角形,其外角和为360度。

对于一个四边形,其外角和为360度。

对于一个五边形,其外角和为360度。

可见,不论多边形的边数是多少,其外角和始终为360度。

3. 内角和和外角和的关系内角和和外角和有一个重要的关系:它们的和始终等于多边形的边数乘以180度。

这可以通过以下公式表示:内角和 + 外角和= n × 180度这个公式的推导可以通过将多边形的每个内角和其对应的外角相加得到。

根据三角形的性质可知,内角和和外角和的和为180度。

因此,多边形的每个内角和其对应的外角的和为180度。

由于多边形共有n个内角和n个外角,所以它们的和为n × 180度。

举例来说,对于一个三角形,其内角和为180度,外角和为360度,满足内角和 + 外角和= 3 × 180度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的外角和与内角和的关系多边形是一种几何图形,由若干条边和相应的顶点组成。

它是我们
学习几何学时首先接触到的重要概念之一。

在多边形中,有两种重要
的角度,即外角和内角。

本文将探讨多边形的外角和内角之间的关系。

一、多边形的内角和公式
在一个n边形中,内角和的计算公式可以通过以下方式得出:
内角和 = (n-2) × 180°
这个公式可以用来计算多边形任意个顶点的内角和。

例如,一个三
角形(3边形)的内角和为 (3-2) × 180° = 180°,一个四边形(4边形)
的内角和为 (4-2) × 180° = 360°,以此类推。

二、多边形的外角和
多边形的外角是指以多边形的一条边为边,与其相邻的两条边的外角。

例如,对于一个n边形中的一个角A,它的外角是在角A的延长
线上与相邻两条边形成的角。

三、多边形外角和与内角和的关系
在任意多边形中,每一个外角和其相应的内角形成的角度之和均为360°。

换句话说,多边形的外角和等于360°。

我们可以通过下面的推导来证明这一关系:
在一个n边形中,每个内角的补角等于对应的外角。

补角是指两角
之和等于180°的两个角。

所以,内角A和外角A'之和等于180°。

同理,多边形中的每对内角和外角均满足这一关系。

根据n边形的定义,一个多边形可以分解为n个三角形。

每个三角
形的内角和为180°,而外角和为0°。

因此,在整个多边形中,内角和
为n × 180°,外角和为n × 0°,两者之和等于n × 180°+ n × 0° = n ×180°。

由于每个外角与其对应的内角之和为180°,整个多边形的外角和必
然等于内角和。

四、实例验证
我们可以通过一个实例来验证多边形外角和与内角和的关系。

以一个五边形为例,根据多边形的内角和公式可以得知,五边形的
内角和为 (5-2) × 180° = 540°。

而五边形的外角和根据关系定理应该等
于内角和,即 540°。

我们可以通过计算五边形的外角来验证这一点。

假设五边形的各个
角为A、B、C、D和E,分别计算每个角的外角为A'、B'、C'、D'和
E'。

通过几何推导可以得出A' = 360° - A,B' = 360° - B,以此类推。

将各个角的外角加起来,A' + B' + C' + D' + E' = (360° - A) + (360° - B) + (360° - C) + (360° - D) + (360° - E) = 1800° - (A + B + C + D + E)。

根据五边形的内角和公式,A + B + C + D + E = 540°。

将它带入上
述公式,得到 A' + B' + C' + D' + E' = 1800° - 540° = 1260°。

由此可见,五边形的外角和为1260°,与内角和540°相等,验证了
多边形外角和与内角和的关系。

五、结论
多边形的外角和与内角和有着明确的联系,即外角和等于内角和。

这一关系可以通过几何推导和实例验证得出。

理解多边形外角和内角
和的关系对于几何学习非常重要,它能帮助我们更好地理解多边形的
性质和相关概念。

总结起来,多边形的外角和与内角和的关系可以用简洁的公式表达:外角和 = 内角和 = (n-2) × 180°。

这一公式在解决多边形相关问题时具
有重要的参考价值。

相关文档
最新文档