八年级上册数学第十四章总复习.doc

合集下载

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。

数学八年级上册《总复习(第14章》教案

数学八年级上册《总复习(第14章》教案

数学备课组第18周供19 周用主备课稿知识(教材)梳理:教法设计与学法指导(包括突出重点、突破难点的方法,易错易混点的解决措施,教学手段和教学资源利用,学法指导)【重点】会运用法则进行整式的乘除运算,会对一个多项式分解因式【难点】记住公式与法则会运用法则进行整式乘除运算,会对一个多项式进行因式分解【易错易混点】二、典型例题幂的运算法则及其逆运用例1 计算2x 3·(-3x )2= . 例2 计算[a 4(a 4-4a )-(-3a 5)2÷(a 2)3]÷(-2a 2)2整式的混合运算例 3 计算[(a -2b )(2a -b )-(2a +b )2+(a +b )(a -b )-(3a )2]÷(-2a ). 因式分解例4 分解因式.(1)m 3-m ; (2)(x +2)(x +3)+x 2-4. 转化思想例5 分解因式a 2-2ab +b 2-c2整体思想例6 (1)已知x +y =7,xy =12,求(x -y )2; (2)已知a +b =8,a -b =2,求ab 的值. 开放型题例7 (2009·吉林中考)在三个整式2222,2,x xy y xy x ++中,请你任意选出两 个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解 规律探究题例8 如图15-5所示,摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需 枚棋子,按这种方式摆下去,摆第n 个这样的 “小屋子”需要 枚棋子.例9 (1)计算.①(a -1)(a +1); ②(a -1)(a 2+a +1); ③(a -1)(a 3+a 2+a +1); ④(a -1)(a 4+a 3+a 2+a +1). (2)根据(1)中的计算,你发现了什么规律?用字母表示出来.(3)根据(2)中的结论,直接写出下题的结果.①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=;②若(a-1)·M=a15-1,则M=;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=;④(2x-1)(16x4+8x3+4x2+2x+1)=;三、训练题一、选择题1.计算(a3)2的结果是 ( )A.a5B.a6C.a8D.a92.下列运算正确的是 ( )A.a2·a3=a4B.(-a)4=a4C.a2+a3=a5D.(a2)3=a53.已知x-3y=-3,则5-x+3y的值是 ( )A.0 B.2 C.5 D.84.若m+n=3,则2m2+4mn+2n2-6的值为 ( )A.12 B.6 C.3 D.05.如图15-4所示,在边长为a的正方形中挖去一个边长为b的小正方形(a >b),把余下的部分拼成一个矩形,根据两个图形中阴影部分的面积相等,可以验证 ( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b26.下列各式中,与(a-b)2一定相等的是( )A.a2+2ab+b2B.a2-b2C.a2+b2D.a2-2ab+b07.已知x+y=-5,xy=6,则x2+y2的值为 ( )A.1 B.13 C.17 D.258.下列从左到右的变形是因式分解的是 ( )A.ma+mb-c=m(a+b)-cB.(a-b)(a2+ab+b2)=a3-b3C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)D.4x2-25y2=(2x+5y)(2x-5y)9.下列各式中,能用平方差公式分解因式的是 ( ) A .-a 2+b 2B .-a 2-b 2C .a 2+b 2D .a 3-b 310.如果(x -2)(x -3)=x 2+px +q ,那么p ,q 的值是 ( ) A .p =-5,q =6 B .p =1,q =-6 C .p =1,q =6 D .p =5,q =-6 二、填空题11.已知10m=2,10n=3,则103m +2n= .12.当x =3,y =1时,代数式(x +y )(x -y )+y 2的值是 . 13.若a -b =1,ab =-2,则(a +1)(b -1)= . 14.分解因式:2m 3-8m = . 15.已知y =31x -1,那么31x 2-2xy +3y 2-2的值为 . 16.计算:5752×12-4252×12= . 17.若(9n )2=38,那么n = .18.如果x 2+2kx +81是一个完全平方式,那么k 的值为 .19.多项式9x 2+1加上一个单项式后,使它成为一个整式的完全平方式,.那么加上的单项式是 .(填一个你认为正确的即可)20.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2.你根据图乙能得到的数学公式是_________________三、解答题 21.化简.(1)-(m -2n )+5(m +4n )-2(-4m -2n );(2)3(2x +1)(2x -1)-4(3x +2)(3x -2);25.给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.26.如图15-6所示,有一个形如四边形的点阵,第l 层每边有两个点,第2层每边有三个点,第3层每边有四个点,以此类推.(1)填写下表; 层数12 3 4 5 6 各层对应的点数 所有层的总点数(2)写出第n 层对应的点数; (3)写出n 层的四边形点阵的总点数;(4)如果某一层共有96个点,你知道是第几层吗?(5)有没有一层点数为100?分式复习学案一、 补全网络:.二、巩固网络:(一)、填空(C 组同学做1——3题) 1.当x =________时,分式31-x 没有意义.2.当x =_________时,分式392+-x x 的值为0. 分式 分式概念:形如B A,A 、B 是整式其中B 含字母且B ≠分式方程:分式乘除法法则:=⨯d cb a ; 分式加减法法则:异分母分式:=±d c b a 。

人教版初二上册数学 知识梳理与复习(第十四章 14. 1~14.2)

人教版初二上册数学 知识梳理与复习(第十四章  14. 1~14.2)

人教版八年级上册数学知识梳理与复习(第十四章14. 1~14.2)1.下列各题中的两个幂是同底数幂的是( )A.-x²与(-x)³B.(-x)²与x²C.-x²与x³D.(a-b)⁵与(b-a)⁵2.下列各式中,运算正确的是( )A. a³+a⁴=a⁷B.b³·b⁴=b⁷C.C³·C⁴=c¹²D.d³·d⁴= 2d⁷3.若x a·a²= a⁵,则x的值为( )A.1 B.2 C.3 D.44.下列四个算式:①a³·a³= 2a³;②x³+x³ =x⁶;③y³·y·y²=y⁶;④z²+ z²+ z²= 3z²,其中正确的个数是( )A.1个B.2个C.3个D.4个5. 10³×10⁴=_______.6.(m-n)²(m-n)(m-n)⁵=_________.7.(-x)⁶·x⁷·x⁸=________.8.已知a=-2,求(-a)²(-a) ³a⁴的值.9.下列运算正确的是( )A.(-2²)³=2⁶B.(-x⁴)⁵=x²ᴼC.(-x²ᵐ⁺¹)²= x⁴ᵐ⁺² D.[(x+y)²]⁷=(x+y)⁹10.(-aⁿ)²·aⁿ⁺¹等于( )A.a²ⁿ⁺³B.a³ⁿ⁺¹C.-a³ⁿ⁺¹ D.-aⁿ⁺³11.下列各式中不正确的是( )A.(m⁵)⁵=m²⁵B.(a⁴)ᵐ= (a²ᵐ)² C.x²ⁿ=(-xⁿ)²D.y²ⁿ=(-y²)ⁿ12.下列四个算式:①(a⁴)⁴=a⁴⁺⁴= a⁸;②[(b²) ²]²= b2×2×2= b⁸;③[(-x)³]²=x⁶;④(-y²)³=y⁶中,其中正确的算式有( )A.0个B.1个C.2个D.3个13.填空题.(1)(5⁴)²=______ (2)=________(3)(-a³)⁴=______ (4)(y²)³·Y=_______(5)(a⁴)²+(a²)⁴=_______ (6)(a²)²·(a³)²=________(7)c·(c⁵)²·(-c)=_______ (8)[(-m⁴)⁵·(-m²)⁷]²=________(9)[(a-b)³]ᵐ·[(b-a)ᵐ]²=_________ (10)(x²)ⁿ·(xⁿ¯¹)³=________(11)当n为偶数时,[(-a²)ⁿ+(-aⁿ)²]²=________(12)已知9⁵×27²=x3,则x=_____14.比较2¹ᴼᴼ与3⁷⁵的大小.15.(-2x²y³)⁴的结果为( )A.-2x⁸y¹²B.-2x²y¹²C.16x⁶y⁷D.16x⁸y¹²16.如果(2aᵐbᵐ⁺ⁿ)³=8a⁹b¹⁵成立,则m,n的值为( )A.m=3, n=2B.m=3, n=9C.m=6, n=2D.m=2, n=517.(2×10²)³写成科学记数法的形式为( )A.6×10⁵B. 0.6×10⁷C.8×10⁵D.8×10⁶18.填空题.(1)(ab)³=________ (2)(-x²y)⁵=_______(3)=___________ (4) (0.1xy³)³=_______(5)(a ⁿb ᵐ)²=_______ (6)(x ⁿ⁺¹y ⁿ¯¹)²=_______(7)(-3ab ²)ᵐ=_______ (8) (2²b ⁵)²=______(9)[(-2xy )³]²=_______ (10) =______19.下列四个算式中,正确的是( )A .3m(5a+ 2b)=3ma+ 6mbB.-2xy( 3x ²y-2xy ²)=4x ²y³- 6x³y ²C.(x-3y)(- 6x)=6x ² - 18xyD .X ⁶y ²÷x ²y =x³y20.如果计算(2- nx - 3x ²+ mx³)(-4x ²)的结果中不含x ⁵项,那么m 应等于 ( )A .0B .1C .-1D .4121.已知(x-1)(x ²+mx+n) =x³-6x ²+11x-6,求m ,n 的值.22.对于任意自然数n ,代数式n(n+7)-(n-3)(n-2)的值能被6整除吗?23.下列多项式中,可以用平方差公式计算的是( )A .(2a - 3b)(- 2a+3b)B .(- 3a+4b)(- 4b - 3a)C .(a-b )(b-a)D .(a-b -c )(-a+b+c)24.下列计算结果正确的是( )A.(x+2)(x-2)=x ²-2 B .(x+2)(3x-2)=3x ² -4C.(ab -c)(ab+c)=a ²b ²-c ² D .(-x-y) (x+y) =x ²-y ²25.已知(a+b-3)²+|a- b+5|=0,求a ²-b ²的值,26.有两个正方体,棱长分别为a cm ,b cm ,如果a-b=3,a+b=11,求它们的表面积的差.27.下列式子中是完全平方式的是( )A.a ²+ ab+ b ²B.a ²+2a+2C.a ²-2b+b ²D.a ²-2a+128.若(x-y)²=x ²+xy+y ²+N 则N 为( )A. xy B .-xy C .3xy D .-3xy29.填空题.(1)(8-y)²= 64+____+y ²,(- x+y)²=____-2xy+y ²;(2)若kx ²+ 8x+1是一个完全平方式,则k=________,(3)若x ²+kx+91=(x-31)²,则k=_______;(4)(a-3)²-a ²=_________;(5) (xy-1)² - (xy+1)²=______.30.若x ²- 2x+y ²+6y+10 =0,求x ,y 的值.31.证明:不论x ,y 取何值,代数式x ²+ y ²+ 4x -6y+13的值都不小于0.【复习四】1.C2.B3.C4.B5. 10⁷6.(m-n )⁸ 7.x ²¹8.(-a )²·(-a )³·a ⁴=(-a )²·(-a )³·(-a )⁴=(-a )⁹= [-(-2)]⁹=2⁹.9.C 10.B 11.D 12.C13.(1)5⁸ (2)15)71( (3) a ¹² (4) y ⁷ (5) 2a ⁸ (6) a ¹ᴼ(7) -c ¹² (8) m ⁶⁸ (9) (a-b)⁵ᵐ (10) x ⁵ⁿ¯³ (11) 4a ⁴ ⁿ (12) 1614. 2¹ᴼᴼ= 4252⨯=( 2⁴)²⁵=16²⁵, 3⁷⁵= 3253⨯= (3³)²⁵=27²⁵,∵27²⁵>16²⁵, ∴2¹ᴼᴼ< 3⁷⁵.15.D 16.A 17.D18. (1) a³b³ (2) -x ¹ᴼy ⁵ (3) 278p ⁶q ⁹ (4) 0.001x³y ⁹ (5) a ²ⁿb ²ᵐ(6)x ²ⁿ⁺²y ²ⁿ¯² (7) (-3)ᵐa ᵐb ²ᵐ (8) 16b ¹ᴼ (9) 64x ⁶y ⁶ (10) 169-m ⁴n ⁶p ²19.B 20.A 21. m= -5.n=622. n(n+7)-(n-3)(n-2) =12n-6=6(2n-1),∵6(2n -1)是6的倍数,∴能被6整除.23.B 24.C 25. - 1526.表面积之差6(a ²-b ²) =6(a+b)(a-b)=6×11×3=198 (cm ²).27.D 28.D29. (1) (-16y) x ² (2)16 (3)32-(4)-6a+9 (5) -4xy 30.x ²- 2x+y ²+6y+10=0,即(x ²-2x +1)+(y ²+6y+9)=0,即(x-1)²+(y+3)²=0,解得x=1,y=-3.31.x ²+y ²+ 4x-6y+13=x ²+4x +4+y ²-6y+9=(x+2)²+(y-3)²,∵(x+2)²≥0,(y-3)²≥0,∴(x+2)²+(y-3)²≥0.∴无论x,y 取何值,x ²+y ²+ 4x-6y+ 13的值都不小于0.。

最新八年级上册数学第14章复习知识点:因式分解

最新八年级上册数学第14章复习知识点:因式分解

最新八年级上册数学第14章复习知识点:因式分解学好知识就需求往常的积聚。

知识积聚越多,掌握越熟练,查字典数学网编辑了2021最新八年级上册数学第14章温习知识点:因式分解,欢迎参考!
因式分解
定义:把一个多项式化为几个最简整式的乘积的方式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。

分解因式与整式乘法为相反变形。

同时也是解一元二次方程中公式法的重要步骤
1、因式分解与解高次方程有亲密的关系。

关于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。

在数学上可以证明,关于一元三次和一元四次方程,也有固定的公式可以求解。

只是由于公式过于复杂,在非专业范围没有引见。

关于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比拟复杂。

关于五次以上的普通多项式,曾经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。

2 、一切的三次和三次以上多项式都可以因式分解。

这看起来或许有点不可思议。

比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解。

但是它的次数高于3,所以一定可以因式分解。

假设有兴味,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。

3 、因式分解虽然没有固定方法,但是求两个多项式的公因式却有固定方法。

因式分解很多时分就是用来提公因式的。

寻觅公因式可以用辗转相除法来求得。

规范的辗转相除技艺关于中先生来说难度颇高,但是中学有时分要处置的多项式次数并不太高,所以重复应用多项式的除法也可以比拟笨,但是有效地处置找公因式的效果。

八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)

八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。

人教版数学八年级上册 知识梳理与复习(第十四章14.3).doc

人教版数学八年级上册 知识梳理与复习(第十四章14.3).doc

人教版数学八年级上册知识梳理与复习(第十四章14.3)姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分一、单项选择题。

(每小题1分,共13分)1.下列变形是因式分解的是()A. a²-b²-1=(a+b)(a-b)-1B. ax²+x+b²=x(ax+1)+b²C. (a+2)(a-2)=a²-4D. 4x²-9=(2x+3)(2x-3)2.分解因式6xyz-4x²y²z²+2xz²时,应提取的公因式是()A. xyzB. 2xC. 2zD. 2xz3.将a²b-ab²提公因式后,另一个因式是()A. a+2bB. -a+2bC. -a-bD. a-2b4.下列因式分解中,是利用提公因式法分解的是()A. a²-b²= (a+b)(a-b)B. a²-2ab+b²=(a-b)²C. ab+ac=a(b+c)D. a²+2ab+b²=(a+b)²5.若a+b-4,ab =2,则3a²b+3ab²的值是()A. 24B. 18C. 12D. 86.多项式x²+x⁶提取公因式x²后的另一个因式是()A. x⁴B. x³C. x⁴+1D. x³+17.若△ABC的三边a,6,c满足a²+b²+c²=ac+bc+ab,则△ABC是()A. 锐角三角形B. 等腰三角形C. 等边三角形D. 直角三角形8.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B. -1-m²C. a²-9b²D. 4m²-19.下列各式中不是完全平方式的是()A. x²-10x+25B. a²+a+C. 4n²+n+4D. 9m²+6m+110.下列四个多项式,能因式分解的是()A. a²+b²B. a²-a+2C. d+3bD. (x+y)²-411.若x为任意有理数,则多项式x²+x-1的值()A. 一定为负数B. 一定为正数C. 不可能为正数D. 不可能为负数12.若行为任意整数,则(n+7)²-n²一定能被整除()A. 7B. 14C. 7或14D. 7的倍数13.下列因式分解不正确的是()A. 2x³-2x=2x(x²-1)B. mx²-6mx+9m= m(x-3)²C. 3x²-3y²=3(x+y)(z-y)D. x²-2xy+y²=(x-y)²二、填空题。

八年级数学上册第十四章整式的乘法与因式分解重点知识点大全(带答案)

八年级数学上册第十四章整式的乘法与因式分解重点知识点大全(带答案)

八年级数学上册第十四章整式的乘法与因式分解重点知识点大全单选题1、下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a−b2C.−a2+b2D.−a2−b2答案:C分析:根据平方差公式的定义判断即可;A、原式不能利用平方差公式进行因式分解,不符合题意;B、原式不能利用平方差公式进行因式分解,不符合题意;C、原式=(b−a)(b+a),能利用平方差公式进行因式分解,符合题意;D、原式不能利用平方差公式进行因式分解,不符合题意,故选:C.小提示:本题主要考查了平方差公式分解因式,准确判断是解题的关键.2、要使多项式(x+p)(x−q)不含x的一次项,则p与q的关系是()A.相等B.互为相反数C.互为倒数D.乘积为−1答案:A分析:计算乘积得到多项式,因为不含x的一次项,所以一次项的系数等于0,由此得到p-q=0,所以p与q 相等.解:(x+p)(x−q)=x2+(p−q)x−pq∵乘积的多项式不含x的一次项∴p-q=0∴p=q故选择A.小提示:此题考查整式乘法的运用,注意不含的项即是该项的系数等于0.3、下列分解因式正确的是()A.a3−a=a(a2−1)B.x3+4x2y+4xy2=x(x+2y)2C.−x2+4xy−4y2=−(x+2y)2D.16x2+16x+4=(4x+2)2答案:B分析:根据分解因式的方法进行分解,同时分解到不能再分解为止;A、a3−a=a(a2−1)=a(a+1)(a−1),故该选项错误;B、x3+4x2y+4xy2=x(x2+4xy+4y2)=x(x+2y)2,故该选项正确;C、−x2+4xy−4y2=−(x2−4xy+4y2)=−(x−2y)2,故该选项错误;D、16x2+16x+4=4(4x2+4x+1)=4(2x+1)2,故该选项错误;故选:B.小提示:本题考查了因式分解,解决问题的关键是掌握因式分解的几种方法,注意因式分解要分解到不能再分解为止;4、已知(x-m)(x+n)=x2-3x-4,则m-n的值为( )A.1B.-3C.-2D.3答案:D分析:把原式的左边利用多项式乘多项式展开,合并后与右边对照即可得到m-n的值.(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,∵(x-m)(x+n)=x2-3x-4,∴n-m=-3,则m-n=3,故选D.小提示:此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.5、下列式子中,正确的有( )①m3∙m5=m15;②(a3)4=a7;③(-a2)3=-(a3)2;④(3x2)2=6x6A.0个B.1个C.2个D.3个答案:B分析:根据同底数幂的乘法、幂的乘方、积的乘方逐一分析判断即可.解:①m3⋅m5=m8,故该项错误;②(a3)4=a12,故该项错误;③(−a2)3=−a6,−(a3)2=−a6,故该项正确;④(3x2)2=9x4,故该项不正确;综上所述,正确的只有③,故选:B.小提示:本题考查同底数幂的乘法、幂的乘方、积的乘方,掌握运算法则是解题的关键.6、在下列各式中,一定能用平方差公式因式分解的是().A.−a2−9B.a2−9C.a2−4b D.a2+9答案:B分析:直接利用平方差公式:a2−b2=(a+b)(a−b),进而分解因式判断即可.A、−a2−9,无法分解因式,故此选项不合题意;B、a2−9=(a+3)(a−3),能用平方差公式分解,故此选项符合题意;C、a2−4b,无法分解因式,故此选项不合题意;D、a2+9,无法分解因式,故此选项不合题意.故选B.小提示:此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.7、若x2+2(k+1)x+4是完全平方式,则k的值为()A.+1B.﹣3C.﹣1或3D.1或﹣3答案:D分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+2(k+1)x+4是完全平方式,∴2(k+1)=±4,解得:k=1或-3,故D正确.故选:D.小提示:本题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.8、下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a−b)2C.a2−a=a(a+1)D.a2−b2=(a+b)(a−b)答案:D分析:根据因式分解的方法,逐项分解即可.A. a2+b2,不能因式分解,故该选项不正确,不符合题意;B. a2+2ab+b2=(a+b)2故该选项不正确,不符合题意;C. a2−a=a(a−1),故该选项不正确,不符合题意;D. a2−b2=(a+b)(a−b),故该选项正确,符合题意.故选D.小提示:本题考查了因式分解,掌握因式分解的方法是解题的关键.9、计算(x+1)(x+2)的结果为( )A.x2+2B.x2+3x+2C.x2+3x+3D.x2+2x+2答案:B解:原式=x2+2x+x+2=x2+3x+2.故选B.10、已知a2+14b2=2a−b−2,则3a−12b的值为()A.4B.2C.−2D.−4答案:A分析:根据a2+14b2=2a−b−2,变形可得:a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0,因此可求出a=1,b=−2,把a和b代入3a−12b即可求解.∵a2+14b2=2a−b−2∴a2−2a+1+14b2+b+1=(a−1)2+(12b+1)2=0即(a−1)2=0,(12b+1)2=0∴求得:a=1,b=−2∴把a和b代入3a−12b得:3×1−12×(−2)=4故选:A小提示:本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.填空题11、多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=_____.答案:﹣2分析:根据题意只要使含x3项和x2项的系数为0即可求解.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.所以答案是:﹣2.小提示:本题主要考查多项式的系数,关键是根据题意列出式子计算求解即可.12、分解因式:x2y+xy2=______.答案:xy(x+y)分析:利用提公因式法即可求解.x2y+xy2=xy(x+y),所以答案是:xy(x+y).小提示:本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键.13、已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.答案:2分析:将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为2.小提示:本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.14、观察下列等式:①32−12=4×2;②42−22=4×3;③52−32=4×4;④62−42=4×5;…,第n(n为正整数)个等式为________.答案:(n+2)2−n2=4(n+1)分析:利用已知数据得出变化规律,进而得出答案即可.解:由32−12=4×2,42−22=4×3,52−32=4×4,62−42=4×5,…,可得:(n+2)2−n2=(n+2+n)(n+2−n)=4(n+1),即:(n+2)2−n2=4(n+1).故答案是:(n+2)2−n2=4(n+1).小提示:此题主要考查了数字变化规律以及平方差公式,得出数字变化规律是解题关键.15、若(m+2022)2=10,则(m+2021)(m+2023)=______.答案:9分析:先将m+2021变形为m+2022−1,m+2023变形为m+2022+1,然后把(m+2022)看作一个整体,利用平方差公式来求解.解:∵(m+2022)2=10,∴(m+2021)(m+2023)=(m+2022−1)(m+2022+1)=(m+2022)2−1=10-1=9.所以答案是:9.小提示:本题考查了平方差公式,代数式求值,解题的关键是熟练掌握平方差公式:(a+b)(a−b)=a2−解答题16、先化简,再求值:(3x +2)(3x −2)−5x (x −1)−(2x −1)2,其中x =−13. 答案:9x -5,−8分析:先计算乘法,再计算加减,然后把x =−13代入化简后的结果,即可求解. 解:(3x +2)(3x −2)−5x (x −1)−(2x −1)2=9x 2−4−5x 2+5x −4x 2+4x −1=9x −5当x =−13时,原式=−13×9−5=−8小提示:本题主要考查了整式的混合运算——化简求值,熟练掌握整式的混合运算法则是解题的关键.17、化简:3(a ﹣2)(a +2)﹣(a ﹣1)2.答案:2a 2+2a -13分析:根据平方差公式和完全平方公式去括号,再计算加减法.解:3(a ﹣2)(a +2)﹣(a ﹣1)2=3(a 2-4)-(a 2-2a +1)=3a 2-12-a 2+2a -1=2a 2+2a -13.小提示:此题考查了整式的乘法计算公式,整式的混合运算,正确掌握平方差公式和完全平方公式的计算法则是解题的关键.18、爱动脑筋的小明在学习《幂的运算》时发现:若a m =a n (a >0,且a ≠1,m 、n 都是正整数),则m =n ,例如:若5m =54,则m =4.小明将这个发现与老师分享,并得到老师确认是正确的,请您和小明一起用这个正确的发现解决下面的问题:(1)如果2×4x ×32x =236,求x 的值;(2)如果3x+2+3x+1=108,求x 的值.答案:(1)x =5分析:(1)利用幂的乘方的法则及同底数幂的乘法的法则对式子进行整理,从而可求解;(2)利用同底数幂的乘法的法则及幂的乘方的法则对式子进行整理,即可求解.(1)因为2×4x×32x=236,所以2×22x×25x=236,即21+7x=236,所以1+7x=36,解得:x=5;(2)因为3x+2+3x+1=108,所以3×3x+1+3x+1=4×27,4×3x+1=4×33,即3x+1=33,所以x+1=3,解得:x=2.小提示:本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握与运用.。

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。

2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。

3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。

2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。

三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。

2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

3. 公式法:利用平方差公式和完全平方公式进行因式分解。

注意:分解因式必须分解到每一个因式都不能再分解为止。

四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。

方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。

五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。

在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。

熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。

掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学第十四章总复习【一次函数】
人民教育出版社
1.已知函数 y= (2m+l)x+m -3
(1)若这个函数的图象经过原点,求m的值;(2)若这个图象不经过第二象限,求m的取值
范围
2.如图,已知直线L: y=2x+3,直线L: y=-x+5,直线li、L分别交x轴于
B、C两点,li、L相交于点A
⑴求A、B、C三点坐标;(2)求AABC的面积
O Cx. x
2题图
3.已知函数图经过点P (—2, 0),且与两坐标轴成的三角形面积为3,求一次函数的解析式
4.如图,大拇指与小姆指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下
人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距
d(cm) 身高h(cm) 距应是多少?
5.如图所示,正方形ABCD的边长为6, P是BC边上一动点,设BP=x,
(0WxW6)试求四边形APCD的面积y与x的函数解析式,y是x的一次函数吗? y是x的正比例
函数吗?
6.小明在买新的运动鞋时发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:
鞋长x (cm)…22 23 24 25 26 …
码数尹•••34 36 38 40 42 ,・・
请你代替小明解决下列问题:
(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上? (2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些
点的坐标是否满足函数关系式y
J八
(3)当鞋码是40码时,鞋长是多长?42
40 -
38 -
36 -
34 -
23 24 25 26 x
I I I I I A o 22
7.某校计划在十T期间组织教师到参加旅游,参加旅游的人数约为10~25人,甲、乙两家旅行社报价都是每人200元,经协商,甲旅行社给予每人7. 5折优惠.乙旅行社可免去一人的费用,余人8折优惠.该选择哪家旅行社支付的费用较少?
8.巳知一次函数的图象过点(1, 1)与(2, -1),求此函数的解析式并求使函数值为正值的 x的范围
26
20
9.
某农户种植一种经济作物,总用水量y (m 3
)与种植时间x (天)之间的函数关系式
如图所 示.⑴第20天的总用水量为多.少n?? ⑵当x 》20时,求y 与x 之间的函数关系式. ⑶种植时间为多少天时,总用水量达到7000m 3
? 10.
母亲节到了,八年五班班长发起慰问烈属王大妈的活动, 决定在“母亲节”期间全班同
学利用数学课去卖鲜花筹集慰 问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.
(1) 求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式
(2) 若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元) 与销售量x (支)之间的函数关系式
(3) 若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额一成本)
11.某出版社出版一种中学生学习的教辅书,若该书首次出版印刷的印数不少于5000册时, 投印数x (册) 5000 8000 10000 15000 .. 成本y (元)
28500 36000 41000 5 3500 .. (1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函 数“求这个一次函数的解析式;(2)如果出版社投入成本48000元,那么能印该读物多少册?
12. 已知函数 y=(2m+l ) x+m -3
(1)若函数图经过原点,求m 的值
(3)若函数图平行直线y=3x -3,求
(2) 若函数图在y 轴的截距为一2,求m 的值
(4) 若这个函数是一次

数,且y 随着x 的增 大而减小,求m 的取值范围.
13. 如图是某出租车单程收费y (元)与行驶路程x(千米)之间的函数关系图象,根据图象回答 下列问题
(1) 当行驶8千米时,收费应为 元
(2) 从图象上你能获得哪些信息?(请写出2条)
① ____________________________________________________ ② ____________________________________________________ (3) 求出收费y (元)与行使x(千米)(xN3)之间的函数关系式
14. 为了加强公民的节水意识,合理利用水资源,各地采用价格调控手
段达到节约用水的目的, 某市规定用水收费标准为:每户每月的用水量不超过6m'时,水费按每立方米a 元收费,超过 6n?时,不超过的部分每仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9'10 月份的用水量和所交水费如I 表所示:
设:某户每月用水量x (m ,),应交水费y (元) (1) 求a 、c 的值
(2) 当xW6,xN6时,分别写出y 于x 的函数解析式 (3) 若该户11月用水量为8m ,,
求该户11月水费?
15, 已知一次函数图象经过(3, 5)和(-4, -9)两点,
(1) 求此一次函数
(2) 若点(m, 2)在函数图象上,求m 的值
16. 一农民带上若干千克自产的土豆进城出售,为了方便,
他带 了一些零钱备用,按市场价售出一些后,又降价出售,售出的土 豆千克数与他手中持有的钱数(含备用零钱)的关系,如
月份 用水(费 收费(元) 9 5 7. 5 10
9
27
图所示,
结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0. 4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
17.如图,la、k分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系
(1)B出发时与A相距千米
(2)走了一段路后,自行车发生故障,进行
修理,所用的时间是小时
(3)B出发后小时与A相遇
(4)若B的自行车不发生故障,保持出发时的速度
前进,小时与A相遇,相遇点离B的出发点千米。

在图中表示
出这个相遇点C
(5)求出A行走的路程S与时间t的函数关系式
18.已知函数y=(m—3) x"*+3m_i,当m为何值时,y是x的一次函数?
19.某汽车的油缸盛油100升,巳知汽车每行驶50千米耗油5升
(1)写出油缸中的剩油量y (升)与汽车行驶路程x (千米)之间的函数关系式 (2)求出自变量的取值范围
(3)画出(1)中的函数图象
20.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费
(1)写出该单位水费y (元)与每月用水量x (吨)之间的函数关系式①用水量小于等于3000吨时;②用水量大于3000时
(2)某月该单位用水3500吨,水费是元;若用水2700吨,水费元
(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?。

相关文档
最新文档