初中数学 第14章一次函数 全章预习提纲 预习提纲 第十四章 一次函数 数学活动
八年级数学上册第14章一次函数教材

第14章:一次函数复习变量:自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量. 常量:有些量的数值是始终不变的量叫常量.函数值:当自变量确定一个值,被变量随之确定的一个值. 一次函数和正比例函数的概念1.概念: 若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,k ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. ★判断一个等式是否是一次函数先要化简(3)当b=0,k ≠0时,y= kx 仍是一次函数.(正比例函数) (4)当b=0,k=0时,它不是一次函数.2. 函数的表示方法: 1)解析法,2)列表法,3)图象法. 一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正、负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大;②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;22正比例函数y=kx (k ≠0)的性质(1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小.知识规律小结1.常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb >0时,直线与x 轴正半轴相交;当b=0时,即-kb =0时,直线经过原点; 当k ,b 同号时,即-kb ﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当k <O ,b <O 时,图象经过第二、三、四象限.2. 直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系: 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . 3. 直线b1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系. ①k1≠k2⇔y1与y2相交;②⎩⎨⎧=≠2121b b k k ⇔y1与y2相交于y 轴上同一点(0,b1)或(0,b2);3③⎩⎨⎧≠=2121,b b k k ⇔y1与y2平行; ④⎩⎨⎧==2121,b b k k ⇔y1与y2重合.14.1.1变量问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时. 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含t 的式子表示s: s=________,t 的取值范围是 _________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元.• 1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含x 的式子表示y: y=______ ,x 的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm ,设重物质量为mkg ,受力后的弹簧长度为L cm. 1.请同学们根据题意填写下表:23.试用含m 的式子表示L: L=____________ ,m 的取值范围是 .这个问题反映了_________随_________的变化过程.小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。
八年级数学上册知识点总结第十四章

八年级数学上册知识点总结第十四章让努力学习八年级数学知识成为一种习惯。
要有最遥远的梦想和最朴素的生活,即使明天天寒地冻,路远马亡。
无论明日,有多落魄,至少今天,没有蹉跎。
以下是店铺为大家整理的八年级数学上册知识点总结,希望你们喜欢。
八年级数学上册知识点总结:第十四章一次函数1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.6.已知两点坐标求函数解析式(待定系数法求函数解析式):把两点带入函数一般式列出方程组求出待定系数把待定系数值再带入函数一般式,得到函数解析式7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)八年级数学上册知识点总结(一)整式的乘法※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式.※(2).单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序.※(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.八年级数学上册知识点总结(二)平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 .¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即 ;¤口决:首平方,尾平方,2倍乘积在中央;¤2.结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误.添括号法则:添正不变号,添负各项变号,去括号法则同样。
八年级上册数学第十四章知识点总结

八年级上册数学第十四章知识点总结第十四章一次函数一、知识点1. 函数:在某一变化过程中,有两个变量x和y,对于x的每一个取值,y都有唯一确定的值与之对应,那么就说y是x的函数,x叫做自变量。
2. 一次函数:一般地,如果y与x之间的函数关系式为y=kx+b(k≠0,k,b是常数),那么y随x增大而增大,我们就称它为一次函数。
3. 正比例函数:对于两个相关联的变量x,y,如果它们的函数关系式中,k,b为常数且k≠0,那么就称y按照关于x的一次函数关系随x变化。
4. 正比例函数图象:一般地,当我们把形如y=kx(k≠0)的函数的图象画在同一个直角坐标系中时,正比例函数的图象是经过原点的一条直线。
二、理解与应用1. 理解一次函数的概念:我们需要关注函数的表达方式和形式(即定义),了解常数k的几何意义,并理解b的含义。
2. 应用一次函数解决实际问题:我们要能够将实际问题转化为数学问题,通过运用一次函数的性质来求解。
例如,我们可以利用一次函数的增减性来解决问题,根据实际情况做出选择。
3. 注意在解题过程中运用画图辅助的方法:利用图象可以直观地看出两个变量之间的变化关系,有助于我们更好地理解问题,找到解题的关键点。
三、例题解析【例】已知正比例函数y=kx的图象经过点(2,4),求k的值并画出这个函数的图象。
【解析】根据题目中的条件,我们可以直接将点(2,4)代入函数表达式中求得k的值。
根据所求得的k值,我们可以画出这个函数的图象。
通过观察图象,我们可以更好地理解一次函数与自变量之间的关系。
解:将点(2,4)代入函数表达式中,可得k=2×4=8。
画出这个函数的图象如下:这个图象是一条经过原点和点(2,4)的直线。
通过观察图象,我们可以发现当x>0时,y随x的增大而增大。
这对于我们解决实际问题非常有帮助。
四、练习题请完成以下练习题,尝试运用一次函数的知识来解决实际问题。
1. 已知正比例函数y=kx的图象经过点(3,2),求k的值并画出这个函数的图象。
八年级数学第14章一次函数复习知识点总结及相应题型

(2)该教师购买同样多盒水彩时,哪种优惠方法更省钱?
(3) 的自变量的取值范围是;
2、一汽车以50km/h的速度行驶,行驶的路程s(km)与行驶时间t(h)之间的函数关系式为,自变量的取值范围是。
3、某企业今年年产值是420万元,计划今后每年增加52万元,则年产值y(万元)与年数x之间的函数关系式是;5年后的年产值是。
4、已知函数关系式:① ;② ;③ ;④ ;⑤ ;⑥ ;⑦ 。其中不是一次函数,是正比例函数。(填序号)
(2)将直线 向上平移个单位可得直线 。
5、一次函数 的图象如图所示,则 0, 0。
6、下列函数中,y的值随x的值增大而增大的是()
A、 B、 C、 D、
*7、已知一次函数 ,函数值y随x的值增大而减小,则 的取值范围是。
8、过点 且与直线 平行的直线解析式为。
知识点九:一次函数与坐标轴的交点
设直线 与x轴的交点坐标是 ,与y轴的交点坐标是 。
5、已知点 、 在直线 上,则 的大小关系是。
6、一次函数 的大致图象,经过第象限,y随着x的增大而。
7、一次函数的图象如图所示,则 0, 0,y
随x增大而。
8、直线 与 的位置关系为:
9、直线 与 轴交点坐标,与 轴交点坐标。大致图象为,图象经过第象限, 随 的增大而;
10、一次函数 经过第一、三、四象限,则 0, 0。
16、一次函数的图象如图所示,求一次函数的解析式。
17、用描点法画出函数 的图象。
18、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:
(1)此蜡烛未燃烧时高度为cm,燃烧1小时后,高度为cm。
(2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式。
八年级数学上册第十四章期末复习提纲

八年级数学上册第十四章期末复习提纲第十四章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:用整式表示的函数,自变量的取值范围是全体实数。
用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤列表注意:列表时自变量由小到大,相差一样,有时需对称。
描点:。
六、函数有三种表示形式:列表法图像法解析式法七、正比例函数与一次函数的概念:一般地,形如y=x的函数叫做正比例函数.其中叫做比例系数。
一般地,形如y=x+b的函数叫做一次函数.当b=0时,y=x+b即为y=x,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质一次函数概念如果y=x+b,那么y叫x的一次函数.当b=0时,一次函数y=x也叫正比例函数.图像一条直线性质>0时,y随x的增大而增大;<0时,y随x的增大而减小.直线y=x+b的位置与、b符号之间的关系.>0,b>0;>0,b<0;>0,b=0<0,b>0;<0,b<0<0,b=0一次函数表达式的确定求一次函数y=x+b时,需要由两个点来确定;求正比例函数y=x时,只需一个点即可.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.第十五章整式乘除与因式分解一.回顾知识点主要知识回顾:幂的运算性质:a?an=a+n同底数幂相乘,底数不变,指数相加.=an幂的乘方,底数不变,指数相乘.积的乘方等于各因式乘方的积.=a-n同底数幂相除,底数不变,指数相减.零指数幂的概念:a0=1任何一个不等于零的数的零指数幂都等于l.负指数幂的概念:a-p=任何一个不等于零的数的-p指数幂,等于这个数的p 指数幂的倒数.也可表示为:单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.乘法公式:①平方差公式:=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:2=a2+2ab+b2=a2-2ab+b2文字语言叙述:两个数的和的平方等于这两个数的平方和加上这两个数的积的2倍.因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;因式分解必须是恒等变形;因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.提公因式法掌握提公因式法的概念;提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;提公因式法的步骤:步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的项的系数是负的,一般要提出“-”号,使括号内的项的系数是正的.公式法:运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=②完全平方公式:a2+2ab+b2=2a2-2ab+b2=2。
初中数学 第14章一次函数 全章预习提纲 14.2.2一次函数(第一课时)

预习提纲§14.2.2 一次函数(第一课时)执笔:翁建勇审核:唐燕燕邱爱姐梁素玉组长:郑风清预习目标:1.掌握一次函数解析式的特点.2.知道一次函数与正比例函数关系.预习重点:一次函数解析式特点,由实际问题列出一次函数关系式预习方法:自主探究,小组合作,总结归纳.预习过程一、提出问题,创设情境( 细读课本P113 )二、探索新知:细读课本P113的思考。
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?三、概括定义(见课本P114)上述函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数的定义:四、练习体验:(课本P114)1、解:一次函数有:正比例函数有:2、解:(1)(2)3、解:五、补充习题:(由实际问题列出函数关系式,解决问题)1.某市市内出租车行程4km以内收起步费8元,行程超过4km时,每超过1km,加收1.80元.写出行程大于4km时,收费y(元)与所行里程x(km)间的函数关系,并指明它是一个什么函数?2.某车间有20名工人,每人每天加工甲种零件5个或乙种零件4个,在这20名工人中,派x人加工甲种零件,其余的加工乙种零件,已知加工一个甲种零件可获利16元,加工一个乙种零件可获利24元.(1)写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(2)若要使车间每天获利不低于1800元,问至少要派多少人加工乙种零件?3.某工厂有甲、乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了200t成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20t和30t成品.(1)分别求出甲、乙两条生产线投产后,总产量y(t)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;(2)第25天结束时,哪条生产线的产量最高?六、小结:预习中你有哪些收获?还有哪些疑问?你认为难点是什么?。
初中数学 第14章一次函数 全章预习提纲 14.3.3一次函数与二元一次方程(组)

预习提纲 14.3.3 一次函数与二元一次方程(组)执笔:翁建勇审核:唐燕燕邱爱姐梁素玉组长:郑风清预习目标:1、学会利用函数图象解二元一次方程组.2、通过学习了解变量问题利用函数方法的优越性.预习重点:1.归纳图象法解二元一次方程组的具体方法.2.灵活运用函数知识解决实际问题.预习过程1、细读课本P127第1、2、3自然段。
思考:为什么解二元一次方程组35821x yx y+=⎧⎨-=⎩可以看作求两个一次函数y=-35x+85与y=2x-1图象的交点坐标呢?。
那么,你能归纳出图象法求解二元一次方程组的具体方法吗?。
2、应用一次函数与二元一次方程(组)的关系解决实际问题。
细读课本P127例3.回答:上网时间为多少分,两种方式的计费相等?拓展:可见计费与上网时间有关,思考:当一个月上网时间为多少时,选择方式A省钱(或B省钱)?请结合图象回答:3、小组讨论:你能用另一种方法解决例3的问题吗?4、试一试,你能行。
(课本P128练习)。
两种移动电话计费方式如下:用函数方法解答如何选择计费方式更省钱.(模仿上面的两种方法)。
5、活动与探究某校师生要去外地参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择.第一种方案是教师按原价付款,学生按原价的78%付款;•第二种方案是师生都按原价的80%付款.该校有5名教师参加这次活动.试根据参加夏令营学生人数,选择购票付款的最佳方案.6、课后作业,独立解决,相信自己。
课本P129,习题14.3综合运用9.(如何选择商场来购物更经济?)。
第14章一次函数知识总结

人教版八年级上册第十四章 一次函数 知识总结1.函数的概念:在一个变化过程中,有两个变量,例如,x 、y ,对于x 的每一个值,y 都有唯一的值与之对应,我们称y 是x 的函数.其中x 是自变量.2.正比例函数解析式: y=kx (k ≠0)3.正比例函数图象: 经过原点的直线4.正比例函数性质: 当k >0时,图象经过第三、一象限,y 随x 的增大而增大,当k <0时,图象经过第二、四象限,y 随x 的增大而减小5.描点法画函数图像的一般步骤:列表 描点 连线6. 一次函数解析式: y =kx +b (k ≠0),与x 轴交点坐标为 与y 轴交点坐标为(0,b ),当b=0时,y =kx +b 即 y =kx ,所以说正比例函数是一种特殊的一次函数.7.一次函数y =kx +b (k ≠0)与坐标轴所围三角形面积公式为b k b S ⋅-=∆218.求函数解关系的一般步骤是怎样的呢?可归纳为:“一设、二列、三解、四还原”一设:设出函数关系式的一般形式y=kx+b;二列:根据已知两点的坐标列出关于k 、b 的二元一次方程组; 三解:解这个方程组,求出k 、b 的值;四还原:把求得的k 、b 的值代入y=kx+b ,写出函数关系式.像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从⎪⎭⎫ ⎝⎛-,0kb而具体写出这个式子的方法,叫做待定系数法.9.一次函数y=kx+b 的图象与正比例函数y=kx 图象有什么关系? 一次函数y=kx+b 的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到。
(当b>0时,向上平移;当b<0时,向下平移)当 k 相等时,两直线平行;反之,若两直线平行,则 k 值相等. 当 k 不相等时,两直线相交;反之,两直线相交,则k 不相等. 当 b 值相等时,两直线相交于y 轴. 交点坐标为(0,b )10.一次函数 的图象是一条直线,一次项系数k 确定直线的倾斜程度,常数项b 决定直线与y 轴交点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
预习提纲第十四章一次函数数学活动
执笔:翁建勇审核:唐燕燕邱爱姐梁素玉组长:郑风清
预习目标:1.巩固一次函数知识,灵活运用变量关系解决相关实际问题.2.熟练掌握一次函数与方程,不等式关系,有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.
预习重点:1.根据变量变化趋势,写出函数式,预估人口数.
2.灵活运用数学模型解决实际问题.
预习过程:
Ⅰ.提出问题,创设情境
在前面我们学习了有关一次函数的一些知识,认识了变量间的变化情况,并系统学习了一次函数的有关概念及应用,且用函数观点重新认识了方程及不等式,利用函数观点把方程(组)、不等式有机地统一起来,使我们解决实际相关问题时更方便了.下面我们将通过两个活动对所学有关知识作一回顾.
2、[活动一]课本P135活动1.
(1)根据表格画出人口增长曲线图。
(2)近似取1989年人口数与1999年人口数确定一次函数,写出它的解析式。
(3)按照这样的增长趋势,估计2004年我国的人口数。
3、[活动二]课本P135活动2.
(1)根据表格,求出月话费(月租费与通话费的总和)y(元)与通话时间x(分)的函数关系式:
0方案:
3方案:
5方案:
(2)如果月通话时间为300分钟的话,请你计算一下哪个方案更省钱?
(3)画出图象,通过图象比较方案0,1,2和3,由此你对选择方案有什么建议?
图象:
建议(选择哪个方案省钱):
4、活动与探究
1.画出函数y=│x-1│的图象.
2.设P(x,0)是x轴上的一动点,它与x轴上表示(-3,0)的点的距离为y,求x的函数y的解析式.画出这个函数的图象
5、课后作业:课本P137复习题14 第9、10、11题。