燃料及其燃烧过程与设备

合集下载

燃烧机工作原理

燃烧机工作原理

燃烧机工作原理燃烧机是一种将燃料与空气混合并点燃的设备,用于产生热能或者动力。

它广泛应用于工业、交通和家庭等领域。

燃烧机的工作原理涉及燃料供应、空气供应、混合、点火和燃烧等过程。

下面将详细介绍燃烧机的工作原理。

1. 燃料供应燃烧机的燃料可以是液体燃料(如石油、天然气、柴油等)或者固体燃料(如煤炭、木材等)。

燃料通过燃料管道进入燃烧机,并由燃料泵提供所需的压力。

燃料供应系统还包括过滤器和调压阀等组件,以确保燃料的纯净度和稳定供应。

2. 空气供应燃烧机需要足够的氧气来支持燃烧过程。

空气通过空气进气管道进入燃烧机,并由风机提供所需的压力和流量。

空气供应系统还包括过滤器和调节阀等组件,以确保空气的纯净度和稳定供应。

3. 混合燃料和空气在燃烧机内混合形成可燃气体。

混合的过程主要发生在喷嘴或者喷嘴板附近。

燃料和空气的比例称为混合比,通常以质量比或者体积比表示。

混合比的选择取决于燃料的性质和应用要求。

4. 点火混合气体需要点燃才干产生燃烧。

燃烧机通常使用电火花点火器或者火焰点火器进行点火。

电火花点火器通过产生高压电火花来点燃混合气体。

火焰点火器则通过产生火焰来点燃混合气体。

点火系统还包括点火变压器、点火电极和点火控制器等组件。

5. 燃烧一旦混合气体点燃,燃烧过程就开始了。

燃烧产生的热能可以用于加热空气、水或者其他介质,也可以转化为机械能用于驱动发机电或者其他设备。

燃烧产生的废气通过烟道排出。

燃烧机的工作原理涉及多个组件和过程的协同作用。

燃料和空气的供应需要保持稳定和均匀,以确保燃烧效果良好。

混合的质量和比例对燃烧效率和排放物的生成有重要影响。

点火系统需要可靠地点燃混合气体,以确保燃烧的正常进行。

燃烧产生的热能需要有效利用,以提高能源利用效率。

燃烧机的工作原理在不同的应用领域有所差异,但基本原理相似。

通过不断改进和创新,燃烧机的效率和环保性能得到了显著提高。

在工业生产和能源利用中,燃烧机起到了至关重要的作用。

锅炉的工作原理

锅炉的工作原理

锅炉的工作原理锅炉是一种用于产生蒸汽或者加热水的设备,广泛应用于工业和家庭领域。

它的工作原理基于热能转换和传递的原理,通过燃烧燃料产生热能,将热能传递给工作介质,使其发生相应的变化。

一、燃料燃烧过程锅炉的工作原理首先涉及到燃料的燃烧过程。

常见的燃料包括煤、油、天然气等。

在燃料燃烧过程中,燃料与空气中的氧气发生化学反应,产生热能。

燃料在锅炉炉膛内燃烧时,需要有足够的氧气供应,以保证充分燃烧。

二、热能传递过程燃料燃烧产生的热能需要通过传热的方式传递给工作介质,使其发生相应的变化。

常见的传热方式包括辐射传热、对流传热和传导传热。

1. 辐射传热:燃烧产生的高温烟气会辐射出热能,直接照射到锅炉的加热面上。

加热面通常由金属制成,能够有效吸收和传导热能。

2. 对流传热:燃烧产生的烟气在锅炉内部形成对流流动,通过与加热面的接触,将热能传递给加热面。

对流传热是锅炉中主要的传热方式。

3. 传导传热:热能通过加热面的传导,从高温区域传递到低温区域。

加热面和工作介质之间的接触面积越大,传导传热效果越好。

三、工作介质的变化过程锅炉的工作原理还涉及到工作介质的变化过程。

常见的工作介质包括水和蒸汽。

1. 加热水锅炉:当热能通过传热方式传递给锅炉中的水时,水的温度逐渐升高。

当水达到一定温度时,可以用于供暖、热水等应用。

2. 蒸汽锅炉:当热能通过传热方式传递给锅炉中的水时,水的温度逐渐升高,最终达到沸点。

在沸点以上,水开始转化为蒸汽。

蒸汽具有较大的体积膨胀和高温高压的特点,可以用于驱动蒸汽涡轮机、发电等应用。

四、锅炉的组成和工作流程锅炉通常由炉膛、燃烧设备、传热设备、排烟系统、控制系统等组成。

1. 炉膛:用于燃料的燃烧,提供燃烧所需的空间和条件。

2. 燃烧设备:包括点火装置、燃料供应系统和燃烧器等,用于控制燃料的供应和燃烧过程。

3. 传热设备:包括加热面、冷凝器等,用于实现热能的传递和工作介质的变化。

4. 排烟系统:用于排出燃烧产生的废气和烟尘。

燃料的燃烧过程及其教案

燃料的燃烧过程及其教案

一、燃料的燃烧过程燃料的燃烧是指将燃料与氧气结合形成化学反应,产生能量的过程。

燃料燃烧时释放出的能量主要有热能、光能、声能、电能等。

燃料燃烧的化学反应式一般写成:燃料 + 氧气→ 二氧化碳 + 水 + 能量例如,甲烷在空气中燃烧时化学反应式为:CH4 + 2O2 → CO2 + 2H2O + 能量其中,CH4表示甲烷,O2表示氧气,CO2表示二氧化碳,H2O表示水。

燃烧是一种氧化还原反应,燃料中的碳和氢元素在与氧结合时,发生氧化反应,释放出大量的热能。

而不同的燃料燃烧能够释放出的能量大小也不同。

二、教案1、教学目标:本课程旨在让学生了解燃料燃烧过程及其释放出的能量,并且能够掌握燃烧的基本原理。

2、教学重点:(1) 燃料燃烧的基本原理。

(2) 燃料在燃烧过程中所释放出的能量。

3、教学难点:(1) 燃料燃烧的详细反应过程。

(2) 如何使学生更好地理解燃料燃烧原理。

4、教学步骤:(1) 回顾前置知识:在进行本次教学之前,应先让学生了解化学反应的基本概念及化学反应式的书写方法。

(2) 燃料燃烧的基本原理:引导学生了解燃料燃烧是氧化还原反应的过程,通过样例来让学生掌握化学反应式的写法和读法,解释其所代表的化学反应的含义。

(3) 燃料在燃烧过程中所释放出的能量:教学示范如何进行热能、光能、电能等关于能量释放的观察和测量,让学生理解燃料燃烧所释放出的能量类型和能量的使用方式。

(4) 燃料燃烧的反应过程:掌握燃料燃烧反应的详细过程,通过图片、视频等多种方式进行视听教学,提高学生对本概念的理解和掌握能力。

(5) 反思总结:学生进行教师指导下的小组讨论,回顾并总结本次教学中的重点和难点。

教师根据学生反馈情况对学生进行评估,并对学生的知识点进行强化或补充。

5、课时安排:1~2课时,以板书、讲解、视频/图片播放等多种方式进行教学。

6、教学要素:学生到教室后,首先应检查所需的教材和文具是否齐备。

进入教学过程时,学生应认真听讲和参与课堂互动,提出自己的问题和看法,并根据自己的反思对本课程进行总结和评估。

燃烧机工作原理

燃烧机工作原理

燃烧机工作原理燃烧机是一种用于产生火焰和热能的设备,广泛应用于工业生产、暖气系统和发电厂等领域。

燃烧机的工作原理涉及燃料的供给、燃料与空气的混合、点火和燃烧过程等多个环节。

一、燃料供给燃烧机的燃料可以是液体燃料(如石油、天然气)或者固体燃料(如煤炭、木材)。

燃料供给系统通常由燃料储罐、输送管道和燃料泵组成。

燃料从储罐中通过管道输送到燃料泵,再经过调节阀调整燃料流量,最后进入燃烧器。

二、燃料与空气的混合燃烧需要燃料和空气的混合,以保证燃料能够充分燃烧并释放出足够的热能。

燃烧机通常采用空气压缩机将空气压缩后送入燃烧器。

燃料和空气在燃烧器内通过喷嘴或者喷雾器进行混合,形成可燃气体。

三、点火点火是燃烧机工作的关键步骤,它引起了燃料与空气的混合物的燃烧。

燃烧机通常采用电火花点火器或者火焰点火器来点燃混合物。

电火花点火器通过高压电流产生火花,点燃混合物;火焰点火器则通过火焰点燃混合物。

四、燃烧过程燃烧过程是燃烧机的核心部份,也是燃料释放热能的过程。

燃烧机内的燃料与空气混合物在点火后燃烧,产生高温的火焰。

燃烧产生的热能通过燃烧室壁面传导、对流和辐射等方式向周围环境传递。

燃烧机的燃烧过程可以分为三个阶段:起燃阶段、稳定燃烧阶段和燃烧结束阶段。

起燃阶段是点火后混合物开始燃烧的过程,需要一定的时间和条件。

稳定燃烧阶段是燃料和空气混合物持续燃烧的阶段,此时燃烧机能够提供稳定的火焰和热能。

燃烧结束阶段是燃料和空气混合物燃烧彻底或者几乎彻底结束的阶段。

五、控制系统燃烧机的控制系统用于监测和控制燃烧过程,以确保燃烧机的安全和高效运行。

控制系统通常包括温度传感器、压力传感器、流量传感器和控制器等设备。

这些设备可以实时监测燃烧机的工作状态,并根据设定的参数对燃料供给、空气供给和点火等进行调节。

总结:燃烧机的工作原理涉及燃料供给、燃料与空气的混合、点火和燃烧过程等多个环节。

通过燃料供给系统将燃料输送到燃烧器,然后与通过空气压缩机压缩后送入的空气进行混合。

锅炉的工作原理

锅炉的工作原理

锅炉的工作原理引言概述:锅炉是一种将水加热转化为蒸汽或者热水的设备,广泛应用于工业、商业和家庭环境。

了解锅炉的工作原理对于正确使用和维护锅炉至关重要。

本文将详细介绍锅炉的工作原理,包括燃料燃烧、热能传递、水循环、蒸汽产生和蒸汽排放等五个部份。

一、燃料燃烧1.1 燃料供给:锅炉通常使用煤炭、天然气、石油或者生物质等作为燃料。

燃料通过供给系统进入锅炉燃烧室。

1.2 点火和燃烧控制:燃料在燃烧室内点火,同时通过燃烧控制系统调节燃料供给和空气进入,以保持适当的燃烧条件。

1.3 燃料燃烧过程:燃料在燃烧室内与空气混合燃烧,产生高温燃烧气体,释放出大量热能。

二、热能传递2.1 烟气传热:燃烧产生的烟气通过锅炉内的烟管或者烟道,与锅炉外壳内的水管或者水壁接触,传递热能给水。

2.2 辐射传热:燃烧室内的火焰和烟气通过辐射作用,将热能传递给锅炉内的水管或者水壁。

2.3 对流传热:烟气和水之间的对流传热是通过烟气和水之间的物质流动实现的,烟气中的热能转移到水中。

三、水循环3.1 上水系统:锅炉通过上水系统将水从水源中引入锅炉内,补充锅炉内的水量。

3.2 循环泵:循环泵将锅炉内的水经过加热后,通过水管系统回流到锅炉内,形成水循环。

3.3 冷却系统:冷却系统将锅炉内的水冷却,并排出冷却后的水,以保持水循环的稳定。

四、蒸汽产生4.1 饱和蒸汽:当水被加热到一定温度时,会产生饱和蒸汽,即水和蒸汽同时存在的状态。

4.2 过热蒸汽:通过进一步加热饱和蒸汽,可以使其温度超过饱和温度,产生过热蒸汽。

4.3 蒸汽质量控制:锅炉通过调节水的供给和热量的输入,控制蒸汽的温度和压力,确保蒸汽的质量和稳定性。

五、蒸汽排放5.1 排烟系统:锅炉燃烧产生的烟气通过排烟系统排出,以降低环境污染。

5.2 烟气净化:为了减少烟气中的污染物排放,锅炉通常配备烟气净化设备,如除尘器和脱硫装置。

5.3 热能回收:锅炉烟气中的热能可以通过烟气余热回收装置回收利用,提高能源利用效率。

火力发电厂锅炉的燃料及其燃烧分析

火力发电厂锅炉的燃料及其燃烧分析

火力发电厂锅炉的燃料及其燃烧分析火力发电厂锅炉是利用燃料燃烧产生热能,再通过热交换器将热能转化为蒸汽能量驱动汽轮机发电的设备。

火力发电厂锅炉的燃料种类繁多,各有特点,而不同种类燃料的燃烧特性也各不相同。

本文将就火力发电厂锅炉的燃料及其燃烧特性进行分析。

一、燃料种类及特点1. 煤炭煤炭是火力发电厂最常用的燃料之一,主要分为无烟煤、烟煤和褐煤。

煤炭具有储量丰富、热值高、稳定可靠等特点,是火力发电厂首选的燃料。

但煤炭也存在着含硫量高、灰分多、燃烧产生大量二氧化硫等环境污染物的缺点,因此在燃烧时需要进行脱硫、脱硝等治理措施。

2. 燃油燃油是一种常见的火力发电厂燃料,其主要成分为石油馏分。

燃油具有燃烧稳定、热值高等特点,适用于快速启动锅炉、调节负荷等场合。

但燃油价格波动大、燃烧后产生大量氮氧化物等大气污染物,因此在环保要求日益严格的今天,燃油在火力发电厂中的应用受到了一定的限制。

3. 天然气天然气是一种清洁燃料,具有热值高、含硫量低、燃烧后产生的污染物较少等优点,在火力发电厂中受到了广泛应用。

天然气燃烧时不会产生固体废物,排放的二氧化碳和水蒸气等温室气体对环境影响较小。

但受天然气资源分布不均、价格波动大等因素的影响,天然气在火力发电厂中的应用受到了一定的限制。

4. 生物质能生物质能是一种可再生能源,主要由木材、秸秆、农作物秸杆等生物质废弃物制成,具有零排放、资源可再生等优点,在火力发电厂中的应用前景广阔。

生物质能的燃烧过程中产生的二氧化碳总量不增加大气中二氧化碳总量,而且可以缓解生物质废弃物对环境造成的压力,是一种绿色环保的燃料。

二、燃烧过程及特点1. 燃料燃烧的基本过程燃料燃烧是指燃料在一定条件下与氧气发生化学反应,释放出热能的过程。

燃料燃烧的基本过程可分为燃料的预热、燃烧释放热能和生成火焰三个阶段。

在锅炉燃烧室内,燃料被送入炉膛后,经过点火器的点火后开始燃烧,随着燃料的燃烧,产生的热能通过热交换器转化为蒸汽能量。

甲醇燃烧机结构

甲醇燃烧机结构

甲醇燃烧机结构甲醇燃烧机是一种利用甲醇作为燃料进行燃烧的设备,其结构设计合理与否直接关系到其燃烧效率和安全性能。

下面将介绍甲醇燃烧机的结构组成及其工作原理。

一、甲醇燃烧机结构组成1. 燃烧室:燃烧室是甲醇燃烧机的核心部件,负责将甲醇与空气混合并进行燃烧。

燃烧室通常由燃烧室壁、燃烧室顶部和底部以及燃烧室进气口组成。

燃烧室壁通常采用耐高温材料制成,以承受高温和高压的燃烧环境。

2. 燃料供给系统:燃料供给系统主要由甲醇储罐、泵和喷嘴组成。

甲醇储罐用于存储甲醇,泵负责将甲醇从储罐中抽取出来并送至喷嘴。

喷嘴将甲醇喷入燃烧室,与空气混合后进行燃烧。

3. 空气供给系统:空气供给系统负责将空气引入燃烧室,与甲醇进行混合燃烧。

空气供给系统通常由风机、空气过滤器和风门组成。

风机产生强大的气流将空气吸入燃烧室,空气过滤器用于过滤空气中的杂质,风门用于调节空气的流量。

4. 控制系统:控制系统是甲醇燃烧机的大脑,负责监测和控制燃烧过程中的各项参数,以保证燃烧的安全和稳定。

控制系统通常由传感器、控制器和执行机构组成。

传感器用于监测燃烧室内的温度、压力和流量等参数,控制器根据传感器的信号控制执行机构的动作,以调整燃烧室内的甲醇和空气的供给。

二、甲醇燃烧机工作原理甲醇燃烧机的工作原理是将甲醇与空气混合后进行燃烧,产生高温和高压的燃烧气体,从而释放出能量。

其工作步骤如下:1. 燃料供给:甲醇从储罐中被泵抽取出来,通过喷嘴喷入燃烧室。

喷嘴通过调整喷射角度和喷射速度,使甲醇均匀地喷入燃烧室。

2. 空气供给:风机产生的气流将空气吸入燃烧室,与喷入的甲醇混合。

空气过滤器可以过滤空气中的杂质,保证燃烧室内的空气质量。

3. 燃烧过程:甲醇与空气混合后,在燃烧室内进行燃烧。

燃烧过程中产生的高温和高压气体通过燃烧室出口排出。

4. 控制系统:传感器监测燃烧室内的温度、压力和流量等参数,控制器根据传感器的信号调整甲醇和空气的供给,以保证燃烧的安全和稳定。

燃烧机工作原理

燃烧机工作原理

燃烧机工作原理引言概述:燃烧机是一种常见的热能转换设备,广泛应用于工业生产和生活中。

其工作原理主要是利用燃料的燃烧产生的热能来驱动机械设备或产生热水蒸汽等。

下面将详细介绍燃烧机的工作原理。

一、燃料供给1.1 燃料的选择:燃烧机使用的燃料种类多样,包括燃油、天然气、煤等,根据不同的应用场景和需求选择合适的燃料。

1.2 燃料的输送:燃料需要通过管道输送到燃烧机内部,通常通过泵或者压力系统将燃料送入燃烧室。

1.3 燃料的混合:燃料需要与空气混合才能进行燃烧,通常通过喷嘴或者喷嘴系统将燃料喷入燃烧室内。

二、空气供给2.1 空气的进入:空气是燃烧的必要条件之一,通过空气进入燃烧机的空气滤清器和风扇等设备,确保空气的质量和流量。

2.2 空气的调节:空气的流量和比例需要根据燃烧机的工作状态进行调节,通常通过风门或者风量调节器来实现。

2.3 空气的预热:为了提高燃烧效率和减少污染物排放,通常会对空气进行预热处理,通过预热器或者换热器来实现。

三、点火和燃烧3.1 点火系统:燃烧机通常采用电火花或者火焰点火系统来点燃混合气体,确保燃烧的稳定和可靠。

3.2 燃烧室:燃烧室是燃烧机内部进行燃烧的空间,通过点燃混合气体产生高温高压的燃烧气体。

3.3 燃烧过程:燃烧过程是燃烧机的核心部分,燃料和空气在燃烧室内燃烧产生热能,驱动机械设备或者产生热水蒸汽等。

四、热能传递4.1 热能的产生:燃烧产生的热能通过燃烧室内壁和热交换器传递给工作介质,如水或者空气。

4.2 热交换器:热交换器是燃烧机内部的重要组成部分,用于将热能传递给工作介质,并提高热能利用率。

4.3 热能利用:通过热交换器将热能传递给工作介质,实现热能的利用和转换,满足工业生产和生活需求。

五、排放处理5.1 烟气处理:燃烧产生的烟气中含有大量的污染物,需要通过烟气处理系统进行处理,减少对环境的影响。

5.2 排放控制:燃烧机的排放需要符合国家和地方的排放标准,通过排放控制设备来控制和监测排放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章燃料及其燃烧过程与设备硅酸盐制品需要消耗大量的热量。

热量的来源:1、燃烧燃烧产生,即化学能转化为热能。

资源丰富,但价格低廉2、以电为热源,即电能转化为热能。

效率高,但相对短缺。

目前硅酸盐行业热源以燃烧为主。

第一节燃料的种类及组成燃料:在燃烧过程中能过发出热量并能利用的可然物质燃料的种类按状态分:固体燃料:木碳,煤等。

其中煤又分为泥煤、褐煤、烟煤、无烟煤。

液体燃料:石油及其制品。

气体燃料:天然气、人造煤气。

按来源分:天然原料:人工原料:一、固体燃料:(一)煤的种类及特点:按国家标准,分为三类:褐煤、烟煤、无烟煤1). 褐煤:外观褐色,光泽黯淡。

水分含量高,热值低,密度较小,含氧量高,化学反应强,极易氧化和自然。

常作为加压气化燃料,锅炉燃料2). 烟煤:挥发份含量高、灰分及水分较少,发热量高。

可划分贫煤、焦煤、气煤3). 无烟煤:挥发份含量低,燃点较高,燃烧时没有粘结性。

(二)、固体燃料的组成及换算:常用两种表示方法:(1)元素分析法:C、H、O、N、S、A (灰分)、M(2)工业分析法:挥发分(V)、固定碳(FC)、A、M1、元素分析法:C、H、O、N、S、A、MC:煤中含量最多的可燃元素,一般含量为15-90%以两种形式存在:碳氢化合物:碳与氢、氮、硫等元素结合成有机化合物碳呈游离状态:H、可燃元素,一般含量为3-6%以两种形式存在:化合氢(H2O):与氧化合成结晶水形式(不可燃)自由氢:与化合物组成的有机物,如CnHm(可燃)O:不可燃元素,一般含量不等。

它可与其它可燃物形成氧化物N、煤中惰性气体含量为%,在高温下与氧形成有害物质NOx,污染大气S:含量小于5%以三种形式存在:有机硫:与碳氢化合物结合在一起硫化物中硫:主要存在于FeS2硫酸盐中硫:存在于各种硫酸盐中(CaSO4 , FeSO4▪硫为有害物质。

S+O2=SO2 、SO2+O2=SO3SO2+H2O=H2SO3 、SO3+H2O=H2SO4A:煤燃烧后的产物,为有害物质,降低煤的发热量,造成不完全燃烧损失。

主要产物为:SiO2 、AlO3 、FeO3 、CaO、MgOM:不可燃物质。

水分含量增加即降低可燃物质的含量,也降低煤的发热量煤中水分以两种形式存在:外在水分(表面水分):机械的附在煤表面的水分。

经风干及外界条件变化可出去的水分。

内在水分(固有水分):达到风干后煤中残留的水分。

(包括化学吸附水和结晶水)同种煤的组成成分是波动的,在表明煤的组成时,必须说明选用的基准。

常用煤的基准:(1)收到基(应用基)(2)空气干燥基(分析基)(3)干燥基(干燥基)(4)干燥无灰基(可燃基)1)收到基(应用基):以实际使用的煤为基准而测出的煤各元素的质量百分组成。

收到基(应用基)收到基水分M ar有两种:外在水和内在水2)空气干燥基(分析基):以实验室使用的风干煤样(用温度为20℃,相对湿度为70%的空气)为基准而测出的煤各元素的质量百分组成。

空气干燥基分析基(3)干燥基(干燥基):以无水的煤为基准而测出的煤各元素的质量百分组成。

干燥基干燥基(4)干燥无灰基(可燃基):以无水、无灰的煤为基准而测出的煤各元素的质量百分组成。

干燥无灰基(可燃基)各种基之间的转化例如:收到基与空气干燥基之间的转换。

设:已知Cad、Mar、Mad ,求Car。

解:取100kg收到基煤为基准,相当于空气干燥基煤为:(100–(kg) 二者含碳质量相等:收到基含碳质量=空气干燥基含碳质量即:2、工业分析法:挥发分(V)+固定碳(FC)+A+M=100%工业分析规程:煤在隔绝空气的条件下加热,随温度升高发生的变化:100—150℃:外部水分蒸发200—450℃:碳氢化合物分解释放出可燃气体(CH4、H2、CmHn)。

矿物结晶水逸出---850 ℃:气体挥发停止1000—1100 ℃:完全停止一切气体逸出,残留下固体焦炭.二、液体燃料分类:天然原料:石油人工原料:重油常用表示方法:与固体的元素分析法(C、H、O、N、S、A 、M)相同三、气体燃料:工业上常用的气体燃料:高炉煤气、发生炉煤气和天然气组成:用体积百分数来表示。

两种表示方法:干基:不含水蒸气;湿基:含有水蒸气。

气体燃料组分:CO 、H2 、CH4…… CmHn、CO2、O2等干基:(新国标)COd +H2 d+CH4d+…… CmHnd、+ CO2 d+ O2d =100%(旧国标)COg +H2 g+CH4g+…… CmHng、+ CO2 g+ O2g =100%湿基:(新国标)COv+H2 v+CH4v+…… CmHnv、+ CO2 v+ O2v +H2Ov=100%(旧国标)COs +H2 s+CH4s+…… CmHns、+ CO2 s+ O2s + H2Os=100%干基与湿基二者的换算关系:第二节燃料的热工性质及选用原则一、发热量:1、固体、液体的发热量(1)定义:单位质量的燃料完全燃烧时所放出的热量。

单位:kJ/kg煤高位热值(QGW):燃烧产物中的H2O已经冷凝为0℃的液态水。

低位热值(QDW):燃烧产物中的H2O为20℃的水蒸汽。

注:热值的组成与煤的组成相对应,分为应用基、分析基、干燥基、可燃基热值(2)高位热值与低位热值的关系例:与的转换设:1kg应用基煤中,含水分Ma r/100 kg, Har/100 kg1kg固燃料生成的水量为:而1kg0℃的液态水变为20℃的水蒸汽所需要吸收的热量为2500 kJ/kg [+忽略项:Cp(20-0) kJ/kg ]同理⏹不同基准时,高位热值之间的转换参见表4—1。

⏹低位热值之间的转换参见表4—4。

(3)、热值的测定与计算测定:固体燃料热值的测定通常采用氧弹量热仪计算:采用一些给定的经验公式。

⏹元素分析法的经验公式:⏹⏹工业分析法公式,参见教材229页(4-9,4-10)。

标准燃料的概念⏹规定: 热值为29300kJ/kg(约合7000kcal/kg)的煤为标准煤。

热值为41820kJ/kg(约合10000kcal/kg)的煤为标准油。

⏹衡量工业用能源数量的多少通常看是消耗了多少标准煤。

2、气体燃料的发热量:(1)定义:单位体积的燃料完全燃烧时所放出的热量。

单位:kJ/Nm3气体燃料也有高位热值Qgr、低位热值Qnet之分:标准燃料的概念规定: 热值为41820kJ/kg(约合10000kcal/kg)的气体为标准气。

二、其它热工性质1、固体燃料(1)挥发分:在隔绝空气的条件下,将一定量的煤样在温度900℃下加热7min,所得到的气态物质(不包括其中的水分)组分:含矿物结晶水、挥发性成分和热分解产物煤中挥发物含量影响燃烧的火焰长度及着火温度。

一般的:挥发物含量高时火焰长,着火温度低,易着火(2)煤的粘结性指粉碎过的煤粒在规定条件下干馏成焦,煤粒或与外加物相粘结的强度。

粘结性强的煤:易结大块;粘结性弱的煤:易堵塞炉栅。

二、液体燃料(硅酸盐行业主要用重油性质)重油性质(1)粘度:(2)闪点、燃点、着火点、凝固点闪点:当油被加热到一定温度时,表面挥发逸出蒸汽。

当火焰接近时,油类会出现短暂的兰色亮光,此时油温为“闪点”。

燃点:油温继续提高至点燃后连续不熄,此时油温为“燃点”。

着火点:油温升高至表面油蒸汽自燃起来,此时油温为“着火点”凝固点:油类完全失去流动时的最高温度为凝固点。

(3)水分含水分高,容易降低燃料的发热量,但燃烧时需要掺加少量的水,以利于重油雾化。

(4)机械杂质:重油中的杂质,易堵塞油泵及喷嘴。

(5)密度、比热容、导热系数(P233)。

三、气体燃料:工业上常用的气体燃料:高炉煤气、发生炉煤气和天然气煤气的分子量和密度、平均比热分子量:标准密度:平均比热:三、燃料的选用原则基本原则:书上236在能够满足工艺、确保产品质量的前提下,尽可能用低品位的劣质燃料。

第三节燃烧计算一、基本知识1、计算目的与内容:1)为设计窑炉需要:已知:燃料的组成及燃烧的条件计算:燃料燃烧所需要的空气量、烟气生成量、烟气组成及烟气温度。

从而设计燃烧室、管道空气烟道2)为操作窑炉需要已知:燃料的组成及烟气成分计算:燃料燃烧所需要的实际烟气量、空气量、空气过剩系数、漏气量等,从而评价燃烧的操作水平。

2、计算方法::1)分析计算法(设计计算):根据燃料的成分分析进行计算2)近似计算法:在燃料组分未知时,根据燃料的种类及发热量进行近似计算3)估算法:在燃料组分及发热量未知时,根据经验估算。

4)操作计算(检测计算)3、几个基本概念:1)理论空气量(Va0 ):理论上燃料中的可燃成分完全燃烧所需的空气量。

2)理论烟气量(V0 ):燃料与理论空气量进行完全燃烧时所得的烟气量。

3)实际空气量(Va ):实际燃烧过程中所加入的空气量。

4)实际烟气量(V ):燃料与实际空气量进行完全燃烧时所得的烟气量。

5)烟气组成(体积百分数):烟气中各组成量与总烟气量的比值。

6)空气过剩系数(α):实际空气量与理论空气量的比值。

α=1:空气供给恰好,烟气中无多余氧气α>1:空气供给过剩,烟气中有多余氧气α<1:空气供给不足,不完全燃烧产生不完全燃烧的原因:1)空气供给不足,不完全燃烧2)空气供给恰好或供给过剩,但由于燃料和空气接触不好, 导致燃烧不完全空气过剩系数的选择:1)与燃料的种类有关:燃料越细匀,α越小,α=~。

2)与燃烧气氛有关:氧化气氛,α>1;还原气氛,α<1。

3)与燃烧方式有关:如对于气体燃料,长焰燃烧,α=~;无焰燃烧,α=。

4)与燃烧设备有关:对于煤粉燃烧或立窑,α较大;而对于回转窑,α较小二、空气量、烟气量及烟气组成的计算(一)分析计算法1、空气量的计算1)固、液体燃料①取100kg收到基燃料为计算基准,其中各种成分的质量为:其中的可燃成分为:而Oar为助燃成分②确定VO20⏹燃料中的含O2量为:Oar/32③理论空气量Va0⏹空气中O2含量为21%,因此⏹⏹注意:若空气中含有水蒸气,则称为湿空气。

设水蒸气含量为xkg水蒸气/kg干空气,则理论干空气Va0Bm3/kgfuel中的水蒸气量为:燃烧所需的理论湿空气量为:④实际空气量Va同样,实际湿空气量:2)气体燃料:①取100Bm3湿基燃料为计算基准,其中各成分体积量为:找出可燃成分为:②确定VO20③理论空气量Va0④实际空气量Va2、完全燃烧产生的烟气量、烟气组成的计算完全燃烧时:理论上:完全燃烧,烟气组分CO2 、SO2、H2O、N2实际上:完全燃烧,烟气组分CO2 、SO2、H2O、N2、O2 1)固、液体燃料:(1)理论烟气量、烟气组成取100kg应用基燃料为计算基准,其中各种成分的质量为:理论烟气量:理论烟气的组成百分含量:(2)、实际烟气量(α>1时)、烟气组成实际烟气量烟气组成量:2)气体燃料(1)、理论烟气量、烟气组成烟气成分:理论烟气量:(2)、实际烟气量(α>1时) 、烟气组成实际烟气量:烟气组成量:例题:P242:4-2;4-3(二)、近似计算法近似计算法:在燃料组分未知时,根据燃料的种类及发热量进行近似计算。

相关文档
最新文档