浅谈钢结构桥梁的疲劳问题
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施钢结构桥梁作为重要的交通基础设施,承载着重要的交通运输任务。
由于长期使用和外部环境的影响,钢结构桥梁也会出现一些常见的病害。
本文将讨论一些常见的病害,并介绍相应的防护措施。
1. 腐蚀:钢结构桥梁暴露在大气中,容易受到氧气、水蒸气和酸雨等的侵蚀,从而发生腐蚀。
腐蚀不仅会导致钢结构在强度和刚度上的下降,还会导致桥梁的安全性降低。
针对腐蚀问题,可以采取以下防护措施:1.1. 表面涂装:通过将钢结构表面进行涂装,形成一层抵抗氧气、水蒸气和酸雨的保护层,延缓腐蚀的发生。
1.2. 防腐涂层:在表面涂装的基础上,加强涂层的耐腐蚀性能,延长钢结构的使用寿命。
1.3. 防腐漆:使用具有较高防腐性能的防腐漆进行表面涂装,提高防腐效果。
1.4. 外包装:对特殊环境下的桥梁,可以进行外包装,隔绝空气和水分侵蚀。
2. 疲劳:长期使用和受力会导致钢结构桥梁的疲劳损伤。
疲劳常常表现为钢结构表面的裂纹和变形。
为了防止疲劳损伤,可以采取以下防护措施:2.1. 加强监测:定期对钢结构进行监测,及时发现并修复裂纹,防止疲劳损伤的进一步扩展。
2.2. 增加结构强度:通过增加梁的截面面积或加强连接部位,提高钢结构的强度和刚度,降低受力引起的疲劳损伤风险。
2.3. 减少振动:通过采取减震装置等措施,降低桥梁受到外界振动的影响,减少疲劳损伤的发生。
3. 锈蚀引起的断裂:当桥梁发生腐蚀时,锈蚀会侵蚀钢材的表面,从而导致钢材的断裂。
为了防止锈蚀引起的断裂,可以采取以下防护措施:3.1. 定期维修:定期检查和修复出现锈蚀的部位,及时更换受损的钢材。
3.2. 增加防护层:在钢材的表面涂覆防腐涂层,增加抵抗锈蚀的能力。
3.3. 加强连接:加强桥梁的连接部位,降低断裂的风险。
4. 桥梁振动:桥梁在使用过程中会受到风、车辆通行等因素的作用,可能引起振动。
当振动幅度过大时,可能导致桥梁的破坏。
针对振动问题,可以采取以下防护措施:4.1. 加固措施:通过增加桥墩和墩柱的高度、增加桥梁横向支撑等加固措施,降低桥梁的振动风险。
钢结构桥梁的疲劳与寿命评估

钢结构桥梁的疲劳与寿命评估钢结构桥梁作为现代城市交通的重要组成部分,承载着大量的车辆和行人通行任务。
然而,长期以来,由于外界环境和车辆荷载的作用,钢结构桥梁容易受到疲劳损伤,严重影响其使用寿命和安全性。
因此,进行钢结构桥梁的疲劳与寿命评估是至关重要的。
一、疲劳损伤机理疲劳是指物体在经历了一定次数的应力循环加载后发生损伤的现象。
钢结构桥梁受到交通荷载作用时,会产生周期性的应力变化,而长期循环加载会导致钢构件内部的裂纹逐渐扩展,最终引发疲劳破坏。
常见的疲劳损伤机理包括低周疲劳、高周疲劳和蠕变疲劳等。
低周疲劳是指加载周期较长,应力变化较大的疲劳损伤,主要发生在大型移动荷载作用下;高周疲劳是指加载周期较短,应力变化较小的疲劳损伤,主要发生在交通荷载作用下;蠕变疲劳则是由于长期受到恶劣环境条件作用下,钢结构桥梁会出现温度变形和应力松弛,从而引发蠕变破坏。
二、疲劳与寿命评估方法为了确保钢结构桥梁的安全使用和延长其寿命,需要进行疲劳与寿命评估。
在评估过程中,可以采用以下方法:1. 材料试验与力学性能研究:通过对钢材料的拉伸试验、冲击试验等试验手段,获取钢材料的力学性能参数,进而分析其疲劳性能。
2. 荷载测量与应力分析:通过悬挂应变片、应变计等装置对桥梁进行实时荷载测量与应力分析,以获取荷载数据与桥梁的应变应力分布情况。
3. 疲劳寿命计算:根据钢材料的疲劳试验数据和荷载数据,采用伤害累积理论来计算钢结构桥梁的疲劳寿命。
4. 结构健康监测:借助现代技术手段,如无损检测、振动测试等,对钢结构桥梁的健康状况进行实时监测,及时发现疲劳裂纹、变形等问题。
5. 寿命预测与可靠性评估:通过建立可靠性模型,综合考虑材料的疲劳特性、载荷环境、结构健康状况等因素,对钢结构桥梁的寿命进行预测与评估。
三、寿命延长与维护策略对于已经投入使用的钢结构桥梁,为了延长其寿命和保障其安全,需要采取适当的维护策略。
具体策略包括:1. 定期巡查与检测:定期对钢结构桥梁进行巡查与检测,发现潜在的裂纹、变形等问题,并采取相应的预防性维修措施。
浅析铁路桥梁的钢结构抗疲劳设计

浅析铁路桥梁的钢结构抗疲劳设计摘要:钢结构具有轻质、高强,抗拉、抗压性能强等优势,因而在我国桥梁建设中应用十分广泛,桥梁是为满足交通功能的建筑物,现代桥梁钢结构由结构钢加上单元经焊(栓)连接组成为复杂的受力系统,有明确的承载安全和服役耐久性要求。
钢结构桥梁整体性能的好坏,与其整体设计密切相关。
本文从抗疲劳的设计角度,对桥梁钢结构展开设计提出若干抗疲劳设计的建议措施。
关键词:桥梁钢结构完整性设计损伤容限随着我国国民经济的高速发展,钢结构桥梁的建设与应用起着相当重要的作用。
我国铁路运营的桥梁,钢桥已经达到3800座以上,全长300 km以上。
钢结构桥梁的设计中,焊接应用越来越广泛。
钢桥疲劳断裂是结构失效的一种主要形式,由于疲劳失效的钢结构桥梁,越占失效结构的90%。
疲劳一般从应力集中开始,而焊接结构的疲劳又往往是从焊接接头处产生。
因此,焊接接头疲劳的设计是钢结构桥梁设计的关键技术。
本文着重从构造措施上对桥梁钢结构的抗疲劳设计提出建议。
一、钢结构抗疲劳概述钢材在持续反复荷载下,虽然在其名义应力远低于极限强度,甚至还低于屈服点时,也会发生破坏,这种“积劳成疾”的现象称为钢材的疲劳。
在疲劳破坏之前,钢材构件并不出现明显的变形或局部收缩,和脆性断裂一样,是突然破坏的。
所以对承受持续反复荷载的钢结构必须按其受载次数的多少来决定其强度和安全度。
疲劳的机理是钢材内部及其外表总有杂质和损伤(微观的)存在,在反复荷载下,这些薄弱点形成应力集中,开始产生塑性变形,继而应变硬化,于是在该处首先发生微裂(不是肉眼能见的)。
由于反复应力长期地继续下去,遂使这种微裂逐渐扩大,形成裂纹。
随着裂纹的发展,最后导致断裂。
从疲劳试样的断口上,可以发现裂断情况是一部分呈纤维状(曲线部分),一部分呈晶粒状组织。
纤维状部分,往往是由最外表一点起始,遂渐向内扩张,这一点便是疲劳裂纹的核心。
在试样长期运转下,这一裂口(核心)是一张一合的(受拉张开,受压闭合)。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施
钢结构桥梁是现代交通建设中常见的桥梁类型。
由于长期受到外界环境和运输荷载的
影响,钢结构桥梁容易出现各种病害。
本文将探讨钢结构桥梁的常见病害及防护措施。
1. 锈蚀:钢结构桥梁常受到大气、水分和化学物质的腐蚀,导致钢材表面生锈。
长
期下去,会损害桥梁的结构强度和稳定性。
应采取以下防护措施:定期进行表面清洗和除锈,涂刷防腐漆或涂层,增加防腐蚀涂层厚度,使用耐腐蚀材料等。
2. 疲劳:钢结构桥梁经常受到运输荷载的作用,受力循环次数较多,易于出现疲劳
破坏。
应采取以下防护措施:提高桥梁的疲劳强度设计,使用高强度材料,进行定期的疲
劳监测和评估,及时进行疲劳裂缝的修复和加固。
5. 热胀冷缩:钢结构桥梁在温度变化时,容易发生热胀冷缩现象。
应采取以下防护
措施:加强热胀冷缩计算和分析,使用伸缩缝或伸缩支座,合理设计桥面铺装结构,增加
桥梁的变形能力。
6. 风荷载:钢结构桥梁在受到风荷载作用时,容易发生结构振动,并可能导致破坏。
应采取以下防护措施:加强风荷载设计和风振分析,采用风阻抗装置和风振减振措施,提
高桥梁的抗风能力。
钢结构桥梁的常见病害主要有锈蚀、疲劳、腐蚀疲劳、塑性变形、热胀冷缩和风荷载。
为了防止和减轻这些病害的影响,需要加强钢结构桥梁的设计、监测和维护,并根据具体
情况采取相应的防护措施。
钢梁混凝土桥梁的疲劳性能研究

钢梁混凝土桥梁的疲劳性能研究随着交通工具的不断发展和交通运输的日益繁忙,桥梁建设已经成为现代化城市发展的重要组成部分。
而桥梁建设中的关键问题之一就是如何确保桥梁的安全性和耐久性。
在桥梁的设计中,钢梁混凝土结构是常用的一种结构形式。
本文将围绕着钢梁混凝土桥梁的疲劳性能进行研究,对其相关内容进行探究。
一、疲劳性能的定义和影响因素疲劳性能是指材料或结构在交变载荷作用下表现出来的抵抗力。
任何一个结构体系,都会受到外部载荷的作用,并且在长期使用过程中不断受到反复的载荷作用,导致结构的疲劳损伤。
因此,疲劳性能是衡量一个结构体系寿命的重要指标之一。
影响钢梁混凝土桥梁疲劳性能的主要因素包括:材料的强度、承载能力、几何形状、工程施工质量等。
二、疲劳性能的试验研究为了研究钢梁混凝土桥梁的疲劳性能,一般需要进行试验研究。
其中,大样本试验是研究钢梁混凝土桥梁疲劳性能的常用方法。
大样本试验是指将钢梁混凝土桥梁的完整结构放置在特制试验台上,通过反复施加载荷来模拟实际工况下的载荷作用。
试验结果可以评估钢梁混凝土桥梁的耐久性和疲劳寿命。
另外,还可以使用小样本试验方法来研究钢梁混凝土桥梁的疲劳性能。
该方法利用试验材料进行破坏试验,通过测试结果来研究材料内部的断裂机制和疲劳破坏形态。
这种方法的优点是可以通过多次破坏试验来获得更多的数据,得到较准确的试验结果。
但是,其不足之处在于仅限于研究材料的疲劳性能,无法考虑结构复杂情况下的影响因素。
三、桥梁疲劳的修复和加固方法由于桥梁的使用过程中,往往会受到不同程度的疲劳损伤,因此,对于具有一定历史的桥梁来说,必须进行定期检测和修复。
桥梁的修复方法主要包括焊接、强化、防震等措施。
其中,钢板强化是提高桥梁疲劳寿命的常用技术。
通过在桥梁梁上设置加强板,可以提高钢梁混凝土桥梁的整体承载能力,改善其疲劳性能。
此外,对于新建桥梁来说,也可以采取预应力技术、金属脱氧和高强度钢筋等措施来加固桥梁的疲劳性能。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施
钢结构桥梁是公路桥梁中常见的一种,由于其特定的材质和结构,其常见病害也有其
独特之处。
本文将探讨一些钢结构桥梁的常见病害及相应的防护措施。
1. 腐蚀
钢材易受大气、水和化学物质腐蚀,长期处于潮湿和高温环境中,容易被腐蚀。
如果
在桥梁设计和施工中没有考虑到腐蚀问题,就会在使用过程中出现各种腐蚀病害,比如锈蚀、腐蚀破坏等。
防护措施包括:桥梁表面防腐涂层、加装防腐隔离层、注入防护剂、施
工合理。
2. 疲劳
钢结构桥梁的载荷一般较大,并且很容易受到交通荷载和温度变化的影响,容易导致
疲劳损伤。
疲劳是钢结构桥梁常见的病害之一,主要表现为桥面板、桥梁支座和桥梁节点
处出现裂缝和变形。
防护措施:采用高品质、高强度钢材;缓和荷载;加装附加构件;增
加检修频率等。
3. 气候变化
气候变化也是导致钢结构桥梁病害的原因之一。
例如,气温、雨水、大风等都可能导
致桥梁表面的损坏,导致腐蚀等病害。
此外,台风和地震等自然灾害也会对桥梁的结构造
成严重影响,造成病害加重。
防护措施:采用高强度钢材;注入防护剂;选用抗震、抗风、抗腐蚀技术;加强桥梁检修;增加防风、防雨措施。
总之,钢结构桥梁常见病害有腐蚀、疲劳、气候变化等,防护措施可通过选择适合的
钢材、采取防腐隔离层、加装附加构件、注入防护剂、缓和荷载、检修频率等措施进行。
对这些病害能够及时预防和治理,有助于提高桥梁的使用寿命和安全性,保障交通运输的
安全畅通。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是现代交通建设中经常使用的一种桥梁类型,它具有结构强度高、施工周期短、维护成本低等优点。
钢结构桥梁在使用过程中也会出现一些常见的病害问题,这些问题可能会对桥梁的安全性和使用寿命造成影响。
对钢结构桥梁的常见病害及防护措施进行深入探讨,对于提高桥梁的使用寿命和安全性具有重要意义。
一、常见病害(一)锈蚀钢结构桥梁锈蚀是其最为常见的病害之一。
在桥梁的使用过程中,受到氧气、水汽等外部介质的影响,钢结构桥梁的表面易受到氧化作用,产生锈蚀。
当锈蚀严重时,会减小钢材的截面积,导致桥梁承载能力下降,甚至出现断裂的情况。
(二)疲劳裂缝疲劳裂缝是由于桥梁长期受到交通荷载等外部作用,导致材料表面出现微小裂纹,并逐渐扩展形成的。
疲劳裂缝一旦形成,会对桥梁的结构强度和安全性造成较大威胁,如果得不到及时修复和加固,就会引发严重的事故。
(三)变形钢结构桥梁在使用过程中,受到温度变化、交通荷载等因素的影响,易发生变形。
桥梁的变形不仅会对行车安全造成隐患,还会加速桥梁的疲劳破坏,降低桥梁的使用寿命。
(四)腐蚀钢结构桥梁在潮湿的环境中易受到腐蚀。
水汽中的盐分等物质会对桥梁的表面产生腐蚀,导致钢材表面产生坑洼和破损,严重影响桥梁的整体美观和结构强度。
二、防护措施钢结构桥梁在施工完成后,可以对其进行防锈处理,常用的方法有喷涂防锈漆、热浸镀锌等。
这些方法可以有效地阻止氧化作用的发生,延缓桥梁的锈蚀速度,提高其使用寿命。
(二)定期检测钢结构桥梁的使用寿命是与其使用环境、荷载情况等因素密切相关的,为了及时发现和监测桥梁的病害情况,可以定期对桥梁进行检测。
常见的检测方法有超声波检测、磁粉检测等,这些方法可以有效地发现桥梁的内部和表面病害,为后续的维修提供参考依据。
(三)加固修复一旦发现桥梁存在疲劳裂缝、变形等情况,就需要及时进行加固修复。
加固方法有增加剪力墙、加装钢筋混凝土等,这些方法可以提高桥梁的整体结构强度,延长其使用寿命。
钢桥的疲劳分析范文

钢桥的疲劳分析范文引言:钢桥是一种重要的交通基础设施,承担着车辆和行人的通行。
长期以来,由于交通流量的增加和重载车辆的增多,钢桥疲劳已成为桥梁设计和维护的重要问题。
本文将对钢桥的疲劳问题进行分析,探讨其原因、影响因素以及相应的解决方案。
一、疲劳问题的原因1.动力因素:钢桥在承受车辆荷载的同时还要面对自身的自重和震动荷载。
长期以来,车辆荷载和震动荷载的频繁作用会导致钢桥的材料疲劳,进而导致桥梁的损坏和断裂。
2.环境因素:钢桥承受了来自自然环境的多种因素的影响,如气候变化、温度差异和湿度等。
这些因素会导致桥梁材料的膨胀和收缩,从而产生内部应变,加速钢桥的疲劳破坏。
3.施工因素:钢桥的施工质量将直接影响其使用寿命和疲劳性能。
如果施工质量不达标,如焊接不牢固、连接部位强度不足等,将使钢桥易受疲劳破坏。
二、疲劳破坏的影响因素1.轴重:车辆荷载是引起桥梁疲劳破坏最主要的因素之一、大型重型车辆以及超限荷载的频繁通行将极大地加速钢桥的疲劳损伤。
2.荷载频率:荷载频率指的是钢桥受到车辆荷载的作用频率。
频繁通行以及车流量大的地区会导致高频率的荷载作用,进而加速疲劳破坏的发生。
3.震动荷载:震动荷载是指由于地震、强风和行人等外来因素引起的钢桥振动荷载。
频繁的震动荷载会对钢桥产生影响,从而影响其疲劳性能。
4.桥梁结构设计:桥梁的结构设计将直接影响其抗疲劳能力。
合理的结构设计可以减少桥梁的应力集中和疲劳问题的发生。
三、疲劳分析和解决方案1.疲劳分析方法:采用有限元方法对钢桥进行疲劳分析,模拟不同荷载条件下的桥梁应力分布。
通过数值计算和模拟试验,对桥梁的疲劳性能进行评估,找出潜在的疲劳破坏部位。
2.组织检测和监测:通过常规的检测方法,如无损检测和应力监测,定期对钢桥进行结构健康检测。
及时发现和修补疲劳破坏的部位,可以提高钢桥的抗疲劳性能。
3.结构优化:通过改进桥梁结构的材料和几何形状,降低桥梁的应力集中和疲劳问题的发生。
采用较短的跨度和更好的材料可以有效地提高桥梁的抗疲劳能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈钢结构桥梁的疲劳问题
摘要:随着钢结构桥梁的疲劳问题的日趋突出,其疲劳设计问题也越来越得到重视。
在桥梁设计中,保证桥梁的安全性和耐久性是最根本的要求。
文中对目前应用广泛的钢结构桥梁的疲劳问题进行了探讨。
关键词:桥梁疲劳设计问题对策
前言
近年来,钢结构桥梁在我国公路桥梁中得到了越来越多的应用。
一方面,钢结构桥梁的疲劳问题日趋突出;另一方面,我国公路钢桥规范与英、美等国钢桥规范相比,在疲劳设计方面规定比较简单。
因此,在以我国桥梁疲劳设计经验为基础的同时,应参考一些国外规范,总结出适合我国交通行业的疲劳设计的有效方法。
一、钢结构桥梁的疲劳
30年来,我国的公路桥梁及铁路桥梁建设得到了迅猛发展。
桥梁的结构体系多种多样,目前正在由传统的石拱桥、钢筋混凝土梁板式桥梁向现代的钢结构拱桥、斜拉桥以及悬索桥的趋势发展。
由于车辆载荷的随机性、超载以及运行的频繁性,钢结构桥梁的疲劳问题历年来备受关注。
和承载力和稳定性一样,疲劳是影响钢结构耐久性的主要因素之一。
由于构造细节不合理,在重复重载交通、风或是地震等交变荷载的作用下,钢结构由此产生疲劳裂纹,疲劳裂纹不断开裂,直至影响钢桥的使用,甚至断裂破坏。
为了避免钢结构桥梁发生疲劳破坏,必须在设计阶段就对疲劳问题进行细致的考虑。
二、钢结构桥梁疲劳特征的影响因素
影响钢结构桥梁疲劳的因素有很多,归纳起来主要有以下3 种:
1、结构的材料特性
与疲劳有关的结构的材料特性主要有:钢材的性能、构件尺寸、结构的表面状况。
需要注意的是结构的疲劳性能随钢材强度的提高仅有微弱增加的趋势,所以由疲劳强度所控制的构件,采用强度较高的钢材是不经济的。
一般说来,构件的尺寸增加时疲劳强度降低。
疲劳裂缝源通常萌生于结构的表面,这主要是因为结构外表面的应力水平往往也最高,外表面的缺陷往往也最多和表面层材料的约束小,使得滑移带最易开动。
2、结构构造
结构构造主要包括桥梁的结构形式、构件的连接形式和构造细节。
结构的制造和焊接工艺以及焊后处理工艺都对结构的初始应力分布和固有缺陷有较大的
影响。
3、结构的外部因素
影响结构疲劳的因素主要有结构所处的环境以及外界荷载作用产生的应力幅值和循环次数。
据已有的试验结果表明,焊接构件的疲劳强度主要与应力幅值有关,可不考虑平均应力的影响。
对非焊接构件的拉-拉构件,疲劳强度与应力幅值有关,不考虑平均应力的影响,而拉-压构件的疲劳强度与应力比和最大应力有关。
三、我国钢桥抗疲劳设计规范
我国现行的《铁路桥梁钢结构设计规范》(TB10002.2-99)是从2000年2月1日开始实施的,在此规范中,对疲劳的计算和有关规定有了全面的阐述。
其中疲劳验算方法是容许应力法。
这标志着我国钢桥抗疲劳设计进入一个新的阶段。
但是到目前为止我国现行的铁路桥梁规范仍然使用容许应力法,而且没有详细的疲劳荷载谱。
1965年到1970年在成昆铁路建设中,首次大规模采用栓焊钢梁,进行了大批的栓焊钢桥构造细节疲劳试验,奠定了我国栓焊钢桥疲劳设计理论基础。
我国公路钢桥的抗疲劳设计规范沿用的是《公路桥涵钢结构及木结构设计规范》(JTJ025-86),其中有关疲劳部分的内容与当前建设的大规模钢桥并不相称,往往考虑强度较多,对于桥梁的耐久性考虑较少,桥梁的抗疲劳设计越差,对其耐久性影响越差。
目前钢桥设计中抗疲劳设计主要存在的问题有:
1、采用容许应力法进行抗疲劳设计有很大的随机性,对结构安全服役存在隐患。
容许应力法只是按照传统的经验给出的安全系数来评定结构是否稳定,缺乏明确的可靠度水平。
2、未定义荷载模型,使得我国公路钢桥抗疲劳设计中荷载选择没有统一形式。
对钢桥进行抗疲劳设计时的疲劳荷载和强度设计荷载不同,它不能反映桥梁真实的荷载运营情况。
3、以应力比作为控制参数非常粗略,不能反映实际的结构破坏原因。
而国外一些先进的钢桥规范大多采用应力幅作为控制参数。
我国公路钢桥抗疲劳设计应该结合自身特点再借鉴国外先进规范来展开更深入的研究。
四、钢桥的疲劳设计方法
对结构进行疲劳分析和按疲劳观点进行设计,是防止桥梁结构发生疲劳破坏的重要环节。
主要的疲劳设计方法有以下4种:
1、无限寿命设计
无限寿命设计是最早的疲劳设计方法,它要求结构的设计应力低于其疲劳极限值,从而具有无限寿命。
对于变幅循环应力,即随时间变化的不稳定交变应力状态,可按最大应力幅小于构件的等效等幅疲劳极限强度的条件进行设计。
无限寿命设计在英国规范BS5400中的铁路桥疲劳验算中也称之简化法,对于那些需要无限次应力循环为零的构件非常适用,它无须考虑构件的疲劳损伤度。
但是往往设计的构件过于笨重,不能充分利用材料的承载潜能,随着设计应力水平不断提高,疲劳设计方法也从无限寿命设计进入有限寿命设计阶段。
2安全寿命设计
安全寿命设计是保证结构在一定使用期内不发生疲劳破坏, 因此允许构件的工作应力超过疲劳极限。
安全寿命设计依据试验中得到如图 1 所示的构造细节的应力—疲劳寿命曲线( S - N 曲线) 进行,保证构件在规定的使用期限内安全使用。
预测的结构运营历程常用加载序列和频率来表达, 再分析潜在裂纹处的应力历程。
对于结构运营历程不同荷载,按照一定的累积损伤理论估算总的疲劳损伤。
为方便计算, 目前多采用由Palmgr en-miner 线性损伤累积理论。
安全寿命设计可以依据S -N 曲线设计, 也可以依据应变—疲劳寿命曲线(ε-N 曲线) 设计, 前者称为名义应力有限寿命设计, 多用于车辆等活载引起的高周疲劳的计算。
后者称为局部应力应变法, 多用于地震等偶然荷载引起的低周疲劳的计算。
当前国际上大都采用依据S-N 曲线的安全寿命设计的设计思想进行疲劳设计。
主要的计算流程见图2 所示。
3、损伤容限设计
损伤容限设计是为了保证含裂纹或可能含裂纹的重要构件的安全,从20世纪70年代开始发展并逐步应用的一种现代疲劳裂纹控制方法。
这种方法的设计思路是:假定构件中存在着裂纹,通过断裂力学分析、疲劳裂纹扩展分析和试验验证,保证在定期检查发现裂纹之前,裂纹不会扩展到足以引起破坏的程度。
进行损伤容限设计时,必须在结构上采取安全措施,并要有一定的检修制度确保使用安全。
损伤容限设计允许构件有初始缺陷或在使用寿命中出现裂纹、发生破损,但是在下次检修前要保持一定的剩余强度,能正常使用,直至下次检修
时能够发现予以修复或更换。
4、疲劳可靠性设计
前述的各疲劳设计方法都是根据应力与疲劳强度的平均值进行设计的。
然而,实际上应力和疲劳强度均具有一定的分散性,仅按照平均值进行设计是不安全的,这时就需要根据以往的使用经验,引进一定的安全系数。
但经验选取的安全系数没有反映问题的本质,是不够准确的。
为了进一步提高设计水平,就要使用疲劳可靠性设计。
进行疲劳可靠性设计时,不但需要知道构件应力和疲劳强度的平均值,还要知道构件应力和疲劳强度的分布类型。
确定了二者的分布类型,获得其分布曲线后就可以得到强度超过应力的概率,即构件的可靠度。
应用概率统计理论,可以在给定的可靠指标下进行结构的疲劳可靠性设计。
结束语
通过分析影响钢桥疲劳的各种因素,探讨防止钢桥疲劳破坏的方法,不仅能有效防止钢桥疲劳破坏事故的发生,还将对提高我国公路行业的钢桥设计水平和制造工艺有着积极的意义。
参考文献:
[1] 李小珍,任伟平,卫星,强士中.现代钢桥新型结构型式及其疲劳问题分析[J]. 钢结构. 2006(05)
[2] 周尚猛,李亚东.国内外铁路桥梁规范抗疲劳设计方法分析[J]. 铁道标准设计. 2010(03)
[3] 钱冬生.钢桥疲劳设计[M].成都: 西南交通大学出版社,1986(15)
[4] 潘际炎.铁路钢桥疲劳可靠度设计及铁路桥梁疲劳荷载谱研究[J].铁道学报,1992,14(4)。