碳纤维陶瓷基复合材料
碳纤维增强陶瓷基复合材料的制备及性能研究

碳纤维增强陶瓷基复合材料的制备及性能研究碳纤维增强陶瓷基复合材料是一种具有优异性能的复合材料,具有高强度、高刚度、低密度、高温耐性、抗腐蚀等优点,被广泛应用于航空、航天、汽车、新能源等领域。
本文将对碳纤维增强陶瓷基复合材料的制备及其性能研究进行探讨。
1. 背景传统金属材料存在密度大、重量重、强度低等问题,难以满足现代工业的需求。
而复合材料的出现解决了这一问题,毫不夸张地说,“复合材料就是未来工业的材料”。
其中最为突出的就是碳纤维增强陶瓷基复合材料。
2. 制备方法制备碳纤维增强陶瓷基复合材料的方法有多种,其中最为常见的是热压法和热处理法。
热压法是将预先制备的碳纤维增强陶瓷基复合材料在高温高压下进行加热压制,使其形成连续的结构。
这种方法适用于制备块状和板状复合材料。
热处理法则是先将碳纤维增强材料进行数次高温氧化处理,使其表面形成含有氧的层,然后进行碳化处理和陶瓷化处理,最终得到陶瓷基复合材料。
这种方法适用于制备复杂形状的复合材料。
3. 性能研究碳纤维增强陶瓷基复合材料具有优异的性能,如高强度、高刚度、低密度、高温耐性、抗腐蚀等,其力学性能和热学性能是研究的重点。
力学性能研究主要包括拉伸强度、屈服强度、断裂韧性等指标的测试和评估。
热学性能研究主要包括热膨胀系数、导热系数、热稳定性等指标的测试和评估。
研究表明,碳纤维增强陶瓷基复合材料的力学性能远远优于传统金属材料,具有极高的强度和刚度;而其热学性能也表现出卓越的优势,具有很高的耐热性和热稳定性。
4. 应用前景碳纤维增强陶瓷基复合材料具有广泛的应用前景。
在航空和航天产业中,用以制造减重、高刚度、高强度的重要部件;在汽车产业中,用于制造轻量化结构件和发动机;在新能源领域,用于制造高温耐受的储能材料等。
总之,碳纤维增强陶瓷基复合材料具有优异的性能和广泛的应用前景,能够为现代工业的发展做出巨大的贡献。
碳纤维增强碳化硅陶瓷基复合材料

碳纤维增强陶瓷基复合材料摘要:碳纤维增强碳化硅陶瓷基复合材料具有密度低、高强度、高韧性和耐高温等综合性能已得到世界各国高度重视,本文将对有关碳纤维增强碳化硅陶瓷的有关信息简单介绍。
关键词:陶瓷基复合材料,碳纤维增强。
1.引言碳化硅陶瓷因具有高强度、高硬度、抗腐蚀、耐高温和低密度而被广泛用于高温和某些苛刻的环境中,尤其在航空航天飞行器需要承受极高温度的特殊部位具有很大的潜力。
但是,陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面吸收表面能以外,几乎没有其它吸收能量的机制,这就严重限制了其作为结构材料的应用。
碳纤维具有比强度高、比模量大、高温力学性能和热性能良好等优点,在惰性气氛中2000℃时仍能保持强度基本不下降。
用碳纤维增强碳化硅复合材料,材料在断裂的过程中通过纤维拔出、纤维桥联、裂纹偏转等增韧机制来消耗能量,使材料表现为非脆性断裂。
Cf/SiC复合材料综合了碳纤维优异的高温性能和碳化硅基体高抗氧化性能,受到了世界各国的高度关注,并广泛应用在航空、航天、光学系统、交通工具等领域。
2. 碳纤维材料简介2.1碳纤维简介碳纤维是有机纤维或沥青基材料经谈话和石墨处理后形成的含碳量在85%以上的碳素纤维,是20世纪50年代为满足航空航天等尖端领域的需要而发展起来的一种特种纤维。
目前,碳纤维的生产原料分为三大体系:聚丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维。
其中聚丙烯腈基碳纤维由于原料资源丰富,含碳量高及碳化率高,成本低,正在被重视。
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。
因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。
材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。
碳纤维增强SiBCN陶瓷基复合材料的制备及性能

维增 强 S i B C N 陶瓷基 复合 材料 , 并 对其 力 学性 能进行 了初 步研 究。经 8次 浸 溃一 裂解 , 所 得 复合材 料 室温 弯 曲
强度 为 3 3 4 MP a , 8 0 0 " C / 氩 气条件 下 弯曲 强度 3 6 7 MP a 。该复合 材料 未经抗 氧化 防护 处理情 况下 , 8 0 0  ̄ C静 态 空 气 中氧化 3 h后 , 强度 保 留率 约为 6 0 %。 关键 词 聚硼硅 氮烷 , 前驱体 浸 渍裂 解技 术 , 陶瓷基 复合 材料
王 秀军 ' 张 宗波 曾 凡
李永明
徐 彩 虹
( 1 中 国科 学 院化 学 研 究 所 , 北 京 1 0 0 1 9 0 )
( 2 中国科 学院研究生院 , 北京 1 0 0 0 4 9 )
文
摘 以 自制 的 聚硼硅 氮烷 ( P — S i B C N) 为基体 聚合 物 利 用前驱 体浸 渍 裂解技 术 ( P I P ) 制 备 了二 维碳 纤
i n v e s t i g a t e d .Th e c o mp o s i t e o b t a i n e d f r o m 8 PI P— c y c l e s s h o we d i t s le f x u r e s t r e n g t h s o f 3 3 4 MPa a t r o o m t e mp e r a t ur e, a n d i n — s i t u le f x u r e s t r e ng t h o f 3 6 7 MPa a t 8 00 ̄ C i n i n e t r g a s a t mo s ph e r e .Th e c o mpo s i t e r e t a i ne d i t s 6 0%
碳纤维增强碳化硅陶瓷基复合材料

缺点:①致密周期较长,制品的孔隙率较高,对材料蠕变性能有一定影响;②基体密度在裂解前后相 差很大,致使基体的体积收缩很大(可达50~70%),因此需要多次循环才能达到致密化。
优点:基体软化温度较低,可使热压温度接近或 低于陶瓷软化温度。适用于制备单层或叠层构件, 致密度较高且缺陷少。
缺点:SiC陶瓷基体的烧结温度一般在1800℃以 上(添加加烧结助剂,常见的有TiB2、TiC、B、 BN等)。
4、液相硅浸渍法(LSI)
液相硅浸渍法是通过Si+C反应烧结生成,也称反应熔体浸渗法主要工艺流程如下: 纯固体硅于1700℃左右熔融成液态硅,通过C/C复合材料中大量分布的气孔,利用 毛细作用原理渗透到预制体内部并与C发生反应生成SiC陶瓷基体。 优点:工艺时间短,成本低。同时还可以制备大尺寸、复杂的薄壁结构组件。 缺点:制备Cf/SiC复合材料时,由于熔融Si与基体C发生反应的过程中,不可避免 地会与碳纤维发生反应,纤维被浸蚀导致复合材料性能下降。(只能制得一维或二维 的Cf/SiC复合材料,应用前景不大)
改善:均热法、热梯度法、等温强制流动等工艺
2、先驱体转化法(PIP)
先驱体转化法(PIP)是近年来发展迅速的一种制备Cf/SiC复合材料的制备工艺,由于成型工艺简单、 制备温度较低等特点而受到关注。该方法是利用有机先驱体在高温下裂解进而转化为无机陶瓷基体。 基本流程为:将含Si的有机聚合物先驱体(如聚碳硅烷、聚甲基硅烷等)溶液或熔融体浸渍到碳纤维预 制体中,干燥固化后在惰性气体保护下高温裂解,得到SiC陶瓷基体,并通过多次浸渍裂解处理后可获 得致密度较高的Cf/SiC复合材料。
碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用

碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用1研究进展近年来,随着碳纤维增强碳化硅陶瓷复合材料(CCR)性能优越的发现,越来越受到科学家和工程师的关注。
并且CCR的陶瓷相结构具有极高的抗热、抗冲击、抗腐蚀和耐磨性能。
然而,由于其微观和宏观机械性能调控能力较弱,该复合材料在应用中仍受到一定的限制。
近期,CCR材料的性能优势受到了很多研究者的重视,各种新型结构,复杂的组合加工工艺及增强技术被提出。
例如,抗腐蚀性能可以通过制备复合表面层来改善;抗热、抗受力能力可以通过控制碳纤维的尺寸和排列方式来改善;耐磨性能可以通过引入碳材料的碳-氧化物多层复合来增强。
最近,一些拥有改良机械性能的新制备工艺也被研究并实施,包括激光熔覆、前景碳化熔覆、快速增材成型、焊接熔覆和高速冲击等。
2应用对于碳纤维增强碳化硅陶瓷复合材料,主要应用于航空航天、船舶航行及军事等方面,其优越的机械性能使其成为一种非常理想的重要应用材料。
如果说航空飞机,这种复合材料可以替代大部分传统金属。
由于复合材料的轻重比和热稳定性更佳,可以帮助飞机减轻重量。
此外,其优越的抗受力和抗腐蚀性能还可以防止复合材料受到高温或低温环境的影响。
此外,由于复合材料可以克服传统金属在热响应速度受到拘束的缺点,在军事上其应用也都非常广泛。
最新研究表明,该材料很容易改变其形状,使用CCR,军事装备及其它武器物品可以取得更好的效果。
3结论碳纤维增强碳化硅陶瓷复合材料的研究及应用正在逐渐受到重视,复合材料的热稳定性、高抗受力和抗腐蚀性等优势在航空航天、船舶航行及军事领域都得到了广泛的应用。
此外,新的制备工艺也取得了巨大的进步,可以有效地改善复合材料的机械性能。
因此,未来碳纤维增强碳化硅陶瓷复合材料将有望发展出更强大的功能更适应更多应用场景。
陶瓷基复合材料

陶瓷基复合材料引言。
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。
它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。
本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。
一、陶瓷基复合材料的组成。
陶瓷基复合材料通常由陶瓷基体和增强材料组成。
陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。
这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。
二、陶瓷基复合材料的性能。
1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。
2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。
3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。
4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。
三、陶瓷基复合材料的应用。
1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。
2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。
3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。
四、陶瓷基复合材料的发展展望。
随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。
未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。
结论。
陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。
航空航天行业的新材料资料

航空航天行业的新材料资料在过去的几十年里,航空航天行业一直致力于研发新材料,以提高飞行器的性能和安全性。
随着科学技术的进步,新材料的出现为该行业带来了许多创新。
本文将介绍航空航天行业中的一些新材料,包括碳纤维复合材料、高温合金和陶瓷基复合材料等。
1. 碳纤维复合材料碳纤维复合材料是由碳纤维及其增强基体构成的复合材料。
它具有重量轻、强度高、刚度大和耐腐蚀等优点,是目前使用最广泛的航空航天新材料之一。
碳纤维复合材料的应用范围非常广泛,包括飞机机身、机翼等部件。
相比传统的金属材料,碳纤维复合材料能够减轻飞行器的总重量,提高燃油效率并降低碳排放,对环境保护起到了积极的作用。
2. 高温合金在航空发动机等高温环境下,传统的金属材料遭受高温氧化和蠕变等问题,这对飞行器的安全性和性能产生了较大影响。
而高温合金的出现弥补了这一缺陷。
高温合金具有优异的高温强度、抗氧化、耐热蠕变和耐热疲劳等特性,能够满足航空航天行业对高温环境下材料性能的需求。
3. 陶瓷基复合材料陶瓷基复合材料是由陶瓷基体和其它增强材料组成的复合材料。
它的主要特点是高温强度高,能够耐受极端环境的考验,因此在航空航天行业中具有重要的应用价值。
陶瓷基复合材料可以用于高温部件的制造,比如航天器的发动机喷管和燃烧室。
这些部件在飞行过程中需要承受高温高压的环境,陶瓷基复合材料能够提供良好的性能,保证飞行器的正常运行。
除了上述介绍的三种新材料外,航空航天行业还在不断研究和开发其它新材料,以应对飞行器性能和安全性方面的挑战。
其中一项研究热点是3D打印技术在材料制备和部件制造方面的应用。
这种技术可以根据设计需求直接打印出所需形状的零部件,大大提高了制造效率和灵活性。
总的来说,新材料的不断涌现为航空航天行业的发展带来了巨大的推动力。
碳纤维复合材料、高温合金和陶瓷基复合材料等新材料的应用改变了飞行器的结构和性能,提高了航空航天系统的可靠性和经济性。
随着科学技术的不断进步,未来将会有更多新材料的开发和应用,不断推动航空航天行业朝着更高更远的目标迈进。
碳陶复合材料

碳陶复合材料
碳陶复合材料是一种新型的复合材料,由碳纤维和陶瓷基体组成。
碳纤维具有
高强度和高模量的特点,而陶瓷基体具有优异的耐磨性和耐高温性能,两者结合后形成的碳陶复合材料具有优异的综合性能,被广泛应用于航空航天、汽车制造、船舶建造、体育器材等领域。
首先,碳陶复合材料具有优异的力学性能。
碳纤维的高强度和高模量使得碳陶
复合材料具有很高的强度和刚度,能够承受较大的载荷而不易发生变形和破坏。
同时,陶瓷基体的高硬度和耐磨性使得碳陶复合材料具有良好的耐磨性能,适合用于制造高速运动部件和耐磨零部件。
其次,碳陶复合材料具有优异的耐高温性能。
碳纤维的耐高温性能使得碳陶复
合材料能够在高温环境下工作,不易软化和熔化。
这使得碳陶复合材料成为航空航天领域的理想材料,能够用于制造发动机零部件、导弹外壳等高温工作环境下的部件。
另外,碳陶复合材料还具有良好的耐腐蚀性能。
由于碳纤维和陶瓷基体都具有
较好的化学稳定性,碳陶复合材料能够在恶劣的化学环境下工作,不易发生腐蚀和氧化,因此在化工领域也有着广泛的应用前景。
总的来说,碳陶复合材料具有优异的综合性能,能够满足各种工程领域对材料
的要求。
随着科技的不断进步,碳陶复合材料的制备工艺和性能将得到进一步提升,相信其在未来会有更广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用现状
1、航空燃气涡轮发动机的应用
由于碳纤维增强碳化硅陶瓷基复合材料高强度、 良好的抗氧化能力和抗热震性,现在经常用它做高 温结构材料。
主要是应用在涡轮发动机的消耗管道、涡轮泵 旋转体、喷管等
2005年由中南大学黄伯云院士等研制成功的碳 纤维增强碳化硅陶瓷基复合材料飞机刹车片结束了 国家技术发明一等奖连续六年空缺的历史
2、热保护系统的应用
根据碳纤维增强碳化硅陶瓷基复合材料 耐热、耐高温、密度低的特点可以用来制造 防热体系。
热结构材料的构件:航天飞机和导弹的 鼻锥、导翼,机翼和盖板等
2011年8月20~21日第二届NRC北方赛道 嘉年华的活动中,有一个全新的刹车品牌 Rotora出现在北京金港赛道上。
3、高温连接件的应用
主要应用于连接固定热的外表面和航 空框架结构中制冷的衬垫,及用作密封装置。 已经被制成螺钉和其他连接件。
4、光学和光机械结构中的应用
已经用于制造超轻反射镜、微波屏蔽反 射镜等光学结构部件及光学系统中的结构材 料及反射镜支撑体系,如反射镜底座。
此外碳纤维增强碳化硅陶瓷基复合材料 还用于高速飞行器和高速汽车、火车上的刹 车系统。超高音速飞行器中,在原子能反应 堆中可用做核燃料的包封材料,还可用作火 箭尾喷管的喷嘴及飞机驾驶员防弹用品等领 域。
生物复合材料
根据增强体形态的不同
根据基体材料的不同
颗 粒 增 强
纤 维 增 强
编 织 结 构 增
型
型
强
型
ห้องสมุดไป่ตู้
高 分 子 基
金 属 基
陶 瓷 基
碳纤维增强碳化硅陶瓷基复合材料
碳化硅陶瓷因具有高强度、高硬度、抗腐蚀、 耐高温和低密度而被广泛用于高温等某些苛刻的环 境中,尤其在航空航天飞行器需要承受极高温度的 特殊部位具有很大的魅力。