离子交换树脂污染及复苏处理
阳离子交换树脂的污染及复苏方法研究_张翠玲

收稿日期:2006-11-08基金项目:甘肃省自然科学基金项目(20577018)阳离子交换树脂的污染及复苏方法研究张翠玲,郝火凡,赵保卫,欧乙成(兰州交通大学环境与市政工程学院,甘肃兰州 730070)摘 要: 研究了不同浓度的铁离子、亚铁离子和油类物质对树脂污染的影响程度.同时采用 盐酸一食盐一亚硫酸钠 复苏法对污染树脂的复苏进行了探讨.结果表明:在相同时间内,树脂的污染程度随污染物浓度的增加而增大;同浓度的铁离子对树脂的影响比亚铁离子要大;复苏效果总体较好,亚铁离子污染树脂的复苏效果最好,铁离子次之,油类最差.关键词: 阳离子交换树脂;污染;复苏;交换容量中图分类号: TQ 460 文献标识码: A 文章编号:1004-0366(2007)04-0071-03A Study on Pollution and Recovery of Cation Exchanges ResinZH ANG Cu-i ling,H A O H uo -fan,ZH A O Bao -w ei,OU Y-i cheng(S chool of Env ir onmental Science and M unicip al Engineer ing ,L anz hou J iaoto ng Univ er s ity ,Lanz hou 730070,China)Abstract: T he impacts of po llution of different concentrations of iron,fer rous iro n and o il on the resin material ar e investig ing H C-l NaC-l N a 2SO 3 recovery metho d,the po llutied resin recovery is dis -cussed.Results show that in the equal time,the extent of po llution increases with the co ncentration of po-l lutants ;the im pact of po llution of iron o n the resin is larger than that of the ferrous ions w ith the same concentration.The recovery is beetter as a w hole.T he recovery of ferrous io n po llution r ecovery is the best,and that o f ir on ion pollutio n is beltter than that of oil.Key words: cation ex chang e resin;pollutio n;reco ver y;exchange capacity 离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由3部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子.离子交换树脂通常制成珠状的小颗粒,多数通用的树脂产品的有效粒径在0.4mm ~0.6m m 之间,活性基团一般都处在树脂网孔内,外来离子必须进入网孔内才能进行离子交换.离子交换树脂具有强稳定的化学性质,母体本身不与酸、碱起作用.阳离子交换树脂是指分子中含有酸性基团的离子交换树脂,它在水及其他极性溶剂中发生溶胀,能在水中离解出H +而使溶液呈酸性[1].树脂离解后余下的负电基团,如R -COO -(R 为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用.一些阳离子被吸附的顺序如下:Fe 3+>A l 3+>Pb 2+>Ca 2+>M g 2+>K +>Na +>H +[2].自从1935年亚当斯(A dams)和霍姆斯(H olm es)研究合成了第1批离子交换树脂 聚酚醛系强酸性阳离子交换树脂和聚苯胺醛系弱碱性阴离子交换树脂以来,尤其是20世纪70年代以后,离子交换树脂的合成及应用技术得到了长足发展.阳离子交换树脂目前主要用于:水处理、食品工业、制药工业、合成化学和石油化学工业、环境保护、湿法冶金、原子能、半导体、电子工业等,其中水处理领域离子交换树脂的需求量最大,约占离子交换树脂产量的90%.随着离子交换树脂的广泛使用,树脂的污染及修复问题已受到人们的重视[3,4],经研究发现阳离子交换树脂主要的污染物有水预处理过程残留的混凝剂,水中含有的铁离子、输送管道中腐蚀产生的铁化物,有机物、油类、自来水中残留的余氯第19卷 第4期2007年12月 甘肃科学学报J ournal of Gansu S cien cesVol.19 No.4Dec.2007等.污染后的树脂颜色明显加深,由淡黄色变为棕色、紫红色、甚至近似黑色,交换容量有较大幅度下降,周期产水量随树脂污染程度的加剧而急剧下降.我们以铁离子、亚铁离子、菜籽油为目标污染物,主要研究了阳离子交换树脂的污染程度随溶液中铁离子、亚铁离子、菜籽油浓度的变化关系及其对污染树脂复苏效果的影响.1 实验部分1.1 主要仪器及药品主要仪器有:电动离心沉淀机(A nke T DL-40B),202-1型电热恒温干燥箱(上海实验仪器有限公司),电子天平,电热恒温水浴锅,电导仪,分液漏斗,玻璃离心过滤管,秒表,称量瓶,具塞三角烧瓶.药品包括:强酸性阳离子交换树脂,盐酸,氢氧化钠,甲基红,次甲基蓝,酚酞,甲基橙,无水乙醇,氯化钙,硫酸亚铁,硫酸铁,菜籽油.1.2 污染树脂的制备及测定(1)树脂的预处理 预处理按GB5476-85离子交换树脂预处理方法进行.(2)污染树脂的制备 配制浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25mg/L的亚铁离子溶液和浓度分别为0.25mg/L、0.50mg/L、0.75m g/L、1.00m g/L、1.25m g/L的铁离子溶液,各取5mL移入装有200mL阳离子交换树脂的容器中,分别加入500mL的蒸馏水,30 恒温振荡30min后密封静置,30d后测定全交换容量; 各取1mL、2mL、3 mL、4mL、5mL的菜籽油放入装有200m L阳离子交换树脂的容器中,分别加入500mL的蒸馏水, 30 恒温振荡30min后密封静置,30d后测安全交换容量.(3)测定 按GB8144-87阳离子交换树脂交换容量测定方法测定,交换容量越小说明树脂所受的污染越严重.1.3 污染树脂的复苏及效果测定(1)复苏方法 相关研究[5,6]证明 盐酸 食盐 亚硫酸钠 复苏法是修复受污染阳离子树脂比较好的方法,以下采用的是4%的盐酸、4%的食盐和0.08%的亚硫酸钠混合液,取制备好的污染树脂,加人到一定比例的混合液中进行浸泡处理.(2)复苏效果测定 复苏效果通过测定复苏后树脂的全交换容量来衡量,全交换容量越高说明复苏效果越好[7].2 结果与讨论2.1 树脂污染程度与污染物浓度的关系随着污染物浓度(体积)的增加全交换容量逐渐下降;相同浓度条件下,铁离子污染的树脂全交换容量明显低于亚铁离子污染的树脂.由图1和图2所示.图1 树脂全交换容量与铁离子和亚铁离子浓度Fe2+ Fe3+图2 树脂全交换容量与溶液中菜籽油的体积2.2 树脂污染程度与污染物浓度的关系盐酸 食盐 亚硫酸钠 复苏法对铁和油污染的树脂都有较好的复苏效果,绝大多数树脂的全交换容量恢复到了空白的80%以上,树脂的复苏效果随受污染时污染物浓度的增大而略成下降趋势,同时可看出受铁离子污染的树脂复苏效果整体比受亚铁离子污染树脂复苏效果要差.由图3和图4所示.图3 复苏后树脂交换容量与铁的浓度Fe2+ Fe3+72 甘肃科学学报 2007年 第1期图4 复苏后树脂交换容量与油的浓度的关系3 结论随着污染物浓度(体积)的增加树脂全交换容量逐渐下降,时间相同时树脂的污染程度随污染物浓度的增加而增加;相同浓度条件下,铁离子对树脂的影响明显高于亚铁离子对树脂的影响,而且在相同的复苏条件下,亚铁离子污染的树脂的复苏效果优于铁离子污染的树脂的复苏效果[8],所以树脂使用或再生过程中应适当添加还原剂降低铁离子含量,减少铁对树脂的污染.参考文献[1] 武银华.水处理技术的研究进展.[J].广东化工,2004,20(z1):49-50.[2] 王广珠,汪德良,崔焕芳.离子交换树脂使用及诊断技术[J].北京:化学工业出版社,2004.[3] 贾波,周柏青,李芹.阳离子交换树脂的污染与复苏[J].工业用水与废水,2003,34(5):16-18.[4] 郑成远.离子交换树脂污染的诊断及处理方法[J ].冶金动力,2007,120(2):42-45.[5] 袁锡妹.铁污染阳离子交换树脂的复苏比较及测定[J].腐蚀与防护,2002,23(10):458-459.[6] 贾波,周柏青,李芹.阳离子交换树脂铁污染的复苏研究[J ].热力发电,2004,33(04):20-23[7] 张国珍,宋小三.活性炭吸附T NT 废水实验研究.[J ].甘肃科学学报,2007,19(3):150-153.[8] 武福平.受严重污染的强碱阳树脂复苏实验研究.[J ].甘肃科学学报,2006,18(4):102-105.作者简介:张翠玲,(1973-)女,山东省梁山人,1996年毕业于兰州铁道学院环工系,现任兰州交通大学环境与市政工程学院讲师.73第19卷 张翠玲等:阳离子交换树脂的污染及复苏方法研究。
阴阳离子交换树脂再生原理

阴阳离子交换树脂再生原理
阴阳离子交换树脂再生原理是一种将污染了的阴阳离子交换树脂(IEX),进行回收再利用的原理。
通常,阴阳离子交换树脂是用来处理水质或污水中的无机离子的,可以起到净化的作用,其中的部分成分经过长期的使用会受到污染,失去净化的能力。
再生原理是使用一种设备将污染的树脂放入高温水中,并加入除去各种离子结合污染物的脱脂剂,容器内的温度一般保持在80℃-120℃。
污染物会被轻松分离和沉积,树脂也会通过加入酸酸性离子洗礼,从而大幅度减少污染物的含量,恢复阴阳离子交换树脂的可用性和性能。
污染的阴阳离子交换树脂重新经过补充离子替换和专业的再生设备处理后,其性能得到了明显改善,可以重新运用于脱盐、净水、还原水和其他离子束分离,实现成本节约、资源循环利用、污染物提取和处理。
;。
离子交换树脂常见难题及解决途径

离子交换树脂常见难题及解决途径1. 引言离子交换树脂是一种广泛应用于水处理、废水处理、化学品分离纯化等领域的重要材料。
然而,在使用离子交换树脂的过程中,常常会遇到一些难题,如吸附容量降低、流动阻力增加、压力波动等。
针对这些常见难题,本文将介绍解决途径,帮助解决实际应用中可能遇到的问题。
2. 吸附容量降低当离子交换树脂长时间使用后,吸附容量可能会降低,造成效果下降。
解决这个问题的途径有以下几点:- 树脂再生:使用酸、碱等溶液进行树脂再生,去除吸附物,恢复树脂的吸附能力。
- 高温处理:将树脂暴露在高温下,能够除去附着在树脂上的有机物质,提高树脂的吸附能力。
- 曝气处理:通过曝气使树脂表面的污染物脱附,增加树脂的吸附容量。
3. 流动阻力增加随着使用时间的增长,离子交换树脂的颗粒会逐渐堆结,导致流动阻力增加,降低树脂的吸附效率。
以下是解决流动阻力增加的一些途径:- 调整进出水流量:适当调整进出水流量,控制流速,防止颗粒堆结过快。
- 清洗树脂床层:定期使用清水或清洗剂冲洗树脂床层,去除堆结的颗粒,恢复流动性。
- 筒罐倒转:定期倒转离子交换柱或筒罐,使床层颗粒重新混合,减少堆结。
4. 压力波动在使用离子交换树脂的过程中,压力波动是一个常见的问题,可能会影响系统的稳定性。
以下是一些解决压力波动的途径:- 检查进出水口是否堵塞:清洗或更换进出水口,保持流量畅通。
- 调整进出水流量:适时调整进出水流量,避免波动过大。
- 检查压力传感器:确保压力传感器的准确性,及时进行维护和更换。
5. 结论离子交换树脂在应用过程中常常会遇到吸附容量降低、流动阻力增加和压力波动等问题。
本文介绍了相应的解决途径,包括树脂再生、高温处理、曝气处理、调整进出水流量、清洗树脂床层、筒罐倒转、检查进出水口是否堵塞、调整进出水流量以及检查压力传感器等。
通过采取合适的解决措施,可以有效解决这些问题,保持离子交换树脂的良好工作状态。
强碱性阴离子交换树脂污染原因分析及复苏工艺研究

强碱性阴离子交换树脂污染原因分析及复苏工艺研究一、离子交换树脂的变质离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。
(一)阳离子交换树脂的氧化1.阳树脂氧化的原因和现象阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。
2.防止树脂被氧化的方法(1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。
其反应为:C-+HOCl→CO-+HCl活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。
(2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。
(3)选用高交联度的大孔阳树脂。
(4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。
(二)强碱性阴树脂的降解在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。
在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。
季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下:2.防止强碱性阴树脂降解的方法(1)真空除气法通过使用真空除气器,减少阴床进水中的氧含量。
(2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。
(3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。
二、离子交换树脂的污染与复苏在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。
离子交换树脂的再生方法

离子交换树脂的再生方法离子交换树脂是一种广泛应用于水处理、化学工业和生物科学等领域的重要材料。
随着使用时间的增长,离子交换树脂会逐渐失去对离子的吸附能力,需要进行再生以恢复其吸附性能。
本文将介绍离子交换树脂的再生方法,包括酸洗法、碱洗法、盐洗法和热解法等。
1. 酸洗法酸洗法是一种常用的离子交换树脂再生方法,适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂。
具体步骤如下:•将需要再生的离子交换树脂放入酸性溶液中浸泡,通常使用稀硫酸或盐酸;•在适当的温度下进行搅拌或循环,促使酸性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除酸性溶液。
酸洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,酸洗法只适用于耐酸性的离子交换树脂。
2. 碱洗法碱洗法是一种适用于强碱型阳离子交换树脂和强酸型阴离子交换树脂的再生方法。
具体步骤如下:•将需要再生的离子交换树脂放入碱性溶液中浸泡,通常使用氢氧化钠或氢氧化钾;•在适当的温度下进行搅拌或循环,促使碱性溶液与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除碱性溶液。
碱洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,碱洗法只适用于耐碱性的离子交换树脂。
3. 盐洗法盐洗法是一种适用于强酸型阳离子交换树脂和强碱型阴离子交换树脂的再生方法。
具体步骤如下:•将需要再生的离子交换树脂放入盐水中浸泡,通常使用氯化钠溶液;•在适当的温度下进行搅拌或循环,促使盐水与树脂充分接触;•洗涤干净后,将树脂进行中和处理,恢复其中性状态;•最后用水冲洗干净,使树脂完全去除盐水。
盐洗法能够有效去除离子交换树脂表面的污染物和附着物,恢复其吸附能力。
但需要注意的是,盐洗法只适用于耐盐性的离子交换树脂。
4. 热解法热解法是一种适用于各种类型离子交换树脂的再生方法。
本溪阳离子交换树脂活化

本溪阳离子交换树脂活化
阳离子交换树脂是一种吸附性材料,可以有效地去除水中的阳离子污染物,如重金属离子、有机物离子等。
但在长期使用中,阳离子交换树脂会逐渐失去活性,需要进行活化处理,以保证其吸附效果和使用寿命。
本溪阳离子交换树脂活化的方法通常有以下几种:
1. 酸活化法:将树脂浸泡在酸性溶液中,如硫酸、盐酸等,以去除树脂中的碱性杂质,并恢复其酸性功能。
2. 碱活化法:将树脂浸泡在碱性溶液中,如氢氧化钠、氢氧化钾等,以去除树脂中的酸性杂质,并恢复其碱性功能。
3. 盐酸-氯化钠活化法:将树脂浸泡在盐酸-氯化钠混合溶液中,以去除树脂中的杂质和污染物,并恢复其吸附功能。
4. 熱活化法:将树脂加热至一定温度,使其发生化学变化,从而恢复其吸附能力和活性。
以上活化方法均需要严格控制处理时间、处理温度、溶液浓度等参数,以避免对树脂材料产生副作用或损坏。
同时,活化后的阳离子交换树脂需要进行彻底的洗涤,以去除残留的处理剂和杂质,以保证其正常使用。
阴离子交换树脂使用方法
阴离子交换树脂使用方法
阴离子交换树脂是一种可以去除水中阴离子污染物的材料,常用于水处理领域。
以下是阴离子交换树脂的使用方法:
1. 准备树脂:将阴离子交换树脂放入水中进行净化。
可用直接净水或去离子水冲洗树脂,以去除杂质。
2. 负荷树脂:树脂吸附阴离子污染物的能力是有限的,需要将树脂进行负荷。
负荷树脂的方法包括将树脂直接与水中的阴离子污染物接触,或者将水通过装有树脂的固定装置中。
3. 冲洗树脂:当树脂已经负荷满后,需要进行树脂的冲洗,以去除吸附的阴离子污染物。
常用的是用盐水进行冲洗,将吸附的污染物溶解释放出来。
4. 再生树脂:当树脂的吸附能力逐渐减弱时,需要进行树脂的再生。
再生树脂的方法包括用酸或碱溶液进行树脂的反应,以去除吸附的污染物,并恢复树脂的吸附能力。
5. 使用周期:阴离子交换树脂的使用周期取决于水中的阴离子污染物浓度、树脂的吸附能力以及水处理设备的使用情况。
根据实际情况,可以设定适当的更换或再生周期。
需要注意的是,阴离子交换树脂的使用方法和具体操作流程会受到各个实际情况和设备配置的影响。
因此,在使用阴离子交换树脂之前,应根据实际情况详细了解树脂使用指南,并跟随相关的技术指导或专业人士的建议进行操作。
固定床离子交换树脂复苏方法探讨
在 固定 床 离子 交 换 水 处 理 工 艺 中 , 阳离 子 交 阴 换 树 脂失 效 后 , 用再 生 剂 进行 树 脂 的再 生 , 树脂 利 使 的交 换 能力 得 以恢 复 , 常 情 况下 , 脂 的再 生 程 度 正 树
只能恢 复 到 原 来 的 6 % 一8 %左 右uJ 但 在 特 殊 0 0 。
p ct n e e ea in itn i r to u e a iya drg n r t n e st weei r d c d o y n Ke wo d r e e ain o ei d sl ain wa e c ro in c n a iain saef r ain y r s e n r t fr n g o s e ai t tr o rso o t n t c l o m t n o m o o
i h s p p r e p rm e tc r id o tt e t r e i u l o t m i a e e i s a d t u mp o e t e e c a g a n t i a e x e i n a re u o r s o e s ro sy c n a n t d r n n h si r v h x h n e c — s
树 脂 的工 作 交 换 容 量 和 再 生 程 度 。 关键词 树脂复 苏 脱 盐水 腐蚀 污染 结 垢
Ex o a i n o he M e ho f Re t r to f Fi e d I n- x ha e Re i pl r to n t t d o s o a i n o x d Be o e c ng sn
降, 再生 剂 消耗 增 大 。此 时 说 明树 脂 严 重 污染 , 要 需 进 行 树 脂复 苏 。所 以无论 从 降低 生 产所 需物 料 的消 耗 方 面来 说 , 还是 从 脱 盐 水 水 质 对 生 产 系 统 的腐 蚀 结垢 等 影 响方 面来 说 , 好 树 脂 的 复 苏 工 作 具 有 很 搞
离子交换树脂的再生
离子交换树脂的再生一、常规的再生处理离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能;在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为 70~80% ;如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降;树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件;树脂的再生特性与它的类型和结构有密切关系;强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值;此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间;再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐;例如:钠型强酸性阳树脂可用 10%NaCl 溶液再生,用药量为其交换容量的 2 倍用NaCl 量为117g/ l 树脂 ;氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物;为此,宜先通入 1~2% 的稀硫酸再生;氯型强碱性树脂,主要以 NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + %NaOH 的碱盐液再生,常规用量为每升树脂用150~ 200g NaCl ,及 3~4g NaOH; OH 型强碱阴树脂则用 4%NaOH 溶液再生;树脂再生时的化学反应是树脂原先的交换吸附的逆反应;按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平;为加速再生化学反应,通常先将再生液加热至 70~80℃;它通过树脂的流速一般为1~ 2 BV/h ;也可采用先快后慢的方法,以充分发挥再生剂的效能;再生时间约为一小时;随后用软水顺流冲洗树脂约一小时水量约4BV ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止;一些树脂在再生和反洗之后,要调校 pH 值;因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性;而一些脱色树脂特别是弱碱性树脂宜在微酸性下工作;此时可通入稀盐酸,使树脂 pH 值下降至6左右,再用水正洗,反洗各一次;树脂在使用较长时间后,由于它所吸附的一部分杂质特别是大分子有机胶体物质不易被常规的再生处理所洗脱,逐渐积累而将树脂,使树脂效能降低;此时要用特殊的方法处理;例如:阳离子树脂受含氮的两性化合物污染,可用 4%NaOH 溶液处理,将它溶解而排掉;阴离子树脂受有机物污染,可提高碱盐溶液中的 NaOH 浓度至~%,以溶解有机物;二、特殊的再生处理污染较严重的树脂,可用酸或碱性食盐溶液反复处理,如先用 10%NaCl +1%NaOH 碱盐溶液溶解有机物,再用 4%HCl 或分别用 10%NaOH 及 1%HCl 溶解无机物,随后再用10%NaCl +1%NaOH 处理,在约 70℃下进行;如果上述处理的效果未达要求,可用氧化法处理;即用水洗涤树脂后,通入浓度为 % 的次氯酸钠溶液,控制流速 2~4BV/h ,通过量 10~20BV ,随即用水洗涤,再用盐水处理;应当注意,氧化处理可能将树脂结构中的大分子的连接键氧化,造成树脂的降解,膨胀度增大,容易碎裂,故不宜常用;通常使用 50 周期后才进行一次氧化处理;由于氯型树脂有较强的耐氧化性,故树脂在氧化处理前应用盐水处理,变为氯型,这还可避免处理过程中的 pH 值变化,并使氧化作用比较稳定;三、再生废液的处置糖厂用树脂脱色,树脂再生的废液含有大量的色素和有机物,颜色很深;用原糖生产精糖时,每 100 吨糖的再生废液量约为 6~9m3 ;要经过处理才能排放或循环,这也是一个难题;Bento 详细研究了用化学方法处理再生液,使色素和其他有机物沉淀,除去杂质后再循环使用,减少排放,并充分利用其中的氯化钠;由于再生液中色素的浓度比糖汁中高 10 倍以上,液体数量较小,没有糖液的粘性,并能容许强烈的条件如强碱性和高温等而无需顾虑糖的分解,用化学处理比较方便;再生液加入 5~10% 容积的石灰乳浓度为含CaO100g/ l ,加热到60℃并轻微搅拌,大量的有色物沉淀析出;再加入碳酸钠或二氧化碳、磷酸钠或磷酸并保持碱性,都可使较多的有色物沉淀;处理后的液体添加少量食盐可返回作树脂的初级再生液,其后再用新的盐水再生;对废液的处理还研究过多种方法:用颗粒活性炭吸附,用次氯酸钠、次氯酸钙、氯气或臭氧将它氧化,用超过滤或反渗透法分离它的有机物,或用粉状树脂吸附等;最近Guimaraes 等研究用将它的有色物降解,取得较好效果钠型阳离子交换树脂使用寿命及工作原理,阴阳离子交换树脂,全自动软化水设备时间:2010-08-21 13:40:17来源:作者:钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备国内目前常用的优级阳离子软化树脂为中英合资生产的“漂莱特”钠型阳离子交换树脂,厂家提供的软化水树脂使用年限工业上为5-8年理论值,实际运行当中,树脂受原水影响的主要原因为:A、原水管路一般为碳钢管道,水与管路发生氧化反应,生成铁离子,进入树脂后,随运行时间的延长,树脂的功能交换基团下降,其表现为耗盐量高,再生水质差;B、树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值机械强度逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想;C、树脂的理化值:聚合物骨架-----------------------------------------------聚苯乙烯-二乙烯苯功能基------------------------------------------------------聚苯乙烯磺酸基出厂型式---------------------------------------------------钠型外观---------------------------------------------------------淡色球壮颗粒水份钠型---------------------------------------------46--50%粒度---------------------------------------------------- +<5%; <1%全交钠型-----------------------------------------------≥L湿树脂----------------------------------------------≥kg干树脂膨胀率Na+→H+-------------------------------------≤5%pH稳定性----------------------------------------------------0-14比重钠型操作温度钠型---------------------------------------------≤150℃离子交换法的工作原理钠离子交换软化处理的原理是将原水通过钠型阳离子交换树脂,使水中的硬度成分Ca2+、Mg2+与树脂中的Na+相交换,从而吸附水中的Ca2+、Mg2+,使水得到软化;如以RNa代表钠型树脂,其交换过程如下:2RNa + Ca2+ = R2Ca + 2Na+2RNa + Mg2+ = R2Mg + 2Na+即水通过钠离子交换器后,水中的Ca+、Mg+被置换成Na+;当钠离子交换树脂失效之后,为恢复其交换能力,就要进行再生处理;再生剂为价廉货广的食盐溶液;再生过程反应如下:R2Ca + 2NaCl = 2RNa + CaCl2R2Mg + 2NaCl = 2RNa + MgCl2为了使您易于理解接受,以下的说法是尽量通俗的说法,与标准工具书的说法可能不尽一致但不会出现技术性错误;离子交换树脂是一种聚合物,带有相应的功能基团;一般情况下,常规的钠离子交换树脂带有大量的钠离子;当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降;硬水就变为软水,这是软化水设备的工作过程;当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”;由于实际工作的需要, 软化水设备的标准工作流程主要包括:工作有时叫做产水,下同、反洗、吸盐再生、慢冲洗置换、快冲洗五个过程;不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程;任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的其中,全自动软化水设备会增加盐水重注过程;反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证;反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走;这个过程一般需要5-15分钟左右;吸盐再生:即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入只要进水有一定的压力即可;在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响;慢冲洗置换:在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换;这个过程一般与吸盐的时间相同,即30分钟左右;快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水;一般情况下,快冲洗过程为5-15分钟; 3、特点管路简化,节省占地空间;运行稳定可靠;节约再生用盐;运行费用低;免维护;适用性广:可用于工业锅炉、热交换器、中央空调及食品、制药、电子等行业4、技术要求原水硬度:3-10mmol/L;出水残余硬度:≤L;工作压力:;工作温度:2 -50℃;自控电源:220V 50Hz;耗电量:10W;树脂型号:001×7型强酸性阳离子交换树脂;入口压力低于需加装管道泵;设备总压损:;PH范围:1-14最高使用温度:钠型≤120°C型变膨胀率%:H+-Na+8-10再生液浓度:NaCl:3-10%;HCl:4-5%;NaOH:4-5% 再生液用量:NaCl:8-10%;体积:树脂体积=:1HC14-5%体积:树脂体积=2-3:1NaOH4-5%;体积:树脂体积=2-3:1再生液流速:5-8m/h;再生接触时间:30-60min正洗流速:10-20m/h;正洗时间:约30min运行流速:10-40m/h钠型阳离子交换树脂使用寿命及工作原理,,全自动软化水设备。
离子交换树脂常见问题及应对方案
离子交换树脂常见问题及应对方案问题一:树脂的颗粒化现象现象描述:在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。
在使用离子交换树脂的过程中,可能会出现树脂颗粒化或结块的情况,导致树脂床层不均匀,降低了离子交换效率。
可能原因:树脂长时间接触水分,或树脂的质量不合格,质量不一致。
树脂长时间接触水分,或树脂的质量不合格,质量不一致。
应对方案:1. 检查树脂包装是否完好,防潮措施是否到位。
2. 如发现树脂结块现象,可将结块的部分用硬物轻轻敲打,使其恢复颗粒状,但需注意不要过度敲打。
3. 定期更换树脂,确保树脂的质量。
问题二:树脂吸附效果下降现象描述:在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。
在使用离子交换树脂的过程中,发现树脂吸附效果明显下降,处理效果不佳。
可能原因:1. 树脂饱和,需要进行再生。
2. 树脂表面被污染,需要进行清洗。
3. 树脂老化,需更换。
应对方案:1. 根据树脂使用情况,定期进行再生处理。
2. 如发现树脂表面污染,可通过清洗树脂表面或更换树脂层来解决。
3. 定期更换树脂,以保证吸附效果。
问题三:树脂吸附剂溢出现象描述:在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。
在使用离子交换树脂的过程中,可能会出现树脂吸附剂溢出的情况,造成设备故障或损坏。
可能原因:1. 树脂床层高度不当,超过设备规定高度。
2. 设备操作不当,造成树脂床层动荡。
应对方案:1. 根据设备规定,调整树脂床层高度,以避免过高。
2. 操作时要避免剧烈摇晃或震动设备,以保持树脂床层稳定。
问题四:树脂流速受限现象描述:在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。
在使用离子交换树脂的过程中,发现树脂流速受限,导致处理效率低下。
可能原因:1. 树脂床层紧实,导致流速减慢。
2. 设备管道堵塞。
应对方案:1. 调整树脂床层,使其适度紧实,但不要过度压实。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与有机物产生 的污染 同时进行 的, 它们相互缔合或 呈共聚状 。在水体中腐殖酸是 以复杂的芳香核为核 心, 通过化学或物理形式如共价健作用力 、 静电作 用力 、 范德华作用力 、 氢键等作用力连接着多糖 、 蛋 白质 、 简单酚 、 金属 。 可见有机 物是产生 阴离子交换树脂污染的主
Po l i n o o c ng sn nd c v r e t e l o fI n Ex ha e Re i a ut Re o e y Tr a m nt
W ANG ng Yo
(et o e ln, iahnI nMie MiigC .Anh nIo n te C .Ld Lo nn 1 0 3 C ia n a P w r atQd sa r n, nn o, s a nadSel o t. i i P o r , , o g1 4 4 , hn)
【 e od ] a rr tet eipl tn r oe aetr iecag pcy K yw rsw t e m n r n ou o; cvr r gn; s h e aai et a ; s li e y e en x n c t
1 问题 的提 出
离子交换树脂 是水 处理主要定额材 料消耗之
有机物、 、 、 铁 硅 微生物胶体或类胶体都会对 阴 离子交换树脂产生污染 , 通常情况下有机物的污染 起主导作用 , 而铁 、 硅等其他杂质对树脂 的污染是
被覆盖 , 离子交换过程就无法进行。在离子交换过
程 中, 交换势能较 高 , 附着力强 的离子或大分子 之 类的物质 , 容易被 交换 或吸附到树脂 , 而在再生 时
果, 进而 阐明树脂污染复苏处理是解决树脂污染 问题 的有效途 径 , 具有很好的经济效 益、 社会效 益和应用价值 。
【 关键词 】 水处理; 树脂污染; 复苏剂; 树脂交换容量 【 中图分类号】T 3 Q2 【 文献标识码】B 【 文章编号】0666(0Oo一o50 10—742 1)3 O7—4
r sn a d s lc in a d a p ia in ef c f e i e o e e g n r r s n e . t h u h a e e i , n ee t p l t fe t s r c v r r a e t o n c o or n y we e p e e td I t o g t h t - t r c v r e t n f o l td r s s l e e t ewa ov o l t n p o lm f e i . I h d g o o e t ame t l e e i wa l f c i y t s l ep l i r b e o s y r op u n a v o u o r n t a o d e o o c n o i l e e t n p l ai nv l e c n mi a d s ca n f sa d a p i t au . b i c o
【 bt c] ehn m dtm nt n f ou o g es na t cvr oi cag A s atM cai ,e r i i l tn er ,t dr a er oe n x n e r s e ao op l i d e a d f re y fo e h
要 因素 。天 然水 中存 在 的有机 物 主要 是腐 殖酸 。腐
却难洗脱下来 , 从而阻碍了离子交换 反应 的进行 或 是在离子交换反应过程 中生成难溶的沉积物 , 并沉
2 1年第 3 00 期 总 第 19期 3
MF A . R lA o R r I , GC LP WE I U
冶 金 动 力
7 5
离子 交换树脂 污染及复苏处理
王 勇
( 鞍钢矿业公司齐大山铁矿热 电分厂, 辽宁鞍 山 144) 03 1
【 摘
要】 介绍了离子交换树脂机理、 污染程度的判断 、 复苏后达到标准 、 脂复苏剂的选 择及 实际应用效 树
一
阳离子交换树脂 主要 易受 到铁等高价金属离 子的污染 , 尤其是在 以井水作为水源的水处理系统 中更为严重。铁离子对树脂的污染有三种不同的情 况: 一是如果 铁离子 以胶态悬 浮体 出现 的话 , 它会
从过滤器 中漏过而污染 阳离子交换树脂 ; 二是铁 以 二价 铁 离 子 的形 式 交换 到 树脂 上 , 随后 被氧化 成 三 价铁 离 子 , 而 在树 脂 颗粒 上 形 成凝 胶状 的不 溶 于 从
水 的铁 的氢 氧 化 物 ; 三是 可 能 交换 到 树脂 上 的二价
我厂由于几年来定额指标偏低 , 遇到树脂污染 问题时 , 我们只能进行部分更换 , 过去我厂一般每
,
年更换装填树脂 3 0t ,仅树脂 的价值就达 5 多万 0 元 , 全部 更换 , 若 势必 给企 业 带 来严 重 的经 济 负担 。 这 样 就造 成 阴 、 阳床 新 旧树脂 混 在 一 起 , 而使 用 半 年以上的树脂就会受到水 中铁、 有机物 、 微生物 硅、 的污染 , 污染 的树脂交换容量下 降 , 而引起制水 进 酸、 、 碱 水耗的上升 , 并影 响新树脂作 用的发挥 , 产 生恶性循环。而树脂污染复苏处理是解决问题的有 效途 径 。
铁 离子在树脂 的交 换基 因上直接转化为三价铁离
子, 但在再生过程 中不能被完全除去而残留在树脂
中。
22 阴离 子交换 树 脂污 染机 理 .Βιβλιοθήκη 2 离子 交换树脂污染机理
树脂为多孑 网状立体结构 , L L 多孑 网眼是离子在 树脂内部扩散进出的通道 , 通道内壁具有众多的功 能基团 , 是离子交换反应的活性点 , 一旦此活性 点