矩阵与变换PPT教学课件
合集下载
高考数学一轮复习-矩阵与变换课件-新人教A

规律方法 已知 A=ac db,求特征值和特征向量,其步骤为: (1)令 f(λ)=( -λc-(a)λ-d-)b=(λ-a)(λ-d)-bc=0,求出特征 值 λ; (2)列方程组( -λc-x+a) (xλ--db)y=y=0,0; (3)赋值法求特征向量,一般取 x=1 或者 y=1,写出相应的 向量.
y)变成点 A′(13,5),试求 M 的逆矩阵及点 A 的坐标.
解 由 M=21 - -31,得|M|=1, 故 M-1=--11 32.
从
而
由
2 1
-3 -1
x y
=
13 5
得
x y
=
-1 -1
3 2
13 5
=
--11××1133++32××55=-23,故yx==-2,3,∴A(2,-3)为所求.
矩阵 M=2b a1所对应的变换将直线 x-y=1 变换成 x+2y =1,求 a,b 的值. 解 设点(x,y)是直线 x-y=1 上任意一点,在矩阵 M 的作 用下变成点(x′,y′),则2b a1xy=xy′′,
所以xy′′==b2xx++ya.y, 因为点(x′,y′),在直线 x+2y=1 上,所以
①对于特征值 λ1=-1, 解相应的线性方程组x2+ x+y=2y=0,0得一个非零解xy==-1,1. 因此,α=1-1是矩阵 A 的属于特征值 λ1=-1 的一个特征向量; ②对于特征值 λ2=3,解相应的线性方程组2-x-2x2+y=2y0=,0 得一个非零解xy==11., 因此,β=11是矩阵 A 的属于特征值 λ2=3 的一个特征向量.
因此,由 AX=B,同时左乘 A-1,有 A-1AX=A-1B=2-1-3213=-5 7. 即原方程组的解为yx==5-. 7,
矩阵的初等变换与初等矩阵52页PPT

行最简形矩阵再经过初等列变换,可化成标 准形.
第二章 矩阵的运算
14
例如,
1 0 1 0 4
A
0 0
1 0
1 0
0 1
3 3
0 0 0 0 0
c3 c4 c4c1c2
1 0
0 c 5 4 c 1 3 c 2 3 c 3 0
0 1 0 0
0 0 1 0
0 1 0 4 4
0 0 0
1 0 0
x1 1
B4
对应方程组为
x2
0
x 3 0
第二章 矩阵的运算
12
矩阵B3 和B4 都称为行阶梯形 . 矩阵 特点:
(1)、可划出 一条阶梯线,线 的下方全为零;
(2)、每个台 阶 只有一行,
1 0 1 0 4
0 0
1 0
1 0
0 1
3 3
A
0 0 0 0 0
台阶数即是非零行的行数,阶梯线的竖线后面 的第一个元素为非零元,即非零行的第一个非 零元.
A
r42r10
r2 r1
0 0
1 1 0
3 3 0
2 2 0
4 6 2
4 10 6
第二章 矩阵的运算
17
r3 r2
3 0
r4 r3
0 0
2 1 0 0
3 3 0 0
4 2 0 0
5 4 2 0
9
4 6 0
(行阶梯形矩 阵)
2 2×1
x1
2x2 x3 x2 2x3 0
1
3 1 x2 3x3 0
1
2 (B2 )
3
第二章 矩阵的运算
2
3 2
x1
第二章 矩阵的运算
14
例如,
1 0 1 0 4
A
0 0
1 0
1 0
0 1
3 3
0 0 0 0 0
c3 c4 c4c1c2
1 0
0 c 5 4 c 1 3 c 2 3 c 3 0
0 1 0 0
0 0 1 0
0 1 0 4 4
0 0 0
1 0 0
x1 1
B4
对应方程组为
x2
0
x 3 0
第二章 矩阵的运算
12
矩阵B3 和B4 都称为行阶梯形 . 矩阵 特点:
(1)、可划出 一条阶梯线,线 的下方全为零;
(2)、每个台 阶 只有一行,
1 0 1 0 4
0 0
1 0
1 0
0 1
3 3
A
0 0 0 0 0
台阶数即是非零行的行数,阶梯线的竖线后面 的第一个元素为非零元,即非零行的第一个非 零元.
A
r42r10
r2 r1
0 0
1 1 0
3 3 0
2 2 0
4 6 2
4 10 6
第二章 矩阵的运算
17
r3 r2
3 0
r4 r3
0 0
2 1 0 0
3 3 0 0
4 2 0 0
5 4 2 0
9
4 6 0
(行阶梯形矩 阵)
2 2×1
x1
2x2 x3 x2 2x3 0
1
3 1 x2 3x3 0
1
2 (B2 )
3
第二章 矩阵的运算
2
3 2
x1
0831矩阵的初等变换PPT课件

程 学
其中行最简形矩阵所对应的线性方程组是
院 最简单的 而且是最容易求解的.
③2
③2
2x1 x2 x3 x4 2
23xxx111
x2 3x2 6x2
2x3 x3 9x3
7
x4 x4 x4
4 2 9
增广矩阵的比较
B 4231
1 1
6 6
1 2
2 9
1 1 2 7
9442
1 1 2 1 4
B2
2 2 3
1 3
6
1 1
9
1 1 7
922
显然 把B的第3行乘以(1/2)即得B2.
矩阵A与B行等价 记作 A ~r B.
生 物
如果矩阵A经有限次初等列变换变成矩阵B 就称
医 学
矩阵A与B列等价 记作 A ~c B.
工
如果矩阵A经有限次初等变换变成矩阵B 就称矩
程
学 阵A与B等价 记作 A ~ B.
院 ❖等价关系的性质
(i)反身性 A~A
(ii)对称性 若A~B 则B~A
(iii)传递性 若A~B B~C 则A~C .
一个元素为非零元,即非零行的第一个非零
元.
第三章 矩阵的初等变换与线性方程组
行阶梯形矩阵:
•各非零行首非零元素分布在不同列
生
物 医
•当有零行时,零行在矩阵的最下端
学
工 程 学 院
3 2
2 0
5 1
131
1 4 9
0 5
0 0
3 1 2 5
0 1 6 7
0 0
5 0
3 2
4 1
0 2 6 0 0 3
物
线性代数第2章矩阵PPT课件

线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
高中数学:-矩阵与变换-(新人教A选修-)PPT课件

2 0
0
1
x y
2x
y
T:xyxy2yx
表示的几何变换为:纵坐标不变,横坐标变为原来的2倍.
8.二元一次方程组 ax by e 可以表示为
cx
dy f
系数矩阵
a
c
b x e
d
y
f
2021
9
2.2 几种常见的平面变换
1.恒等变换矩阵(单位矩阵)为E:
1
0
0
1
2.恒等变换是指对平面上任何一点(向量)或图形施以
s c io n s c s o is n x y x xs c io n s y yc so in s x y
2021
14
2.2 几种常见的平面变换
cos sin
sin
cos
0 1 0 1
1
0
,
-1
0
0 1x y 1 0y x
T:xyxyyx
2021
1 0
0 1 2
x y
x y 2
T
:
x y
x
y
x
y
2
1 0 2 0
0
2 , 0
1
2021
11
2.2 几种常见的平面变换
4.反射变换矩阵是指将平面图形变为关于定直线或定 点对称的平面图形的变换矩阵.
1 0x x
0
1y y
T:xyxyyx
1 0
10,10
矩阵
1
0
0
1
对应的变换,都把自己变为自己.
1 0 x x
x x x
0
1
y
y
T:yyy
线性变换与二阶矩阵PPT课件

二阶矩阵的逆
总结词
二阶矩阵的逆是一个特殊的矩阵,它与原矩阵相乘等于单位矩阵。
详细描述
二阶矩阵的逆是一个重要的概念,它是一个与原矩阵互为逆元的特殊矩阵。如果一个二阶矩阵与其逆矩阵相乘等 于单位矩阵,则这个逆矩阵是存在的。求逆矩阵的方法有多种,如高斯消元法、伴随矩阵法等。在某些情况下, 如行列式值为零时,矩阵可能没有逆矩阵。
平移矩阵与平移操作
• 平移矩阵:平移矩阵也是二阶矩阵的一种,用于 表示平移操作。其一般形式为
平移矩阵与平移操作
```
| 0 1 ty |
| 1 0 tx |
平移矩阵与平移操作
```
其中,tx和ty分别表示在x轴和y轴方
平移操作:平移操作是指通过平移矩阵
向上的平移距离。
对向量进行变换,使向量在指定的方向
03
线性变换与二阶矩阵的关系
线性变换的矩阵表示
线性变换是数学中的一种重要概念,它描述了一个向量空间 中的向量通过一个线性映射变为另一个向量空间的过程。在 矩阵表示中,线性变换可以用一个矩阵来表示,该矩阵的行 和列分别对应于输入和输出空间的基向量。
线性变换的矩阵表示具有一些重要的性质,例如矩阵乘法对 应于线性变换的复合,矩阵的转置对应于线性变换的共轭, 以及矩阵的逆对应于线性变换的逆。
二阶矩阵与线性变换的转换
二阶矩阵是数学中一种常见的矩阵类型,它由四个数字组成,可以用来表示一个 线性变换。通过选择适当的基向量,可以将一个线性变换转换为二阶矩阵,反之 亦然。
二阶矩阵与线性变换的转换关系是线性的,即对于任意两个线性变换A和B,以及任 意标量k,有kA=AkB=BkA。
二阶矩阵在几何变换中的应用
通过矩阵变换,可以改变向量的长度、方向和位置,从而实现二维空间中的几何变 换。
线性代数课件--05矩阵的初等变换与初等矩阵-PPT精品文档
课件 7
Go
由此可知,方程组的三种同解变换很自然地要引 入到矩阵上,导出矩阵矩阵的三种初等行变换. 同时,必须注意,原方程组能同解变换成什么样 的最简单方程组,就是相当于增广矩阵在初等行 变换下能变成什么样的最简单矩阵(行最简形矩 阵). 就本例来说,四个未知数划分为自由未知数 x 3 和 非自由未知数 x 1, x 2, x 4.
《线 性 代 数》
电子教案之五
课件
1
主要内容
第 矩阵的初等变换的概念; 五 阶梯形矩阵的概念; 讲
矩 阵 的 初 等 变 换 与 初 等 矩 阵 矩阵等价的概念; 三种初等矩阵,初等矩阵与初等变换的联系.
基本要求
熟悉掌握用初等行变换把矩阵化成行阶梯形矩 阵,知道矩阵等价的概念; 知道初等矩阵,了解初等矩阵与初等变换的联 系,掌握用初等变换求可逆矩阵的逆阵的方法.
1 2 3 4
Байду номын сангаас
( B2 )
x x 2 x x 4 , 1 2 3 4 2 12 x x x 0 , 2 3 4 2 x 6 , 3 52 4 4 32 x 3 . 4
课件
( B3 )
4
2
1 2
3 52 4 32 3
1 2
4 3 0 . 3
课件
6
说明
求解线性方程组可分为消元与回代两过程。消元 过程的实质,就是通过一系列方程组的同解变换 找到一个形式上较简单的方程组,然后进行回代, 这里方程组的同解变换是指下列三种变换: 对调两个方程; 以不为零的数乘某一个方程; 把一个方程的倍数加到另一个方程上. 从原方程组 ( 1 ) 同解变换到方程组( B 5 ) 的过程可见, 除去代表未知数的文字外,矩阵与方程组是一一 对应的.换言之,方程组有没有解,有什么样解完 全由各方程组的系数和常数项连同它们相互位置 所成数表,即增广矩阵所决定.而且,对方程组作 同解变换,相当于对它的增广矩阵作相应的变换.
Go
由此可知,方程组的三种同解变换很自然地要引 入到矩阵上,导出矩阵矩阵的三种初等行变换. 同时,必须注意,原方程组能同解变换成什么样 的最简单方程组,就是相当于增广矩阵在初等行 变换下能变成什么样的最简单矩阵(行最简形矩 阵). 就本例来说,四个未知数划分为自由未知数 x 3 和 非自由未知数 x 1, x 2, x 4.
《线 性 代 数》
电子教案之五
课件
1
主要内容
第 矩阵的初等变换的概念; 五 阶梯形矩阵的概念; 讲
矩 阵 的 初 等 变 换 与 初 等 矩 阵 矩阵等价的概念; 三种初等矩阵,初等矩阵与初等变换的联系.
基本要求
熟悉掌握用初等行变换把矩阵化成行阶梯形矩 阵,知道矩阵等价的概念; 知道初等矩阵,了解初等矩阵与初等变换的联 系,掌握用初等变换求可逆矩阵的逆阵的方法.
1 2 3 4
Байду номын сангаас
( B2 )
x x 2 x x 4 , 1 2 3 4 2 12 x x x 0 , 2 3 4 2 x 6 , 3 52 4 4 32 x 3 . 4
课件
( B3 )
4
2
1 2
3 52 4 32 3
1 2
4 3 0 . 3
课件
6
说明
求解线性方程组可分为消元与回代两过程。消元 过程的实质,就是通过一系列方程组的同解变换 找到一个形式上较简单的方程组,然后进行回代, 这里方程组的同解变换是指下列三种变换: 对调两个方程; 以不为零的数乘某一个方程; 把一个方程的倍数加到另一个方程上. 从原方程组 ( 1 ) 同解变换到方程组( B 5 ) 的过程可见, 除去代表未知数的文字外,矩阵与方程组是一一 对应的.换言之,方程组有没有解,有什么样解完 全由各方程组的系数和常数项连同它们相互位置 所成数表,即增广矩阵所决定.而且,对方程组作 同解变换,相当于对它的增广矩阵作相应的变换.
矩阵与变换
对应的矩阵叫做切变变换矩阵。
2.3 变换的复合与矩阵的乘法
2.3.1 矩阵乘法的概念 2.3.2 矩阵乘法的的简单性质
建构数学
规定:矩阵乘法的法则是:
a c
b e g d
f ae + bg af + bh ce + dg cf + dh h
一般地,对于平面上的任意一点(向量) ( x, y ), 若按照对应法则T,总能对应唯一的一个 平面点(向量) x, y ), 则称T 为一个变换,简记 ( 为 T: , y ) x, y ), (x ( 或 x x T: . y y
一般地,对于平面向量的变换T,如果变换 规则为 x x ax + by T: y , 坐标变换的形式 y cx + dy 那么,根据二阶矩阵与向量的乘法规则可以改写为 x x a b x T: y y 矩阵乘法的形式 y c d 的矩阵形式,反之亦然(a, b, c, d R ).
建构数学
设矩阵A=
f (l )
a b R,我们把行列式 c d ,l
l a
c
b
l d 称为A的特征多项式。
l 2 (a + d )l + ad bc
分析表明,如果l是矩阵A的特征值,则f (l)0 x0 此时,将l代入方程组(*),得到一组非零解 y0 x0 即 为矩阵A的属于l的一个特征向量. y0
切变变换
矩阵
1 k 0 1 把平面上的点P(x,
y)沿x轴方向
平移|ky|个单位: 当ky>0时,沿x轴正方向移动; 当ky<0时,沿x轴负方向移动; 当ky=0时,原地不动. 在此变换作用下,图形在x轴上的点是不动点。
线性变换及其矩阵课件
(4)设 0 表示V 中的零变换,则 T+0=T, T (T ) 0 .
(5)V 中线性变换的数乘运算满足: (kl)T k(lT ) , (k l)T kT lT ,
k(T1 T2 ) •线k性T变1 换及k其T矩2 阵.
•5
定义 设V 是数域 P 上的线性空间,T L(V ) ,
推论 在线性空间V 中,存在某个基使线性变换T 在该基
下的矩阵是对角阵的充要条件是矩阵 A 可对角化,其中 A 为T
在任一个基下的矩阵.
•线性变换及其矩阵
•12
例 4 设三维线性空间 R3 中的两个基1 (1,0,0) , 2 (0,1,0) , 3 (0,0,1) 与1 (1,1,1) ,2 (1,0,1) ,3 (0,1,1) ,
注意 性质3的逆命题不成立,即线性变换可能将线性无
关向量组变成线性相关向量组.例如,零变换把任何线性无
关向量组都变成线性相关向量组.
•线性变换及其矩阵
•3
1.3.2 线性变换的运算
L(V ) 表示数域 P 上线性空间V 上的一切线性变换的集合.
定义 设V 是数域 P 上的线性空间,Ti L(V ) ( i 1,2 ),
T (1 ) 1 ,T (2 ) 2 ,,T ( n ) n
证明 先证存在性.
n
任取 V ,且 ki i .定义V 的一个变换T : i 1
n
T ( ) ki i i 1
容易证明T 是V 上的线性变换.
取 i (i 1,2,, n) 时,得 T (1 ) 1 ,T (2 ) 2 ,,T ( n ) n
(1)如果存在 S L(V ) ,使得
TS ST I , 则称 S 为 T 的逆变换,记为T 1 .特别地,若线性变换T 是可逆的, 则 T 1 也是线性变换.
(5)V 中线性变换的数乘运算满足: (kl)T k(lT ) , (k l)T kT lT ,
k(T1 T2 ) •线k性T变1 换及k其T矩2 阵.
•5
定义 设V 是数域 P 上的线性空间,T L(V ) ,
推论 在线性空间V 中,存在某个基使线性变换T 在该基
下的矩阵是对角阵的充要条件是矩阵 A 可对角化,其中 A 为T
在任一个基下的矩阵.
•线性变换及其矩阵
•12
例 4 设三维线性空间 R3 中的两个基1 (1,0,0) , 2 (0,1,0) , 3 (0,0,1) 与1 (1,1,1) ,2 (1,0,1) ,3 (0,1,1) ,
注意 性质3的逆命题不成立,即线性变换可能将线性无
关向量组变成线性相关向量组.例如,零变换把任何线性无
关向量组都变成线性相关向量组.
•线性变换及其矩阵
•3
1.3.2 线性变换的运算
L(V ) 表示数域 P 上线性空间V 上的一切线性变换的集合.
定义 设V 是数域 P 上的线性空间,Ti L(V ) ( i 1,2 ),
T (1 ) 1 ,T (2 ) 2 ,,T ( n ) n
证明 先证存在性.
n
任取 V ,且 ki i .定义V 的一个变换T : i 1
n
T ( ) ki i i 1
容易证明T 是V 上的线性变换.
取 i (i 1,2,, n) 时,得 T (1 ) 1 ,T (2 ) 2 ,,T ( n ) n
(1)如果存在 S L(V ) ,使得
TS ST I , 则称 S 为 T 的逆变换,记为T 1 .特别地,若线性变换T 是可逆的, 则 T 1 也是线性变换.
线性代数课件-05矩阵的初等变换与初等矩阵
THANKS FOR WATCHING
感谢您的观看
练习题与答案
题目
设矩阵$A = begin{bmatrix} -2 & -3 -4 & -6 end{bmatrix}$,求$A^{-1}$。
答案
首先,对矩阵$A$进行初等行变换,将第一 行乘以-2加到第二行,得到矩阵$B = begin{bmatrix} -2 & -3 0 & -3 end{bmatrix}$。然后,对矩阵$B$进行初 等列变换,将第一列乘以-3加到第二列,得 到单位矩阵$I = begin{bmatrix} -2 & -3 0 & 1 end{bmatrix}$。因此,矩阵$A^{-1} = begin{bmatrix} -2 & -3 0 & 1 end{bmatrix}$。
具体操作为将第j列的每一个 元素都乘以k。
数学表达为$A_{.j} times k$ 。
用常数乘以矩阵的每一个元素
将矩阵的每一个元素都乘以常数k,记作$k times A$。 具体操作为将矩阵的每一个元素都乘以k。 数学表达为$k times A_{ij}$。
02 初等矩阵
单位矩阵
定义
单位矩阵是n阶方阵,其主对角线上的元素都是1,其余元素都是0。记作I 或E。
练习题与答案
题目
设矩阵$A = begin{bmatrix} 2 & -3 4 & -6 end{bmatrix}$,求$A^{-1}$。
VS
答案
首先,对矩阵$A$进行初等行变换,将第 二行乘以-2加到第一行,得到矩阵$B = begin{bmatrix} -2 & 3 4 & -6 end{bmatrix}$。然后,对矩阵$B$进行 初等列变换,将第一列乘以-4加到第二列 ,得到单位矩阵$I = begin{bmatrix} -2 & 3 0 & -6 end{bmatrix}$。因此,矩 阵$A^{-1} = begin{bmatrix} -2 & 3 0 & -6 end{bmatrix}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 逆变换与逆矩阵
几何变换方法
7.逆矩阵的求解
待定系数方法 公式法
行列式方法
d
b
8.矩阵ca
b
d
的逆矩阵为
.
ad
bc
c
ad
bc
a
ad bc ad bc
2.4 逆变换与逆矩阵
9.“先穿袜子后穿鞋”“先脱鞋子后脱袜子”解决了学生 可能 会出现的认知障碍.学生可以借助于此更好地理解公式 (AB)-1=B-1A-1. 10.新教材的螺旋上升体系随处可见,课本在本节中就通 过证明命题“已知A,B,C为二阶矩阵,且AB=AC,若矩 阵A存在逆矩阵,则B=C.”而既做到前后章节间的呼应, 又要求学生会用逆矩阵的知识解释二阶矩阵的乘法何时满 足消去率.
若AB AC,则不一定有B C
cos -sin n cosn -sinn
sin
cos
sinn
cosn
2.3 变换的复合与矩阵的乘法
6.有关转移矩阵.
假设某市的天气分为晴和阴两种状态,若今天晴,则明
天晴的概率为 3 ,阴的概率为 1 ,若今天阴则明天晴的
概率为 1 ,阴的4概率为 2 ,这些4概率可以通过观察某市
某公司负责从两个矿区向三个城市送煤: 从甲矿区向城市A,B,C送煤的量分别是200万吨、240
万吨、160万吨; 从乙矿区向城市A,B,C送煤的量分别是400万吨、360
万吨、820万吨。 城市A 城市B 城市C
甲矿区 200 240 160 乙矿区 400 360 820
2.1 二阶矩阵与平面向量
技术与内容的整合
(1)几何变换; (2)变换与矩阵的乘法;
(3)逆矩阵。 几何画板、Excel
具体内容解析
2.1 二阶矩阵与平面向量 2.2 几种常见的平面变换 2.3 变换的复合与矩阵的乘法 2.4 逆矩阵与逆变换 2.5 特征值与特征向量 2.6 矩阵的简单应用
2.1 二阶矩阵与平面向量
6.旋转变换矩阵是指将平面图形围绕原点逆时针旋转
θ的变换矩阵.其中θ称为旋转角,点O为旋转中心.
P(x, y)
r
r
P(x, y)
x r cos
y
r
sin
x r cos( ) r cos cos r sin sin x cos y sin
y
r
sin(
)
r
sin
cos
r cos
2.2 几种常见的平面变换
1.恒等变换矩阵(单位矩阵)为E:
1 0
0 1
2.恒等变换是指对平面上任何一点(向量)或图形施以
矩阵
1 0
0 1
对应的变换,都把自己变为自己.
1 0 x x
x x x
0
1
y
y
T
:
y
y
y
2.2 几种常见的平面变换
3.伸压变换矩阵是指将图形作沿x轴方向伸长或压缩, 或沿y轴方向伸长或压缩的变换矩阵.
具体内容解析
2.1 二阶矩阵与平面向量 2.2 几种常见的平面变换 2.3 变换的复合与矩阵的乘法 2.4 逆矩阵与逆变换 2.5 特征值与特征向量 2.6 矩阵的简单应用
2.4 逆变换与逆矩阵
建议课时:2课时
教育目标: 1.通过具体的图形变换,理解逆矩阵的意义并掌握二阶矩 阵存在逆矩阵的条件,通过具体的投影变换,说明它所对应 矩阵的逆矩阵不存在. 2.会证明逆矩阵的惟一性和(AB)-1=B-1A-1等简单性质. 3.会从几何变换的角度求出AB的逆矩阵. 4.会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去 率. 5.了解二阶行列式的定义,会用二阶行列式求逆矩阵和解 方程组.
伸压变换不是简单地把平面上的点(向量) “向下” 压,而是向x轴或y轴方向压缩.
1 0
0 1 2
x
y
x y 2
T
:
x y
x y
x
y
2
1 0 2 0
0
2 , 0
1
2.2 几种常见的平面变换
4.反射变换矩阵是指将平面图形变为关于定直线或定 点对称的平面图形的变换矩阵.
晴 M=
阴
3
4
1
4
1
3
2
3
2.3 变换的复合与矩阵的乘法
清晨的天气预报今天阴的概率为 1,则今天晴的概率为 1,
2
2
1
于是今天的天气可用N
2
来刻画,因此明天的天气可用
1
2
3 1 1 13
4
3
2
24
来刻画,即明天晴的概率为
13
,阴的概
1 2 1 11
cx
dy f
系数矩阵
a
c
b
d
x
y
e
f
具体内容解析
2.1 二阶矩阵与平面向量 2.2 几种常见的平面变换 2.3 变换的复合与矩阵的乘法 2.4 逆矩阵与逆变换 2.5 特征值与特征向量 2.6 矩阵的简单应用
2.2 几种常见的平面变换
建议课时:6课时 教育目标: 1.理解可以用矩阵表示平面中常见的几何变换. 2.掌握恒等 伸压 反射 旋转 投影 切变变换的矩阵表 示及其几何意义. 3.从几何上理解二阶矩阵对应的几何变换是线性变换,并 证明二阶矩阵对应的变换往往将直线变成直线.
2.4 逆变换与逆矩阵
教育目标: 6.能用变换与映射的观点认识解线性方程组解的含义. 7.会用系数矩阵的逆矩阵求解方程组. 8.会通过具体的系数矩阵,从几何上说明线性方程组解的 存在性和惟一性.
2.4 逆变换与逆矩阵
1.对于二阶矩阵A,B,若有AB=BA=E,则称A是可逆的,B称为 A的逆矩阵.
2.2 几种常见的平面变换
7.投影变换矩阵是指映将射平,但面不图是形一投一影映到射某.条直线(或 某个点)上的矩阵,相应的变换为投影变换.
1 1
0
0
xy 11
x0 0x
,
1 0
00, 10T
:00xy
x
y
x
x
2.2 几种常见的平面变换
8.切变变换矩阵是指类似于对纸牌实施的变换矩阵.
2.1 二阶矩阵与平面向量
7.强化学生对二阶矩阵与平面列向量乘法的几何意义 理解.使他们认识并理解矩阵是向量集合到向量集合 的映射,为后面学习几种常见的几何变换打下基础.
2 0
0
1
x y
2x
y
T
:
x
y
x
Hale Waihona Puke y2xy表示的几何变换为:纵坐标不变,横坐标变为原来的2倍.
8.二元一次方程组 ax by e 可以表示为
2.课文从“走过去”、“走回来”的生动形象的话语中 引入了逆矩阵和逆变换.这样安排让学生在轻松氛围中掌 握“找到回家的路”的本质是已知矩阵A,能否找到一个 矩阵B,使得连续进行的两次变换的结果与恒等变换的结 果相同.也便于学生更好的理解逆矩阵,从而为例1的顺 利解决打下基础.
3.例1的设计起着承上启下的作用,所举的几个例子也是 学生熟知的,学生可以从几何变换的角度借助直观找到答 案.所以,例1的目的在于帮助学生从几何的角度理解逆 矩阵的意义,并为后续学习积累丰富的感性认识.
难点
切变变换,逆变换(矩阵),特征值与特征向 量。
主要数学思想
(1)数学化思想; (2)数学建模; (3)数形结合的思想;(4)算法思想。
主线
本专题的教学思路
通过几何变换对几何图形的作用,直观认识矩
阵的意义和作用。
教学要点
从具体实例入手,突出矩阵的几何意义,遵循
从具体到一般,从直观到抽象的教学原则。
24
4 3 2 24
率为 11。 24
2.3 变换的复合与矩阵的乘法
3
后天的天气可用
4
1
4
1 13 161
3
24
288
来刻画,
2 11 127
3 24 288
即后天晴的概率为 161,阴的概率为127 。
288
288
7. 转移矩阵每列的元素的和应该为1,否则做乘法时, 容易出问题.
建议课时:2课时 教育目标: 1.了解矩阵产生背景,并会用矩阵形式表示一些实际问题. 2.了解矩阵的相关知识. 3.掌握二阶矩阵与平面列向量的乘法规则. 4.理解矩阵对应着向量集合到向量集合的映射.
2.1 二阶矩阵与平面向量
1.本专题研究的矩阵是二阶矩阵,对高阶矩阵只是要
求学生初步了解.二阶矩阵如:1 0 0 1 两行两列
3.矩阵乘法不满足交换率,这可能是学生第一次遇到乘 法不满足交换率的情况.此时,我们可以从几何变换角 度进一步明确乘法一般不满足交换率,在适当时候,有 些特殊几何变换(如两次连续旋转变换)满足交换率.
2.3 变换的复合与矩阵的乘法
4.要求学生从几何变换角度理解AB.
5.要求学生从几何变换角度理解矩阵乘法不满足销去 率.
2.4 逆变换与逆矩阵
4.既然有些矩阵存在逆矩阵,那么,什么样的矩阵存在 逆矩阵呢?课本从映射角度给出解释,让抽象的问题更 贴近学生实际.
5.矩阵ca
db的行列式为
a c
b d
ad
bc
,则如果
a c
b d
0
则矩阵 a b 存在逆矩阵.
c
d
几何解释
6.矩阵是否可逆的判断
代数解释
行列式 映射观点
2.在本章中点和向量不加区分.如:
x y
既可以表示点(x,
y),也可以表示以O(0,0)为起点, uuur
以P(x, y)为终点的向量OP。
2.1 二阶矩阵与平面向量