线性代数矩阵的初等变换与初等矩阵32页PPT
合集下载
《线性代数》3.2矩阵的初等变换与初等矩阵

r1 r3 1 0 r2 r3 0 1 再r3 2 0 0 2 A 4 1 3
0 0 1
1 2 1
2 1 1 4 2 1 1 1 1 3 2 1 1 1 2
x1 BE3 1, 2 y1 x2 y2
x2 y2
0 1 0 x3 1 0 0 y3 0 0 1
x1 x3 y1 y3
1 3 0 a1 a2 E3 1, 2 3 A 0 1 0 b1 b2 0 0 1 c c 1 2 a1 3b1 a2 3b2 b1 b2 c c 1 2
ri krj ci kc j
初等行变换和初等列变换统称为初等变换.
2.等价 定义3.2.2
若矩阵A 经过有限次的初等行变换变成 B,
r 则称矩阵A与矩阵B 行等价,记为 A B
若矩阵 A 经过有限次的初等列变换变成B,
则称矩阵A与矩阵B 列等价,记为 A
c
B
若矩阵 A经过有限次的初等变换变成B, 则称矩阵A与矩阵B 等价,记为 A B
ET i, j E i, j ;ET i k E i k ; E i j k E j i k .
T
定理3.2.1 对于一个m×n 矩阵 A进行一次初等行变换, 相当于在A的左边乘以相应的 m阶初等矩阵;对A施行 一次初等列变换,相当于在A的右边乘以相应的 n阶
初等矩阵. 验证 设初等矩阵为三阶的.
0 1 0 E3 1, 2 1 0 0 0 0 1 x1 B y1
同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10
第
j
行
1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1
西北工业大学《线性代数》课件-第三章 矩阵的初等变换

1 0 0 0
1 0 0 0
c2
1 4
1
1
0
0
c2 c1
0
1
0 0
3 2 0 0
1 2 0 0
列 最 简 形
定理秩3.为3 r的 矩阵m A,n 经过有限次初等变
换,总可化为如下等价标准形
O(
Er
mr
)r
Or(nr ) O(mr )(nr
)
mn
即有
A
Er O
O O
推论1 设A是n阶方阵,A满秩 A En
24
x1 x1
x2 2 x2
3x3 5x3
1 4
① ②
x1
x3 3 ③
②
2
①
2
x1
③
1①
2
x2
4x2
1 2
x2
3x3 1
x3 2
1 2
x3
5 2
①′ ②′ ③′
2 x1 x2 3x3 1 ①″
③'
1 8
②'
4 x2 x3 2 ②″
3 8
x3
9 4
③″
x1 x2
则称r为A的秩. 记做rank A r,或者 r(A) r.
规定:零矩阵的秩为0,即 rankO 0 .
➢ 矩阵秩的含义 A的所有r+1阶子式都为0
1 1 2
A
2
2
4
3
6
DAr的2 所?有r+2阶子式也都为0 1 1 2 3
A的所有大于r+2阶的子式也都为0
数r=rankA是矩阵A中子式不为0子式的最高阶数
0 0 1 1 3
A有一个三阶子式
线性代数课件 矩阵的初等变换

第i列
第 j列
11
(2) 以数 k 0 乘某行或某列,得初等倍乘矩阵。
以数k 0乘单位矩阵的第i行( ri k ),得初等 矩阵E ( i ( k )).
1 1 E ( i ( k )) k 1 1
标准形矩阵
特点:左上角为一个单 位矩阵,其他位置上的元素全 都为 0 .
9
二、初等矩阵
矩阵的初等变换是矩阵的一种基本运算,应 用广泛. 定义 由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵. 1 0 0 r 4r 1 0 4 1 3 例如 E 0 1 0 ~ 0 1 0 0 0 1 0 0 1 三种初等变换对应着三种初等方阵. 1. 对调两行或两列; 2. 以数 k 0 乘某行或某列; 3. 以数 k 乘某行(列)加到另一行(列)上去.
3
定义3 如果矩阵 A 经有限次初等变换变成 矩阵 B, 就称矩阵 A 与 B 等价,记作A ~ B.
等价关系的性质:
(1)自反性 A A;
(2)对称性 若 A B , 则 B A; (3)传递性 若 A B, B C, 则 A C.
4
行阶梯形矩阵:
特点: (1)可划出一 条阶梯线,线的 下方全为零; (2)每个台阶 只有一行,
对应的元素上去(第 j 行的 k 倍加到第 i 定义矩阵的初等列变换(所用记号是 把“r”换成“c”).
定义2 矩阵的初等列变换与初等行变换统称为 初等变换.
初等变换的逆变换仍为初等变换, 且变换类型 相同.
ri rj 逆变换 ri rj ; 1 ri k 逆变换 ri ( ) 或 ri k; k ri krj 逆变换 ri ( k )rj 或 ri krj .
《矩阵的初等变换》课件

《矩阵的初等变换》PPT 课件
矩阵的初等变换,简要介绍了初等行变换、初等列变换、矩阵的行等价与列 等价、初等矩阵的定义与性质、矩阵的初等变换与线性方程组、应用举例: 高斯消元法,最后总结结论与要点。
初等行变换
1
加倍某行
将某行的所有元素乘以非零数k.
2
行交换
交换两行的位置.
3
行加减
将一行的倍数加到另一行或将一行的倍数加到另一行的倍数上.
2 性质
初等矩阵的逆矩阵仍是初等矩阵,初等矩阵 的乘积仍是初等矩阵.
矩阵的初等变换与线性方程组系数矩阵可以通过矩
增广矩阵
2
阵的初等变换进行简化.
线性方程组对应的增广矩阵可以通过矩
阵的初等变换进行简化.
3
解的表示
矩阵的初等变换可以标记线性方程组的 解的个数和性质.
应用举例:高斯消元法
步骤
通过一系列初等变换将线性方程组化为阶梯形或简 化阶梯形,进而求解方程组的解.
示例
通过高斯消元法解决实际问题,如计算机图形学中 的求交问题.
结论及要点
结论
矩阵的初等变换能够简化矩阵的形式,标记线性方程组的性质和解的个数.
要点
掌握初等行变换和初等列变换的定义、性质和应用,理解矩阵的初等变换与线性方程组的关 系.
初等列变换
加倍某列
将某列的所有元素乘以非零数k.
列交换
交换两列的位置.
列加减
将一列的倍数加到另一列或将一列的倍数加到另一列的倍数上.
矩阵的行等价与列等价
行等价
两个矩阵之间可以通过一系列初等行变换互相转化.
列等价
两个矩阵之间可以通过一系列初等列变换互相转化.
初等矩阵的定义与性质
线性代数课件-05矩阵的初等变换与初等矩阵

THANKS FOR WATCHING
感谢您的观看
练习题与答案
题目
设矩阵$A = begin{bmatrix} -2 & -3 -4 & -6 end{bmatrix}$,求$A^{-1}$。
答案
首先,对矩阵$A$进行初等行变换,将第一 行乘以-2加到第二行,得到矩阵$B = begin{bmatrix} -2 & -3 0 & -3 end{bmatrix}$。然后,对矩阵$B$进行初 等列变换,将第一列乘以-3加到第二列,得 到单位矩阵$I = begin{bmatrix} -2 & -3 0 & 1 end{bmatrix}$。因此,矩阵$A^{-1} = begin{bmatrix} -2 & -3 0 & 1 end{bmatrix}$。
具体操作为将第j列的每一个 元素都乘以k。
数学表达为$A_{.j} times k$ 。
用常数乘以矩阵的每一个元素
将矩阵的每一个元素都乘以常数k,记作$k times A$。 具体操作为将矩阵的每一个元素都乘以k。 数学表达为$k times A_{ij}$。
02 初等矩阵
单位矩阵
定义
单位矩阵是n阶方阵,其主对角线上的元素都是1,其余元素都是0。记作I 或E。
练习题与答案
题目
设矩阵$A = begin{bmatrix} 2 & -3 4 & -6 end{bmatrix}$,求$A^{-1}$。
VS
答案
首先,对矩阵$A$进行初等行变换,将第 二行乘以-2加到第一行,得到矩阵$B = begin{bmatrix} -2 & 3 4 & -6 end{bmatrix}$。然后,对矩阵$B$进行 初等列变换,将第一列乘以-4加到第二列 ,得到单位矩阵$I = begin{bmatrix} -2 & 3 0 & -6 end{bmatrix}$。因此,矩 阵$A^{-1} = begin{bmatrix} -2 & 3 0 & -6 end{bmatrix}$。
大学课程大一数学线性代数上册7.矩阵的初等变换课件

aMin caMi1
cai 2 M
L
amn am1 am2 L
类似可证 AEi (c) 相当于给 A 的第 i 列乘以非零数 c:
a1n
M
cain M
amn
8
第i列
第i行
1
O
1
k
O
1
O
第j列
a11 a12 L
M
M
ai1 M
ai 2 M
L
a
j1
aj2
L
M M
1 am1 am2 L
第i列 第j列
或看作是将 I 的第 j 列 的 k 倍加到第 i 列.
6
3) 交换单位矩阵 E 的第 i 行与第 j 行(或交换 E 的第 i 列 与第 j 列):
1 Ei, j
1 0 1
1
第i列
1
1
0
1
1
第j列
第i行 第j行
7
➢ 如果矩阵 A 经过一次初等变换变为 B, 那么 A 与 B 之间 究竟有何种关系?
1
Ei, j ()1 Ei, j ().
1
1
第i行
第j行
第j列
1
14
1 Ei, j
a11 a12
a11 a12
例如 a21
a22
r2
a21
a22
,
a31 a32
a31 a32
消法变换:将一行的 倍加到另一行
ri+rj rj
a11 a12
a11 a31 a12 a32
例如
a21
a22
r3 r1
a21
a22
线性代数:矩阵的初等变换和初等矩阵

a12 3a22
a13 3a23
a11 a21
a12 a22
a13 a23
2 0 0
0 1 0
0 0 1
2a11 2a12
a12 a22
a13 a23
10
a11 a21
a12 a22
a13 a23
c1 2
2a11 2a12
a13 a23
a12 a22
3、以数k 0乘某行(列)加到另一行(列)上去
矩阵的初等变换和 初等矩阵
1
一、矩阵的初等变换初等矩阵
定义 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j两行,记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上
相当于对矩阵 A 施行第一种初等列变换: 把 A 的第 i 列与第 j 列对调(ci c j ).
7
2、以数 k 0 乘某行或某列
以数k 0乘单位矩阵的第i行(ri k),得初等 矩阵E (i (k )).
1
1
E(i(k))
k
第
i
行
1
1
8
以 Em (i(k)) 左乘矩阵A,
25
三、初等变换法求逆矩阵
当A可逆时,由推论4,A P1P2 Pl,有 Pl1Pl11P11 A E, 及 Pl1Pl11P11E A1,
Pl1Pl11P11 A E
Pl1Pl11P11 A Pl1Pl11P11E E A1
即对 n 2n 矩阵 ( A E) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1.