《抽屉原理》公开课PPT课件

合集下载

《抽屉原理》(PPT课件

《抽屉原理》(PPT课件
算法分析
在算法分析中,抽屉原理可以用于分析算法的时间复杂度和空间复杂度,以及确 定算法的最坏情况下的性能。
在日常生活中的应用
资源分配
在资源分配问题中,可以将资源视为抽屉,将待分配的物品 或任务视为物体,根据抽屉原理得出最优的分配方案。
排队理论
在排队理论中,抽屉原理可以用于分析排队系统的性能和稳 定性,以及确定最优的排队策略。
有限制的抽屉原理的证明
有限制的抽屉原理是指
如果 n+1 个物体要放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n),那么至少有一个容器包含两个或以上的物体。
证明方法
假设 n+1 个物体放入 n 个容器中,且每个容器最多只能容纳 k 个物体(k < n)。如果存在一个容器只包含一个物体,那么我们可以将这个物体放入另一个 容器中,从而证明了至少有一个容器包含两个或以上的物体。
在数论中的应用
质数分布
根据抽屉原理,如果将自然数按 照质数和非质数进行分类,则质 数在自然数中的比例趋近于 $frac{1}{2}$。
同余方程
在解同余方程时,可以将模数视 为抽屉,方程的解为物体,根据 抽屉原理得出解的存在性和个数 。
在计算机科学中的应用
数据结构
在计算机科学中,抽屉原理可以应用于各种数据结构的设计和分析,如数组、链 表、哈希表等。
现代研究
现代数学研究中对抽屉原理进行了深入的探讨和研究,不断拓展其 应用范围和理论体系。
02
抽屉原理的证明特殊形式,其基本思想是
如果 n 个物体要放入 n-1 个容器中,且每个容器至少有一个物体,则至少有一个容器包含两个或以上的物体。
证明方法
假设 n 个物体放入 n-1 个容器中,且每个容器至少有一个物体。如果存在一个容器只包含一个物体,那么我们 可以将这个物体放入另一个容器中,从而证明了至少有一个容器包含两个或以上的物体。

新课标版人教六年级数学下册《抽屉原理课件》课件

新课标版人教六年级数学下册《抽屉原理课件》课件

03
抽屉原理的实例
生活中的实例
公交车的座位
假设一辆公交车有4个座位,那么 不管有多少乘客,总会有至少5个 人的时候,至少有一个人会没有 座位。
生日问题
在一年中有365天,如果有366人 ,那么至少有一天是两个人同一 天生日。
数学中的实例
整除问题
如果一个数除以3余1,除以5余2, 除以7余3,那么这个数最小是多少 ?这就是抽屉原理的一个应用。
新课标版人教六年级数学下 册《抽屉原理》课件
contents
目录
• 抽屉原理简介 • 抽屉原理的证明 • 抽屉原理的实例 • 抽屉原理的练习题及解析 • 抽屉原理的扩展知识
01
抽屉原理简介
抽屉原理的定义
抽屉原理,也称为鸽巢原理,是一种组合数学的基本原理,它指出如果n个物体 要放到m个容器中去,且n>m,则至少有一个容器包含两个或两个以上的物体。
证明方法三:数学归纳法
要点一
总结词
通过数学归纳法来证明抽屉原理。
要点二
详细描述
首先验证基础情况(即n=1和n=2时)结论成立。然后假 设当n=k时结论成立,即存在k个物品放入k个抽屉中,至 少有一个抽屉中放入了多个物品。当n=k+1时,增加一个 新的物品和抽屉,由于至少有一个抽屉中已经放入了多个 物品,因此可以将新物品放入该抽屉中,从而证明了当 n=k+1时结论也成立。最后通过数学归纳法得出结论对任 意正整数n都成立。
这个原理可以用数学语言描述为:设集合A包含n个元素,集合B包含m个元素( n>m),如果对于集合A中的任意元素x,都有x属于集合B,则集合A中至少存 在一个元素y,y属于B且y不等于x。
抽屉原理的应用场景
01

《抽屉原理》公开课PPT课件

《抽屉原理》公开课PPT课件

1、如果把6个苹果放入5个抽屉中,至 少有几个放到同一个抽屉里? (2个) 2、如果把7个苹果放入6个抽屉中,至 少有几个放到同一个抽屉里呢? (2个)
3、如果把100个苹果放入99个抽屉中, 至少有几个放到同一个抽屉里呢? (2个)
你有什么发现?
1、如果把6个苹果放入4个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢?
( 367名学生 )→ 待分的物体 366天 ( ) → 抽屉
2. 任意的( 13 )名学生中,至少有2名学生 的生肖一样。为什么? ( ( 13名学生 12生肖 )→ )→ 待分的物体 抽屉
咱们班共40人,至少 有几人是同一属相?
• 请判断下面的说法对吗?为什么? 1、我们班的13位同学中,至少有2位同学的 生日在同一个月。 2、我校五、六年级共369人,至少有2人的生 日在同一天。
2、如果把8个苹果放入5个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢?
你发现了什么规律?
只要物体数量是抽屉数 量的1倍多,总有一个抽屉 里 至少放进2个物体。
铅笔/支 5
笔筒/个 列出的算式 2 5÷2=2……1
至少数 2+1=3
7
8 19
2
3 4
பைடு நூலகம்
7÷2=3……1
8÷3=2……2 19÷4=4……3
3+1=4
2+1=3 4+1=5
20
5
20÷5=4
4
求至少数是否存在着规律呢? 我发现了(
有余数时,至少数=商+1 没余数时,至少数=商
)。
三、深入研究 验证模型
看看有几种 放法?通过 观察,你发 现了什么?
如果一共有9 7本书会怎样呢? 本书会怎样呢? 如果一共有

《抽屉原理例》课件

《抽屉原理例》课件
在计算机科学中,离散概率论也是非常重要的一环。抽屉原理在离散概率论中也有着广泛 的应用,例如在计算概率模型、设计和分析算法的正确性等方面。
计算几何
计算几何是计算机科学中的一个重要分支,它涉及到图形处理、计算机图形学等领域。抽 屉原理在计算几何中也有着重要的应用,例如在处理几何形状的交、并、差等运算时,抽 屉原理可以帮助我们理解和分析问题。
03
抽屉原理的实例
生活中的实例
鸽巢原理
如果$n$个鸽子飞进$m$个鸽巢 中,且$n > m$,那么至少有一 个鸽巢里有两只或以上的鸽子。
生日悖论
在不到33人的房间里,存在至少 两个人生日相同的概率大于50% 。
数学中的实例
整数划分问题
给定整数$n$,求证存在至少两个正 整数,它们的和等于$n$。
与组合数学的联系
抽屉原理是组合数学中的基本原理之 一,与其他组合数学原理存在密切联 系。
与概率论的关系
与其他数学分支的交叉
抽屉原理可以应用于其他数学分支中 ,如代数、几何、离散概率等。
在概率论中,抽屉原理常被用于证明 一些概率性质和结论。
06
抽屉原理的应用前景和 展望
在数学领域的应用前景
01 02
从整数到实数的推广
在整数上成立的抽屉原理可以推广到实数上。例如,如果无穷多的实数被放入有限个区间中,那么至少有一个区间包含无穷 多的实数。这个结论被称为巴拿赫定理。
另一个推广是将抽屉原理应用到测度理论中。在测度论中,一个集合的测度可以被视为“体积”,而集合的子集可以被视为 “物品”。在这种情况下,抽屉原理表明:如果无穷多的子集被放入有限个测度不为零的集合中,那么至少有一个集合包含 无穷多的子集。
组合数学
抽屉原理是组合数学中的基础原理之一,在计数、排列组合等领域有广 泛的应用。通过抽屉原理,可以解决一些经典的数学问题,如鸽巢原理 问题。

《抽屉原理》公开课PPT课件

《抽屉原理》公开课PPT课件

原理三: 把M个物体放进N个抽屉,且满足M÷N=n……k(其中M、 N、n、k都为正整数),则至少有一个抽屉里至少要放进n+1 个物体
4 人是同一属相? 习题2.பைடு நூலகம்意找40人,至少有_____
二、一展身手
2 只兔 1.把19只小兔子关在18个笼子里,至少有____ 子要关在同一个笼子里?
2.把98个苹果放到10个抽屉中, 无论怎么放, 我们 一定能找到一个含苹果最多的抽屉,它里面至少含 有 10 个苹果。 3.数学课外活动小组38名学生,他们中年龄最大的 15岁,最小的13岁,试证:总可以找到两名学生是 同年同月出生的.
神奇现象:
1.任意给出5个整数,求证:从中必能选出3个,使它们的和 能被3整除. 2.在任意6个人的集会上,求证:总有3个人互相认识或者总 有3个人互不认识. 3.围着一张可以转动的圆桌,均匀地放8把椅子,在桌上对着 椅子放有8人的名片,8人入座后,发现谁都没有对着自己的 名片;求证:适当地转动桌子,最少能使两人对上自己的名 片.
一、动手做一做
例1.把4个苹果放入3个抽屉中有几种方法? (4,0,0) (3,1,0) (2,2,0) (2,1,1)
总结:不管怎么放总有一个抽屉里至少放进2个苹果 例2.把5个苹果放进4个抽屉里面,总有一个抽屉至少多少 个苹果?
原理一: 把N+1个物件放进N个抽屉里,则其中必有一个抽屉里 面至少有两个物件
习题1.任意的13 个人中,至少有2名学生的生肖一样。 为什么?
2个 例3.把11个苹果放进9个抽屉里面,总有一个抽屉至少___ 苹果?
原理二: 把M个物件放进N(M>N)个抽屉里,则其中必有一个抽屉 里面至少有两个物件
例4.把12个苹果放进5个抽屉里面,总有一个抽屉至少 ______ 3 个苹果? 12÷5=2……2

《抽屉原理》第-课PPT课件

《抽屉原理》第-课PPT课件

有限制条件的抽屉原理证明
有限制条件的抽屉原理是指在某些特 定条件下,抽屉原理仍然成立。例如 ,当容器的形状、大小、质量等因素 受到限制时,抽屉原理仍然适用。
证明方法:根据具体条件,通过数学 推导和逻辑推理,证明在满足特定条 件下,抽屉原理仍然成立。
抽屉原理的推广证明
抽屉原理的推广是指将抽屉原理应用到更广泛的领域和问题中,例如集合论、概 率论、组合数学等。
有n个人和n把椅子(n>3),将它们 随机就座。求证:至少有两把椅子被 两个人同时坐。
5
有100枚硬币,将它们放入10个盒子 里,每个盒子至少放10枚硬币。求证: 至少有一个盒子里放了10枚硬币。
05 总结与思考
CHAPTER
抽屉原理的重要性和意义
数学基础
抽屉原理是组合数学中的 基础原理,对于理解许多 数学概念和证明许多数学 定理具有重要意义。
《抽屉原理》第-课ppt课件
目录
CONTENTS
• 抽屉原理简介 • 抽屉原理的应用 • 抽屉原理的证明 • 抽屉原理的练习题 • 总结与思考
01 抽屉原理简介
CHAPTER
抽屉原理的定义
抽屉原理
如果n+1个物体要放入n个抽屉中 ,那么至少有一个抽屉包含两个 或两个以上的物体。
数学表达
如果将m个物体放入n个抽屉中 (m>n),那么至少有一个抽屉包 含多于一个物体。
进阶练习题
01
02
03
总结词
考察较复杂情况下的抽屉 原理应用
3
有100个苹果和91个抽屉, 要将苹果放入抽屉中,至 少有一个抽屉里放了多少 个苹果?
4
有1000只鸽子飞过天空, 它们要飞进100个鸽笼里, 至少有一个鸽笼里飞进了 几只鸽子?

(完整)抽屉原理精品PPT资料精品PPT资料

(完整)抽屉原理精品PPT资料精品PPT资料

但他们也刚愎自用,目中无人,得罪了齐国的宰相晏婴。
问题3:把 11 本书放进 4 个抽屉中,不管怎么放, 总有一个抽屉至少放进2个物品。
公孙接、田开疆都觉得自己的功劳确实不如古冶子大,感到羞愧难当,赶忙让出桃子。
2、把摆的结果用喜欢的方式记录下来。
总有一个抽屉至少放进( )本书? 但他们也刚愎自用,目中无人,得罪了齐国的宰相晏婴。
书本数 抽屉数 商 余数 至少数
并且觉得自己功劳不如人家,却抢着要吃桃子,实在丢人,是好汉就没有脸再活下去,于是都拔剑自刎了。
第三关:咱们班上有58个同学,至少有( )人在
三名勇士都认为自己的功劳很大,应该单独吃一个桃子。
总有一个笔筒里 公孙接、田开疆都觉得自己的功劳确实不如古冶子大,感到羞愧难当,赶忙让出桃子。
问题3:把 11 本书放进 4 个抽屉中,不管怎么放, 总有一个抽屉至少放进( )本书?
问题1:把 7 本书放进 2 个抽屉中,不管怎么放,
总有一个抽屉至少放进(抽屉中,不管怎么放,
总有一个抽屉至少放进( )本书? 一幅扑克,拿走大、小王后还有52张牌,请你任意抽出其中的5张牌,至少有( )张同花色,为什么?
7÷5=1……2
至少数=1+1=2(只)
第一关:13个同学坐5张椅子,至少有( 3 )个同
学坐在同一张椅子上。
第二关:34个小朋友要进4间屋子,至少有( 9 )个
小朋友要进同一间屋子。
第三关:咱们班上有58个同学,至少有( 5 )人在
同一个月出生。
第四关:从街上人群中任意找来20个人,可以确定,
至少有( 2 )个人属相相同。
最先是由19世纪的德国数学家
6
5
2
把4枝笔放入3个笔筒里,有几种不同的放法?

抽屉原理课件ppt

抽屉原理课件ppt
20÷12=1(个)……8(个)
1+1=2(个)
拓展训练:
从扑克牌中取出两张王牌,在剩下的52张扑克 牌任意抽牌。 (1)从中抽出18张牌,至少有几张是同花色?
18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。 (2)从中抽出20张牌,至少有几张数字相同?
20÷13=1(张)… …7(张) 1+1=2(张) 答:至少有2张数字相同。
想一想:
把5支笔放在4个笔筒里, 还是不管怎么放,总有一个笔 筒里至少放进了几支笔吗? 为什么? 把6支笔放在5个笔筒里呢? 把10支笔放在9个笔筒里呢?
做一做: 7只鸽子飞回5个鸽舍,至少有几只鸽子
要飞进同一个鸽舍?为什么?
把7只鸽子平均飞进5个鸽舍里,每个鸽舍飞 进1只鸽子,5个鸽舍最多飞进5只鸽子,还剩下 2只鸽子还要飞进不同的鸽舍里。所以,无论怎 么飞,至少有2只鸽子要飞进同一个笼子里。
例2、 把7本书放进3个抽屉中,
不管怎么放,总有一个抽屉至 少放进几本书。为什么?
如果8本书呢?
抽屉原理:
当物体数比抽屉数(多)时, 我们尽可能的把物体平均分,不管 怎么放,总有一个抽屉至少放进 (商+1)个物体。
灵活运用,解决问题:
1、34个小朋友要住进4间屋子,至少有( 9 )
个小朋友要住进同一间屋子。
34÷4=8(个)……2(个)
8+1=9(个)
2、13个同学坐5张椅子,至少有(3 )个
同学坐在同一张椅子上。 13÷5=2(个)……3(个)
2+1=3(个)
3、咱们班上有58个同学,至少有 ( 5 )人在同一个月出生。
58÷12=4(人)……10(人)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、利用模型 解决问题
把13只小兔子关在5个笼 子里,至少有多少只兔 子要关在同一个笼子里?
智慧城堡
加油啊!综合应用:Fra bibliotek1、34个小朋友要进4间屋子,至少有( 9)个小朋
友要进同一间屋子。
3 2、13个同学坐5张椅子,至少有( )个同学坐在
同一张椅子上。
8 3、新兵训练,战士小王6枪命中了43环,战士小王
三、深入研究 验证模型
看看有几种 放法?通过 观察,你发 现了什么?
如如果果一一共共有有97本本书书会会怎怎样样呢呢??
计算绝招 至少数=商数+1
“ 抽屉原理”又称“鸽笼原理”,最先 是由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
二、逐步深入 建立模型
★ 如如如果果果把把把1516780枝0枝枝0枝铅0铅铅枝铅笔笔笔铅笔放放放笔放入入入放入4567个入9个个个杯9杯杯9杯子子9子子个中呢呢呢杯,???子会呢是? 什么结果呢?
如果铅笔的数量不是比杯子的数量多1呢? 这个结论还成立吗?
思考:把把把579枝枝枝铅铅铅笔笔笔放放放入入入45个个3杯个杯子子杯中中子呢呢,?总? 有 一个杯子里至少有几支铅笔?
咱们班共38人,至少 有几人是同一属相?
把3本书放进两个抽屉,有几种放法?试试看。
方法一
(3,0)
方法二
(2,1)
(人教新课标)六年级数学下册
一、动手操作 感知模型
小组合作探究:
把4枝笔放入3个杯子中有几种方法?
至少有2枝放 进同一个笔筒。
如果我们先让每个笔筒里放1枝笔,最
多放3枝。剩下的1枝还要放进其中的一
个笔筒。所以不管怎么放,至少有2枝 笔放进同一个笔筒里。
总有一枪至少打中( )环。
5 4、咱们班上有58个同学,至少有( )人在同一个
月出生。
2 5、从街上人群中任意找来20个人,可以确定,至少
有( )个人属相相同。
从扑克牌中取出两张王牌,在剩下的52张扑克 牌任意抽牌。 (1)从中抽出18张牌,至少有几张是同花色?
18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。 (2)从中抽出20张牌,至少有几张数字相同?
20÷13=1(张)… …7(张) 1+1=2(张) 答:至少有2张数字相同。
考考你
1. 任意的(367 )名学生中,至少有2名学生 在同一天过生日。为什么?
( 367名学生 )→ 待分的物体 ( 366天 ) → 抽屉
2. 任意的( 13 )名学生中,至少有2名学生 的生肖一样。为什么?
( 13名学生 )→ 待分的物体 ( 12生肖 ) → 抽屉
相关文档
最新文档