化工原理课程设计-筛板塔设计

合集下载

课程设计指导书-筛板塔

课程设计指导书-筛板塔

河南城建学院化学化工系《化工原理》课程设计任务书指导教师:李霞学生姓名:班级学号:2011年12月一、《化工原理》课程设计目的、任务1. 培养学生查阅资料选用公式和搜索数据的能力2. 培养学生在填料吸收塔设计时,既考虑技术上的先进性和可行性,又考虑经济上的合理性并注意操作时的劳动条件和环境保护的正确设计思想。

3. 培养学生能迅速准确的对填料塔进行工艺设计计算的能力4. 培养学生能用简洁的文字清晰的图表来表达自己设计思想的能力二、设计任务乙醇-水连续精馏筛板塔的设计三、设计条件1、设计一连续筛板精馏塔以分离乙醇和水,具体工艺参数如下:原料乙醇含量:质量分率= (30+0.5*学号)%,原料处理量:质量流量= (10 – 0.1*学号)t/h [单号](10 + 0.1*学号)t/h [双号]产品要求:摩尔分率:x D = 0.83, x W= 0.10 [单号] ;x D = 0.80, x W= 0.05 [双号]2、工艺操作条件:常压精馏,塔顶全凝,塔底间接加热,泡点进料,泡点回流,R =(1.2~2)R min。

四、《化工原理》课程设计主要内容1、化工单元设备设计(1)方案设计;(2)物料衡算与热量衡算;(3)主要设备工艺计算;(4)辅助设备的选择;2、制图包括工艺流程图、设备图。

3、编写设计说明书五、《化工原理》课程设计说明书的要求本课程的设计任务要求学生做设计说明书一份、图纸两张。

各部分的具体要求如下:1、设计说明书内容与顺序(1)标题页:用粗体字写明设计题目;(2)设计任务书;(3)绪论:设计任务的意义、设计结果简述;(4)装置流程图及其说明;(5)装置的工艺计算:物料余热量衡算,主要设备尺寸计算;(6)主要设备的材料选择;(7)结束语:对本设计的总结、收获、改进和建议等;(8)文献一览。

说明书必须书写工整、图文清晰。

说明书中所有公式必须写明编号,所有符号必须注明意义和单位。

2、设计图纸要求:(1)流程图本设计要求画“生产装置工艺流程图”一张,图纸大小为A2。

化工原理课程设计筛板塔

化工原理课程设计筛板塔

化工原理课程设计 筛板塔一、课程目标知识目标:1. 学生能理解筛板塔的基本结构和工作原理;2. 学生能掌握筛板塔在化工过程中的应用,包括物料分离、纯化等;3. 学生能运用化工原理,分析筛板塔的流体力学特性和操作参数的影响;4. 学生了解筛板塔的设计与优化原则。

技能目标:1. 学生具备运用化工软件对筛板塔进行模拟和计算的能力;2. 学生能够根据实际工况,设计并优化筛板塔的工艺参数;3. 学生能够运用实验技能,对筛板塔的性能进行测试和评价。

情感态度价值观目标:1. 学生培养对化工原理课程的兴趣,激发学习热情;2. 学生树立正确的工程观念,认识到化工技术在国民经济发展中的重要作用;3. 学生通过团队协作,培养沟通、交流和解决问题的能力;4. 学生在学习过程中,树立安全意识,关注环境保护。

课程性质:本课程为化工原理课程的实践环节,以筛板塔为研究对象,结合理论知识和实际操作,培养学生的工程实践能力。

学生特点:学生已具备一定的化工基础知识和实验技能,具有较强的学习能力和动手能力。

教学要求:结合筛板塔的工程背景,注重理论与实践相结合,提高学生的实际操作能力和工程素养。

在教学过程中,注重启发式教学,引导学生主动探究和解决问题。

通过课程目标分解,确保学生达到预期的学习成果,为后续的教学设计和评估提供依据。

二、教学内容1. 筛板塔的基本结构:介绍筛板塔的塔体、筛板、降液管、进料管、出料管等组成部分及其作用;参考教材章节:第三章第二节“塔设备及其结构”2. 筛板塔的工作原理:阐述气液两相在筛板塔内的流动和传质过程;参考教材章节:第三章第三节“塔内流体流动与传质过程”3. 筛板塔的应用:分析筛板塔在不同化工过程中的应用,如精馏、吸收、萃取等;参考教材章节:第三章第四节“塔设备的应用”4. 筛板塔的流体力学特性:讲解筛板塔的压降、液泛、漏液等流体力学现象及其影响因素;参考教材章节:第四章第一节“塔设备的流体力学特性”5. 筛板塔的设计与优化:介绍筛板塔的设计原则、计算方法和优化策略;参考教材章节:第四章第二节“塔设备的设计与优化”6. 筛板塔的实验操作:组织学生进行筛板塔性能测试实验,掌握实验操作方法和数据处理;参考教材章节:实验教程“筛板塔性能测试实验”教学内容安排和进度:本教学内容分为6个部分,共计12课时。

化工原理_课程设计_精馏塔_(筛板式)

化工原理_课程设计_精馏塔_(筛板式)

化工原理课程设计任务书设计题目:乙醇——水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)设计条件: 1. 常压操作,P=1 atm(绝压)。

2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1——2.0)R min。

设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精流塔的设计说明书,包括设计结果汇总和对自己设计的评价。

指导教师:时间1设计任务1.1 任务1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒精生产现场)1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。

2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。

因沿程热损失,进精馏塔时原料液温度降为90℃。

3.塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为40吨/日。

4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分率)。

5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶采用全凝器,泡点回流。

6.操作回流比R=(1.1—2.0)R。

min1.1.3 设计任务1.完成该精馏塔工艺设计,包括辅助设备及进出口接管的计算和选型。

2.画出带控制点的工艺流程示意图,t-x-y相平衡图,塔板负荷性能图,筛孔布置图以及塔的工艺条件图。

3.写出该精馏塔的设计说明书,包括设计结果汇总和对自己设计的评价。

1.2 设计方案论证及确定1.2.1 生产时日设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。

化工原理课程设计筛板和浮阀精馏塔设计

化工原理课程设计筛板和浮阀精馏塔设计

设计评价标准与方法
设计合理性评价
评价设计是否满足工艺要求、操作条件是否合理、设备选型是否恰当等。
经济性评价
评估设计的投资成本、运行费用、经济效益等,以判断设计的经济性。
创新性评价
评价设计是否具有创新性,是否采用了新的设计理念、方法或技术等。
实用性评价
评价设计在实际应用中的可行性、可操作性和可维护性等。
环保法规及标准
遵守国家环保法规
在项目设计、建设和运行过程中,必须严格遵守国家相关 环保法规,确保各项环保指标达标排放。
01
污染物排放标准
根据国家和地方污染物排放标准,对废 气、废水、固废等污染物进行严格控制 和处理,确保达标排放。
02
03
环保验收
在项目竣工后,必须按照国家和地方 环保要求进行环保验收,确保项目符 合环保要求后方可投入运行。
培养学生运用化工原 理知识解决实际问题 的能力。
设计任务及要求
设计一座筛板或浮阀精馏 塔,用于分离特定的二元 或多元混合物。
确定精馏塔的主要操作参 数,如进料量、进料浓度 、回流比、塔顶和塔底产 品浓度等。
进行塔板水力学计算,确 定塔板间距、堰高、降液 管面积等参数。
完成精馏塔的详细设计, 包括塔体结构、塔板布置 、接管和阀门配置等。
化工原理课程设计筛板 和浮阀精馏塔设计
contents
目录
• 课程设计概述 • 筛板精馏塔设计 • 浮阀精馏塔设计 • 精馏过程模拟与优化 • 设备选型与计算 • 安全与环保考虑 • 课程设计成果展示与评价
01
课程设计概述
目的与意义
掌握筛板和浮阀精馏 塔的基本原理和设计 方法。
提高学生的工程设计 能力和实践操作能力 。

(完整版)化工原理筛板精馏塔毕业课程设计

(完整版)化工原理筛板精馏塔毕业课程设计

吉林化工学院化工原理课程设计题目筛板精馏塔分离苯—甲苯工艺设计教学院化工与材料工程学院专业班级材化 0801学生姓名学生学号指导教师张福胜2010年6 月 14日目录摘要.................................................... 一绪论.................................................... 二第一章流程及流程说明 (1)第二章精馏塔工艺的设计 (2)2.1产品浓度的计算 (2)2.1.1原料液及塔顶、塔底产品的摩尔分率 (2)2.1.2原料液及塔顶、塔底产品的平均摩尔质量 22.2最小回流比的确定 (2)2.3物料衡算 32.4精馏段和提馏段操作线方程............................... 错误!未定义书签。

2.4.1求精馏塔的气液相负荷 3 2.4.2求操作线方程 32.5精馏塔理论塔板数及理论加料位置 32.6实际板数的计算32.7实际塔板数及实际加料位置3第三章精馏塔主要工艺尺寸的设计计算 (5)3.1物性数据计算 (5)3.2精馏塔主要工艺尺寸的计算 (9)3.3筛板流体力学验算 (13)3.4塔板负荷性能图 (16)第四章热量衡算 (21)4.1塔顶气体上升的焓 (21)4.2回流液的焓 (21)4.3塔顶馏出液的焓 (21)4.4冷凝器消耗焓 (21)4.5进料的焓 (21)4.6塔底残液的焓 (21)4.7再沸器的焓 (22)第五章塔的附属设备的计算 (23)5.1塔顶冷凝器设计计算 (23)5.2泵的选型 (24)5.4塔总体高度的设计 (25)结论 (27)致谢 (28)参考文献 (29)主要符号说明30摘要在此筛板精馏塔分离苯-甲苯的设计中,给定的条件为:进料量为塔顶组成为:进料馏出液组成为:塔釜组成:加料热状态:q=1塔顶操作压强: (表压)首先根据精馏塔的物料衡算,求得D和W,通过图解法确定最小回流比;再根据操作线方程,运用图解法求得精馏塔理论板数,确定温度奥康奈尔公式求的板效率,继而求得实际板数,确定加料位置。

《筛板塔设计》课件

《筛板塔设计》课件
中期筛板塔
现代筛板塔在设计和制造方面更加注重高效、环保和节能,如采用新型填料、优化塔内件结构等措施。
现代筛板塔
02
CHAPTER
筛板塔设计原理
筛板塔是一种基于筛孔分散原理的塔式分离设备,通过液体在筛板上的分散和回流,实现气液两相的传质和分离。
筛板塔的筛板上有许多小孔,当气体通过这些小孔时,液体会被分散成小液滴,形成气液混合物。在塔内,气液混合物经过多次回流和传质,最终实现气液的分离。
筛板塔的特点
用于各种化学反应和分离过程,如蒸馏、吸收、解吸等。
化工领域
石油领域
环保领域
用于石油和天然气的分离、提纯和精制过程。
用于废气和废水的处理,如脱硫、脱硝、除尘等。
03
02
01
早期的筛板塔结构较为简单,主要采用木制或钢制筛板,传质效率较低。
早期筛板塔
随着材料科学和制造技术的发展,中期出现了金属丝网、烧结金属等新型筛板材料,提高了传质效率。
优化热力系统
合理利用热能,降低热量损失,提高能源利用率。
降低材料成本
选用优质材料和合理的结构设计,降低制造成本。
06
CHAPTER
筛板塔设计案例分析
筛板塔应用场景
根据废水处理的要求,选择具有耐磨、耐腐蚀性能的筛板材料,优化塔内件的结构,提高处理效率和可靠性。
设计特点
应用效果
筛板塔在工业废水处理中表现出色,有效去除了悬浮物和杂质,提高了水质,为环保事业做出了贡献。
某环保企业需要处理工业废水中的悬浮物和杂质。
THANKS
感谢您的观看。
密封结构设计
进行合理的密封结构设计,确保密封性能可靠、持久,同时方便维护和更换。
04
CHAPTER

化工原理课程设计——筛板精馏塔设计

化工原理课程设计——筛板精馏塔设计

溢流装置(10×20cm)
② 降液管形式和底隙 降液管:弓形、圆形。 降液管截面积:由Af /AT 确定; 底隙高度 h0:通常在 40 ~ 60 mm。
③ 溢流堰(出口堰) 作用:维持塔板上一定液层,使液体均匀横向流过。 型式:平直堰、溢流辅堰、三角形齿堰及栅栏堰。
0
本设计采用:
采用弓形降液管,平堰及平型受液盘,l w =0.7D=0.56 m
L xfi Li
回流比
表2 塔板计算结果
理论板数
板效率
实际板数
理论加料位置
实际加料位置
4. 塔板结构设计
包括板间距的初估,塔径的计算,塔板溢流 形式的确定,板上清液高度、堰长、堰高的初 估与计算,降液管的选型及系列参数的计算, 塔板布置和筛孔/阀孔的布置等,最后是水力 学校核和负荷性能图。
进料流量F, kmol/h
塔顶产品流量D, kmol/h
塔釜残液流量W, kmol/h
进料组成,xF(摩尔分数) 塔顶产品组成,xD(摩尔分数) 塔釜残液组成,xW(摩尔分数)
3.4 实际板数及进料位置的确定
1. 确定最小回流比Rmin
Rmi n xyD q xyqq00..69 880.706.38070.76
径、实际板数及加料板位置。 2. 精馏塔塔板工艺设计内容:塔板结构设计、流体力学计算、
负荷性能图、工艺尺寸装配图。 3. 换热器设计:确定冷热流体流动方式,根据换热面积初选换
热器;核算总传热系数;计算实际传热面积;选定换热器型号, 计算管程、壳程压降。
说明: 1. 写出详细计算步骤,并注明选用数据的来源。 2. 每项设计结束后,列出计算结果明细表。 3. 设计说明书要求字迹工整,按规范装订成册。

化工原理课程设计--苯-甲苯连续精馏筛板塔的设计

化工原理课程设计--苯-甲苯连续精馏筛板塔的设计

化工原理课程设计--苯-甲苯连续精馏筛板塔的设计湖南科技大学化工原理课程设计——苯-甲苯连续精馏筛板塔的设计专业班级:应用化学二班姓名:李钰冰学号: 1006020221指导老师:杨明平、仇明华、刘和秀2012年12月24日~2013年1月4日10级应用化学专业板式精馏塔设计任务书一、设计题目:苯——甲苯连续精馏塔的设计二、设计任务及操作条件1 、进精馏塔料液含苯38% (质量),其余为甲苯2 、产品中苯含量不得少于96% (质量)3 、釜液中苯含量不得高于4% (质量)4 、生产能力:5.5 吨/ 小时5 、操作条件:(1) 精馏塔顶压强:4.5kPa (表压)(2) 进料热状态:自选(3) 加热蒸气:600kPa (表压)的饱和蒸气(4) 回流比:自选(5) 单板压降:≯0.7kPa三、设备型式:筛板塔四、厂址:湘潭地区(年平均水温20 ℃)五、设计内容(设计基础数据参见设计指导书)1 、设计方案的确定及流程说明2 、塔的工艺计算3 、塔和塔板主要工艺尺寸的计算⑴塔板、塔径及塔板结构尺寸的确定⑵塔板的流体力学验算⑶塔板的负荷性能图4 、设计结果概要或设计一览表5 、换热器的选型与计算6 、生产工艺流程图及精馏塔的工艺条件图及筛板布置图7 、对本设计的评述或有关问题的分析讨论六、按要求编制相应的设计说明书七、主要参考资料化工原理、化工原理课程设计指导书、化工工艺设计手册、物理化学手册八、指导老师组织人:刘和秀指导老师:杨明平、仇明华、刘和秀九、时间2012.12.24----2013.1.4前言化工生产中所处理的原料、中间产物、粗产品几乎都是有若干组分组成的混合物,而且其中大部分都是均相物质。

生产中为了满足储存、运输、加工和使用的需求,时常需要将这些混合物分离为较纯净或纯态的物质。

芳香族化合物是化工生产中的重要的材料,可用来制备染料、树脂、农药、合成药物、合成橡胶,合成纤维和洗涤等等;苯与甲苯都是重要的化工原料,苯- 甲苯混合溶液的分离技术一直是一个重要的课题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3600 Vm
LS
LM Lm
3600 Lm
V—塔内气体摩尔流量 kmol/h
Vs—塔内气体体积流量 m 3 s
MVm 、 MLm —分别为精馏段气相平均分子量、液相平均分子量
Vm 、 Lm —分别为精馏段气相平均密度、液相平均密度 kg m3
(2)、提馏段气液负荷计算(同上)
5、热量衡算
总热量衡算 QV QW Q L QB QF QR
板间距 HT= 0.30~0.45m b4.最小回流比 Rmin b5.精馏塔理论塔板数 N
采用逐板计算法在计算机上求得。
b6.精馏塔实际塔板数 Ne 全塔效率采用 O'connell 关联式计算。
(c).总费用和适宜回流比 总费用 CT=CD+CS+CW 元/年 总费用最低所对应的回流比作为最佳回流比,然
4.编写设计说明书 设计说明书应根据设计指导思想阐明设计特点,列出设
计主要技术数据,对有关工艺流程和设备选型作出技术上和 经济上的论证和评价。应按设计程序列出计算公式和计算结 果;对所选用的物性数据和使用的经验公式图表应注明来 历。
设计说明书应附有带控制点工艺流程图,塔板结构简图 和计算机程序框图和原程序。
三. 设计任务 完成精馏塔工艺设计,精馏设备设计,有关附
属设备的设计和选用,绘制带控制点工艺流程图, 塔板结构简图,编制设计说明书。
四. 设计内容 1. 工艺设计 (1) 选择工艺流程和工艺条件 a. 加料方式 b. 加料状态 c. 塔顶蒸汽冷凝方式 d. 塔釜加热方式 e. 塔顶塔底产品的出料状态 塔顶产品由塔顶产品冷却器冷却至常温。
分别画出精馏段和提馏段的负荷性能图。 (4) 有关具体机械结构和塔体附件的选定 ① 接管规格:
根据流量和流体的性质,选取经验流速,选择标准管道。 ② 全塔高度:
包括上、下封头,裙座高度。
3.附属设备设计和选用 (1) 加料泵选型,加料管规格选型
加料泵以每天工作 3 小时计(每班打 1 小时)。 大致估计一下加料管路上的管件和阀门。 (2) 高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产 10 天计算确定。 (3) 换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选 型。 (4) 塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝 器进行选型设计。
QC 、 QD —分别为塔顶冷凝器带走热量、塔顶产品带走热量
二.塔和塔板主要工艺尺寸的设计
它包括板间距的初估,塔径的计算,塔板液流型式的确定,板上 清液高度、堰长、堰高的初估与计算,降液管的选型及系列参数的计 算,塔板布置和筛板的筛孔和开孔率,最后是水力校核和负荷性能图。
1、板间距 H T 的初估
(ii)当塔顶为分凝器时, X 0 X d K
先求出分凝器内与 Xd 成相平衡的 X0,再由操 作线方程以 X0 计算得出 Y1,然后由相平衡方程 由 Y1 计算出 X1,如此交替地使用操作线方程和 相平衡关系逐板往下计算,直到规定的塔底组成为止,得到理论板数和 加料位置。
(3)加料板位置的确定
由上式算出的塔径按部颁发塔盘标准圆整,圆整后的塔径除了必
须满足板间距与塔径的关系外,还须进行空塔气速校核。
C20 exp[4.531 1.6562Z 5.5496Z 2 6.4695Z 3 (0.474675
0.079Z 1.39Z 2 1.3212Z 3 ) ln Lv (0.07291 0.088307Z
是根据汽液相平衡方程
y
1
x
1
q 线方程 y q x xF q 1 q 1
联立求得交点
xq . yq , 然 后 代 入 方 程
Rmin
xD yq
yq xq
其中利用 t~x~y 关系,并借助二次样条插入的方法,求得塔顶塔
底的温度,进而求取全塔的平均温度,从而可以根据全塔平均温度求取
全塔平均相对挥发度。
板间距的大小与液泛和雾沫夹带有密切的关系。板距取大些,塔 可允许气流以较高的速度通过,对完成一定生产任务,塔径可较小; 反之,所需塔径就要增大些。板间距取得大,还对塔板效率、操作弹 性及安装检修有利。但板间距增大以后,会增加塔身总高度,增加金 属耗量,增加塔基、支座等的负荷,从而又会增加全塔的造价。初选 板间距时可参考下表所列的推荐值。
表 1 板间距与塔径关系
塔径 D, m
0.3~0.5 0.5~0.8 0.8~1.6 1.6~2.0
塔板 间 距 HT mm 200~300 250~350 350~450 450~600
2、塔径 D 的初估与圆整
根据流量公式计算塔径,即 D 4V S
u
式 中 Vs—塔 内 的 气 相 流 量 ,m 3 s
L —塔顶与塔底的平均温度下的液相粘度, mpa s
ห้องสมุดไป่ตู้
对于多组分的液相粘度: L
xi Li
L i —液态组分 i 的粘度, mpa s
x i — 液相中组分 i 的摩尔分率
实际理论板数
N实
N理 ET
4、塔的气液负荷计算
(1)、精馏段气液负荷计算
V R 1D
L RD
VS
VMVm
0.49123Z 2 0.43196Z 3 ) (ln Lv )2 ]
Z HT hL
Lv
L ( L V V
) 0.5
3、液流型式的选择
液体在板上的流动型式主要有,U 型流、单流型、双流型和阶梯流
型等,其中常选择的则为单流型和双流型。(图见附录 1)
塔径
表 2、选择液流形式参考表 流体 流 量 m3/h
长 lW 一般取为(0.6 ~0.8)D;双溢流型塔板,两侧堰长取为(0.5 ~
0.7)D,其中 D 为塔径
(2).堰上液层高度hOW :
堰上液层高度应适宜,太小则堰上的液体均布差,太大则塔板压
(2) 精馏工艺计算: a. 物料衡算确定各物料流量和组成。 b. 经济核算确定适宜的回流比 根据生产经常费和设备投资费综合核算最经济原
则,尽量使用计算机进行最优化计算,确定适宜回流
比。
(a). 生产经常费 包括再沸器水蒸汽费,塔顶冷凝器,产品冷却器冷
却水费。
a1. 水蒸汽费用 CS 采用饱和水蒸汽压力:2.5kgf/cm2(表压) 按 1 吨煤可获得 6 吨水蒸汽计。 1 吨煤单价 250 元。
求出精馏段操作线和提馏段操作线的交点 xq 、yq ,并以xq 为分
界线,当交替使用操作线方程和相平衡关系逐板往下计算到
xn xq 且 xn1 xq 时,就以第 n 块板为进料板。
(4)实际板数的确定
板效率:利用奥康奈尔的经验公式
E T 0 .4 9 L 0 .2 4 5 其中:
—塔顶与塔底的平均温度下的相对挥发度
板数和实际板数 (4)塔的气液负荷计算 (5)热量衡算
塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板计算
时均须转换成 kmol/h,在塔板设计时,气液流量又须用 m3 s 表示。因 此要注意不同的场合应使用不同的流量单位。
1、 全 塔 物 料 衡 算 :
F DW
FxF DxD WxW
塔顶产品易挥发组分回收率 为:
u —空 塔 气 速 , m/s u 0.6 ~ 0.8 umax
umax C
L V V
umax —最 大 空 塔 气 速 , m/s
L、V — 分 别 为 液 相 与 气 相 密 度 , k g m 3
负荷系数
C
C
20
20
0 .2
(C20 值 可 由 S m i t h 关 联 图 求 取 )
后四舍五入近似到小数点后一位,作为适宜回流比。
回流比的参考搜索范围:(1.1~2.0)Rmin。 在用计算机计算的同时,应有一组手算结果。
a. 精馏塔实际塔板数 用近似后的适宜回流比在计算机上通过逐板计
算得到全塔理论塔板数以及精馏段和提馏段各自的
理论塔板数。
然后根据全塔效率 ET,求得全塔、精馏段、提馏 段的实际塔板数,确定加料板位置。
4000
11 以下 110 以下 110~230 230~350
5000
11 以下 110 以下 110~250 250~400
6000
11 以下
110~250 250~450
应用 用于较低 一般应用 高 液 气 比 极高 液 气 极
场合
液气比
和大型塔板 大型塔板
4、溢流堰(出口堰)的设计
(1).堰长lW : 依据溢流型式及液体负荷决定堰长,单溢流型塔板堰
DX D ( FX F )
式中:F、D、W 分别为进料、塔顶产品、塔底馏出液的摩尔流量
(kmol/h), X F 、 X D 、 XW 分别为进料、塔顶产品、塔底馏出液组成
的摩尔分率
2、 确 定 最 小 回 流 比
一般是先求出最小回流比,然后根据
R 1.1 2 Rmin ,确定回流比
Rmin
xn1 yn (利用操作线方程)
yn xn (利用相平衡关系)
(2)塔顶冷凝器的类型
(i)当塔顶为全凝器时, y1 X d
则自第一块塔板下降的液相组成 X1 与 Y1 成相平衡,故可应用相平衡方程由 Y1 计算出 X1, 自第二块塔板上升蒸汽组成 Y2与 X1满足操作线 方程,由操作线方程以 X1 计算得出 Y2.
式中: R —回流
Rmin —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L L D xn
D LD
xD
相关文档
最新文档