第五章土的抗剪强度

合集下载

土力学-土的抗剪强度

土力学-土的抗剪强度

液化时的冒砂现象
台中地震(1999)砂土液化造成的破坏
五、黏性土的抗剪强度
1. 主要特点和影响因素
(1)黏性土的抗剪强度主要来源于内摩擦力和黏聚力。 (2)峰值强度:超固结土>正常固结土>重塑土。残余强度:相同(与土 的受力历史无关)。 无论是黏性土还是砂土,残余强度对应于土体发生较大的剪切变形时, 此时,对黏性土:土粒间的联结破坏,黏聚力丧失,故其强度线通过原点; 对砂土:咬合作用丧失,以摩擦作用为主,内摩擦角降低。
1. 砂土抗剪强度的特点及主要影响因素
(1)颗粒较粗,相互之间为机械作用而无黏聚力:c =0。内摩擦 角 =29o~42o(大于休止角)。 颗粒表面的滑动摩擦 (2)砂土抗剪强度的主要来源于
剪切方向
颗粒之间的咬合作用 剪切过程中颗粒的重新排列
颗粒移动方向 摩擦
剪切面
咬合
剪切方向
(3)主要影响因素:颗粒矿物成分、形状和级配、沉积条件等。
土压力
滑移面 挡土墙
(3)挡土结构:确定墙后土体处于极 限状态时,作用在挡土结构上的土压力。
二、土的抗剪强度shear strength和破坏理论
1. 直接剪切试验和Coulomb定律
(1)直接剪切试验 取多个土样,分别施加不同竖向应力,剪切至破坏。结果表明, 破坏时的剪应力f与法向应力 呈线性关系。
σ
( 1f )i
n pi2 ( pi )2
土样数
c
1 i pi sin cos n n
pi
( 1f )i ( 3f )i 2
i
( 1f )i ( 3f )i 2
土样破坏时的大、小主应力
四、砂土的抗剪强度

土力学_李广信_土的抗剪强度

土力学_李广信_土的抗剪强度

(1 + 3)/2 = 常数:圆心保持不 变
1,3

x
z 2



x
2
z
2


2 xz
根据应力状态计算出 大小主应力σ1、σ3
也可比较圆的直径

c O
判断破坏可能性

由σ1、σ3计算 与比较
< =

>
安全状态 极限平衡状态 不可能状态
sin
1 3
8000
11
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
平面示意图
5520m
2210m
2264m
滑滑坡坡堆堆积积区体
2340m
2165m
12
§5 土的抗剪强度 §5.1 土体破坏与强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
1,3
x
z
2



x
z
2
2


2 xz
根据应力状态计算出 大小主应力σ1、σ3
σ1<σ1f 安全状态 σ1=σ1f 极限平衡状态 σ1>σ1f 不可能状态
由σ3计算σ1f 比较σ1与σ1f
1 f


3
tan2

45


2


2c

tan

45


- zx
z
+
材料力学
xz x
正应力
拉为正 压为负
土力学

土力学第五章土的抗剪强度

土力学第五章土的抗剪强度
第五章 土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基

▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验

土的抗剪强度

土的抗剪强度

压力 u超 ,今为简化计算过程,给出两组数据如下表,试用有效应力法和总应力法确定 C'、ϕ '
和 C、ϕ 。
σ1 (kPa)
145
223
σ 3 (kPa)
60
100
u超 (kPa)
41
59
5-13 某干砂试样进行直剪试验,当σ = 300kPa 时,测得τ f = 200kPa ,求: (1)干砂的内摩擦角ϕ ;
应变(%) 0.0
2.5
5.0
7.5
10.0 15.0 20.0
σ 3 ( kPa ) 300
300
300
300
300
300
300
σ1 ( kPa ) 300
500
720
920
1050 1200 1250
μ ( kPa ) 120
150
150
120
80
10
-60
5-26 在钻孔中取样,加工成原状饱和粘土试样进行无侧限压缩试验,测得抗压强度为141kPa ,破 坏时 A = −0.2 ,有效应力剪切强度参数 C' = 7kPa 和ϕ ' = 20° ,试求:
5-11 一 粘 土 样 进 行 固 结 不 排 水 剪 切 试 验 , 施 加 围 压 σ 3 = 200kPa , 试 件 破 坏 时 主 应 力 差 σ1 − σ 3 = 280kPa ,如果破坏面与水平夹角 α = 57° ,试求内摩擦角及破坏面上的法向应力
和剪应力。
5-12 某饱和土样作三轴固结不排水剪切试验,测得剪切破坏时大主应力σ1 ,小主应力σ 3 ,和超孔
效应力和孔隙应力系数A,B;(2)若加荷前地基土为正常固结土,有效内摩擦角φ’=30°,静止 侧压力系数K0=0.7,问加荷后M点是否会发生剪切破坏?

土力学第五章 土的抗剪强度

土力学第五章 土的抗剪强度
3 (ds sin ) ( sin ) ds ( cos ) ds 0

m
1
3
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
( 1 3 ) ( 1 3 ) cos 2
1
2
3


A

sin
1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
c cot
3
( 3 1 ) / 2
1
D

17
5.2 土的抗剪强度
四、土的极限平衡条件
sin 1 ( 1 3 ) 2 1 ( 1 3 ) c cot 2
解 (5) 1 500, 3 200时 作图法

300 200 100
(kPa)
33.690

200 500

(kPa)
应力圆位于抗剪强度线下,不破坏
24
5.2 土的抗剪强度
四、土的极限平衡条件
例 题 解 (5) 1 500, 3 200时
解法1、极限平衡状态 计算法
1 3 tan2 (45 / 2) 2c tan(45 / 2)
5.1 5.2 5.3 5.4 5.5 5.6 5.7
概述 土的抗剪强度 土的剪切试验 砂土和粘土的静剪切特性 砂土的动剪切特性 粘土的时间效应特性 原位剪切特性
1
5.1 概述
土的抗剪强度:土体抵抗剪切破坏的最大能力
主应力线
最大剪应力线
2
5.1 概述
附加应力 z 等值线
附加应力 xz 等值线

第五章土的抗剪强度

第五章土的抗剪强度
2000年西藏易贡巨型滑坡
龙观嘴 黄崖沟
乌江
2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
平面示意图
5520m
2210m
2264m
滑坡堆积体 滑坡堆积区
2340m 2165m
2. 各种类型的滑坡
滑裂面
边坡
3. 地基的破坏
粘土地基上的某谷仓地基破坏
3. 地基的破坏
p
滑裂面
地基
5.1.1 莫尔—库仑破坏准则 总应力法
0 0 199tan38 155kPa
由于τ=162> τf=155,说明A点破坏。
判断A点方法二:σ1f σ 3tan 2 (45 0 ) 2ctan(45 0 )
0
σ1>σ1f
σ3>σ1f
504.45kPa σ1f σ1 530 土体破坏 σ1<σ1f 土体不破坏
2
3 1 tan2 45o


2
强度包络线
极限平衡应力状态: 有一对面上的应力状态达到 = f
土的强度包线:所有达到极限平衡状态的莫尔圆的公切线。

f

【例题】已知某土体单元的大主应力σ1=380kPa,小主 应力σ3=210kPa。通过试验测得土的抗剪强度指标 c=20kPa,υ=19°,问该单元土体处于什么状态? 解 (1)直接用τ与τf的关系来判别
轴向加压杆 顶帽 有机玻璃罩
试 样
1
压力室
3 3
3
透水石 排水管
阀门
3
1
橡皮膜 压力水
三轴试验的试验类型
1.不固结不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速 施工测定cu 、u 接近不固结不排水剪切条件

第5章 土的抗剪强度


圆心坐标[1/2(1 +3 ),0]
2
应力圆半径r=1/2(1-3 )
O 3 1/2(1 +3 ) 1
圆上一点、体上
一面、转角2倍
3. 应力莫尔圆
A(, )
2
O 3 1/2(1 +3 ) 1
3
1
莫尔圆可以表示土体中一点的应力状态,莫尔圆
圆周上各点的坐标就表示该点在相应平面上的正
应力和剪应力。
滑裂面
边坡
2. 各种类型的滑坡
崩塌
平移滑动
旋转滑动
流滑
3. 地基的破坏
土体抗剪强度不足造 成的楼房倒塌。
p
滑裂面
地基
工程中土体的破坏类型
土压力 边坡稳定 地基承载力
挡土结构物破坏 各种类型的滑坡 地基的破坏
核心 强度理论
12
材料力学关于强度理论的知识
材料在空间应力状态下破坏的规律,即强度理论。
土的强度包线:
所有达到极限平衡状态的莫尔园的公切线。
f
▪ 莫尔应力圆与库仑强度线相切的应力状态作为土的破坏准则 ▪ (目前判别土体所处状态的最常用准则)
本构关系广义上是指自然界中某作用与由该作用产生 的效应两者之间的关系。如电学中电压与电流的关系, 水力学中水力梯度与渗流之间的关系,热学中温差与热 流之间的关系等。
描述岩土的本构关系的数学表达式称为岩土的本构方 程,或岩土的本构模型。如弹性模型、弹塑性模型、粘 弹塑性模型、内蕴时间塑性模型和损伤模型等。
二、土的抗剪强度的构成
➢ 摩擦力包括土颗粒之间的表面摩擦力和机械咬合力,土体
滑动面上的正应力σ越大,土体越密实,其摩擦力越大。
➢ 粘聚力包括原始粘聚力、固化粘聚力及毛细粘聚力。

第五章土的抗剪强度

第五章土的抗剪强度第一节概述土是固相、液相和气相组成的散体材料。

一般而言,在外部荷载作用下,土体中的应力将发生变化。

当土体中的剪应力超过土体本身的抗剪强度时,土体将产生沿着其中某一滑裂面的滑动,而使土体丧失整体稳定性。

所以,土体的破坏通常都是剪切破坏。

在工程建设实践中,道路的边坡、路基、土石坝、建筑物的地基等丧失稳定性的例子是很多的(图5-1)。

为了保证土木工程建设中建(构)筑物的安全和稳定,就必须详细研究土的抗剪强度和土的极限平衡等问题。

图5-1 土坝、基槽和建筑物地基失稳示意图(a)土坝(b)基槽(c)建筑物地基土的抗剪强度是指土体抵抗剪切破坏的能力,其数值等于土体产生剪切破坏时滑动面上的剪应力。

抗剪强度是土的主要力学性质之一,也是土力学的重要组成部分。

土体是否达到剪切破坏状态,除了取决于其本身的性质之外,还与它所受到的应力组合密切相关。

不同的应力组合会使土体产生不同的力学性质。

土体破坏时的应力组合关系称为土体破坏准则。

土体的破坏准则是一个十分复杂的问题。

到目前为止,还没有一个被人们普遍认为能完全适用于土体的理想的破坏准则。

本章主要介绍目前被认为比较能拟合试验结果,因而为生产实践所广泛采用的土体破坏准则,即摩尔—库伦破坏准则。

土的抗剪强度,首先取决于其自身的性质,即土的物质组成、土的结构和土所处于的状态等。

土的性质又与它所形成的环境和应力历史等因素有关。

其次,土的性质还取决于土当前所受的应力状态。

因此,只有深入进行对土的微观结构的详细研究,才能认识到土的抗剪强度的实质。

目前,人们已能通过采用电子显微镜、X射线的透视和衍射、差热分析等等新技术和新方法来研究土的物质成分、颗粒形状、排列、接触和连结方式等,以便阐明土的抗剪强度的实质。

这是近代土力学研究的新领域之一。

有关这方面的研究,可参132133 见相关的资料和文献。

土的抗剪强度主要由粘聚力c 和内摩擦角ϕ来表示,土的粘聚力c 和内摩擦角ϕ称为土的抗剪强度指标。

土力学 第五章 土的抗剪强度


(a) 图5-2a 砂土的试验结果
(b) 图5-2b 粘性土的试验结果
整理课件
5.2 一、土的抗剪强度(8)
上述土的抗剪强度数学表达式,也称为库仑定律,它 表明在一般应力水平下,土的抗剪强度与滑动面上的法向
应力之间呈直线关系,其中 c、 称为土的抗剪强度指标。
这一基本关系式能满足一般工程的精度要求,是目前研究 土的抗剪强度的基本定律。
(图5-1b)
(图5-1c)
整理课件
5.1 土的强度概念(10)
整理课件
整5理.1课土件的强度概念(11)
加拿大特朗斯康谷仓(1)
加拿大特朗斯康谷仓
加拿大特朗斯康谷仓平面呈矩形,长59.44m,宽 23.47m,高31.00m,容积36368m3。谷仓为圆筒仓,每 排13个圆筒仓, 5排,一共65个圆筒仓组成。谷仓的基础 为钢筋混凝土筏基,厚61cm,基础理深3.66m。
5.2 一、土的抗剪强度(13)
整理课件
二、土的极限平衡条件与强度理论(1)
1 、土中一点的应力状态
设某一土体单元上作用着的大、小主应力分别为1 和 3 , 根据材料力学理论,此土体单元内与大主应力 1 与 作用平面成 a 角的平面上的正应力 和剪应力可分别表 示如下:
a 1 2 (1 3 ) 1 2 (1 3 )c o s2 (5 5 a )
原始粘聚力主要是由于土粒间水膜受到相邻土粒之间 的电分子引力而形成的,当土被压密时,土粒间的距离减 小,原始粘聚力随之增大,当土的天然结构被破坏时,原 始粘聚力将丧失一些,但会随着时间而恢复其中的一部分 或全部。
固化粘聚力是由于土中化合物的胶结作用而形成的, 当土的天然结构被破坏时,则固化粘聚力随之丧失,而且 不能恢复。毛细粘聚力是由于毛细压力所引起的,一般可 忽略不计。

土力学课件第五章土的抗剪强度

岩土工程研究所
第五章 土的抗剪强度
②也可由式(5-9)计算达到极限平衡条件时所需要得大主应 力值为σ1f,此时把实际存在的大主应力σ3 =480kPa及强度指标c ,φ代入公式(5-8)中,则得
由计算结果表明, σ3<σ3f , σ1 >σ1f ,所以该单元土体早已 破坏。
岩土工程研究所
第五章 土的抗剪强度
注意:给定大主应力时,小主应力越小,越接近破坏; 给定小主应力时,大主应力越大,越接近破坏;
岩土工程研究所
第五章 土的抗剪强度
【例题5-2】已知某土体单元的大主应力σ1=480kPa,小主应力σ3 =210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°, 问该单元土体处于什么状态? 【解】已知σ1=480kPa,σ3=210kPa ,c=20kPa,
岩土工程研究所
第五章 土的抗剪强度
三轴试验步骤:
轴向附加应力q(kPa)
300 250 200 150 100
50 0 0
100kPa 300kPa
200kPa 400kPa
5
10
ห้องสมุดไป่ตู้15
20
轴向应变(%)
岩土工程研究所
第五章 土的抗剪强度
轴向附加应力q(kPa) 孔隙水应力u(kPa)
三轴试验步骤:
上式也可适用于有效应力,相应c,φ应该用c’,φ’。
3f
1f
tg
2
(45
2
)
2c

tg
(45
2
)
1f
3f
tg
2
(45
2
)
2c

tg(45
2
)
岩土工程研究所
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案表头:
【提问答疑】
【本节小结】
归纳总结莫尔-库仑强度理论。

【复习思考】
1.何谓土的抗剪强度?粘性土和砂土的抗剪强度各有什么特点?
2.为什么说土的抗剪强度不是一个定值?影响抗剪强度的因素有哪些?
3.土体发生剪切破坏的平面是不是剪应力最大的平面?破裂面与大主应力作用面成什么角度?
【课后作业】
教案表头:
【提问答疑】
【本次课小结】
1.分析四种测定土的抗剪强度指标的方法,前三种属于室内常用的方法,后一种属于现场测定饱和软粘土抗剪强度指标的方法;
2.有效应力强度指标确切地表达出了土的抗剪强度的实质;
3.饱和粘性土强度包线是一条水平线;
4.进行UU、CU或CD三种不同的排水试验,将得到不同的试验结果;
5.根据现场条件决定采用实验室的试验方法,以获得合适的抗剪强度指标。

【复习思考】
1.直接剪切试验与三轴剪切试验各有什么优缺点?
2.为什么说无侧限抗压强度试验是三轴剪切试验的特例?
3.剪切试验成果整理中总应力法和有效应力法有何不同?为什么说排水剪成果就相当于有效应力法成果?
4.饱和粘性土的不排水剪试验得到的强度包线有什么特点?
教案表头:
【布置课堂练习】
【学生讲台解答】
【学生讲评】
【教师点评】
【系统归纳总结本章内容】
【计算分析软件演示】
【提问答疑】
44。

相关文档
最新文档