液力耦合器调速原理
液力偶合调速器原理

液力偶合调速器原理
液力偶合调速器是一种基于液体流体力学原理工作的传动装置。
它由驱动轮、从动轮和液力变矩器三个主要部分组成。
当驱动轴转动时,液力变矩器中的泵轮和涡轮也开始旋转。
泵轮通过泵轮叶片将工作液体(通常是液压油)向外边发送,涡轮则将工作液体带回液力变矩器内。
工作液体流经液力变矩器内的转子,产生液体的环流形成液体流动,从而产生扭矩效应。
液力变矩器的主要工作原理是通过分离泵轮和涡轮之间的液体,从而实现工作液体的能量转移。
当驱动轮的转速较低时,驱动轮叶片将工作液体喷出形成高速的液体流,液体流经涡轮叶片,使涡轮开始旋转,即产生输出扭矩。
当驱动轮的转速逐渐提高时,液体流动速度增加,液体的动能也增加,从而提高输出扭矩。
调速型液力耦合器的工作原理是通过调节液力变矩器内工作液体的流通量来实现变速调节。
通过改变泵轮叶片的角度,调节液体的流入量和流出量,从而改变输出轮的转速。
当调节泵轮叶片的角度较小时,液体的流通量较小,输出轮的转速较低;当调节泵轮叶片的角度较大时,液体的流通量较大,输出轮的转速较高。
通过这种方式可以灵活地调整输出轮的转速,实现传动装置的变速调节。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业人士。
3、 液力耦合器调速

液力耦合器调速
1
第一节
液力耦合器工作原理
液力耦合器是一种应用很广的通用传动 元件。 它置于动力机与工作机之间传递动力
液力耦合器能改善起动性能、实现过载 保护、无级调速等。
2
一、液力耦合器的结构
典型的液力耦合器结构 ( 图 3—1) 由对称布置的泵 轮、涡轮以及主轴、外壳等构件组成。 外壳与泵轮通过螺栓固定连接,其作用是防止工 作液体外溢。 输入轴(与泵轮固定连接)与输出轴(与涡轮固定连 接)分别与动力机和工作机相连接。 泵轮与涡轮均为具有径向直叶片的叶轮。 由泵轮和涡轮具有叶片的凹腔部分所形成的圆环 状空腔称为工作腔,供工作液体在其中循环流动, 传递动力进行工作。
8
第二节
液力耦合器的特性参数
1、转矩T : 由封闭力系平衡原理可知,液力耦合器 中的两个叶轮对工作腔内工作液体作用 所产生的泵轮转矩T1与涡轮转矩T2之和 等于零。即 T1+T2=0,或者 T1 = -T2
说明耦合器只能传递转矩而不能改变转 矩的大小。(这是忽略各种损耗后的理论值)
9
2、转速比i: 转速比为涡轮转速与泵轮转速之比,即 n2 i= —— n1
Tmax kg = —— Tn
11
起动过载系数ks为起动力矩Ts与额定力矩Tn之 比:
Ts ks= —— Tn
5、效率η
效率为输出功率P2与输入功率P1之比, 即
P2 T2 n2 η = —— = —— = i P1 T1 n1
12
液力耦合器效率等于其转速比 (在忽略 轴承等功率损失的情况下),这是液力耦 合器的重要特点之一。因此,通常使之 在高转速比下运转以求得到高效率。
17
C、 反转工况(i<o): 位于第二象限。 特点:载荷驱动涡轮反转,电机驱动泵轮正转, 载荷与电机同时向液力耦合器输入功率,均转化 为热量,使液温迅速上升。 随着涡轮反转转速的升高,液流循环流速减弱(在 涡轮里反转趋势加强),使传递力矩下降。 当液流在涡轮里的反转趋势上升到与泵轮里正转 相互势均力敌时,工作腔中原来的一个循环液流 变为正转(在泵轮里)和反转(在涡轮里)两个循环液 流,此时传递力矩最低。 当涡轮反转转速高于泵轮正转转速时,两个不同 旋向的循环液流又合为一个反向旋转的循环液流, 特性曲线随转速差的增加而上升。
液力耦合器调速系统设计

word目录1、液力偶合器调速简介12、液力偶合器调速工作原理12.1 液力偶合器的特点22.2 液力偶合器的传送33、液力偶合器的根本结构54、设计内容54.1转速比和效率、转差损耗的关系64.2 液力偶合器配件用冷却器的选型计算75、实例计算86、结论107、心得体会11参考文献121、液力偶合器调速简介该调速方法是通过安装在电动机和工作与之间的一种液力传动元件,它又在电动机输入转速恒定的条件下,通过操纵机构对其输入转速进展无级调速,并使电动机的功率通过液力耦合器泵轮和涡轮之间的工作油的循环流动,平稳而无冲击地传递给工作机属于低效调速方法。
液力传送元件就是液力耦合,目前有三种类型,分别是调速型、限矩型、与降速型。
调速型液力耦合器又分为进口调节型和出口调节型两种。
液力耦合器调速在与恒速电动机匹配,驱动离心式工作机时,调速X围约为1~1/5;驱动恒扭矩工作机时,调速X围约为1~1/3。
液力偶合器调速的特点是其本身存在转差,调速过程中的转差的热损耗,必须采取妥善的冷却措施。
优点是可以空载起动,不受负载大小的影响,又可吸收负载的冲击,具有对电动机和负载过载保护性能,即使负载卡住不转,电动机仍带动液力偶合器泵轮转动,不会烧坏。
该调速方法适用于大容量风机、水泵调速,液力偶合器大容量相对价格比拟廉价,投资比拟低,经济效益比拟好。
当前在大容量风机、水泵上得到广泛应用的机械调速转速装置主要是调速型液力偶合器。
液力偶合器调速技术成熟,国产装置与系列产品能适用13~3440kW X围。
2、液力偶合器调速工作原理当发动机运转时,曲轴带动液力偶合器的壳体和泵轮一同转动,泵轮叶片内的液压油在泵轮的带动下随之一同旋转,在离心力的作用下,液压油被甩向泵轮叶片外缘处,并在外缘处冲向涡轮叶片,使涡轮在液压冲击力的作用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动,返回到泵轮内缘的液压油,又被泵轮再次甩向外缘。
液压油就这样从泵轮流向涡轮,又从涡轮返回到泵轮而形成循环的液流。
液力耦合器工作原理

液力耦合器工作原理液力耦合器是一种常见的传动装置,主要用于传递转矩和调节转速。
它由驱动轮、从动轮和液力传动介质组成。
液力耦合器的工作原理是利用液体的黏性和离心力来传递动力。
液力耦合器的主要组成部份是驱动轮和从动轮。
驱动轮通常由发动机驱动,从动轮与机械设备相连。
两个轮之间有一个液体介质,通常是液压油。
液力耦合器的工作过程可以分为三个阶段:启动、转速匹配和传递转矩。
在启动阶段,发动机启动后,液力耦合器开始工作。
驱动轮通过发动机的转动产生液体动力,液体通过液力耦合器的泵轮产生离心力,将液体推向从动轮。
在转速匹配阶段,液体从泵轮传递到从动轮,同时液体的离心力逐渐增大。
当液体的离心力达到一定程度时,从动轮开始转动,转速逐渐接近驱动轮的转速。
这个阶段的目的是使驱动轮和从动轮的转速匹配,以便实现顺畅的传动。
在传递转矩阶段,液体的离心力达到最大值,液力耦合器开始传递转矩。
液体通过从动轮的转动将转矩传递给机械设备,驱动轮和从动轮之间的转矩传递是通过液体的黏性来实现的。
液体黏性的特性使得转矩可以平稳地传递,从而实现机械设备的正常运转。
液力耦合器的工作原理可以通过以下公式来描述:转矩传递 = 驱动轮转速 ×液力耦合器的转矩系数液力耦合器的转矩系数是一个关键参数,它取决于液体的黏性、液压油的流量和液力耦合器的结构。
通过调节液压油的流量和液力耦合器的结构,可以改变转矩系数,从而实现对转矩的调节。
液力耦合器的优点是传动平稳,起动平稳,无需离合器和齿轮箱。
它可以吸收和减缓发动机的冲击力,保护机械设备的传动系统。
此外,液力耦合器还可以实现转速的调节和传递转矩的自动调节。
然而,液力耦合器也有一些缺点。
由于液体的黏性,液力耦合器存在一定的能量损耗。
此外,液力耦合器的转矩传递效率较低,不适合于高效率要求的传动系统。
总结起来,液力耦合器是一种通过液体的黏性和离心力来传递转矩和调节转速的传动装置。
它的工作原理是通过液体的离心力将动力传递给从动轮,实现转矩的传递。
液力耦合器的模型与工作原理

液力耦合器的模型与工作原理液力耦合器是一种运用液体介质传递转速的机械设备,其主动输入轴端与原传动机相联结,从动输出轴端与负载轴端联结,通过调节液体介质的压力,使输出轴的转速得以变化。
抱负状态下,当压力趋于无穷大时,输出转速与输入转速相等,相称于钢性联轴器。
当压力减小时,输出转速对应减少,持续变化介质压力,输出转速能够得到低于输入转速的无级调节。
液力耦合器的功控调速原理与效率根据液力耦合器的上述特点,能够等效为图1 所示的模型功率控制调速原理表明,传动速度的变化,实质是机械功率调节的成果。
因此液力耦合器输出转速的减少,实际是输出功率减小。
在调速过程中,液力耦合器的原传动转速没有发生变化,假设负载转矩不变,原传动的机械功率也不变,那么输入与输出功率的差值功率那里去了呢,显然是被液力耦合器以热能形式损耗掉了。
因此,我们不能简朴地认为液力偶合器调速是"丢转",而实际是丢功率。
设原传动功率为PM1,输出功率为PM2,损耗功率则为液力偶合器是一种耗能型的机械调速装置,调速越深(转速越低)损耗越大,特别是恒转矩负载,由于原传动输入功率不变,损耗功率将转速损失成比例增大。
对于风机泵类负载,由于负载转矩按转速平方率变化,原传动输入功率则按转速的平方率减少,损耗功率相对小某些,但输出功率是按转速的立方率减小,调速效率仍然很低。
液力耦合器的调速效率曲线如图2 所示,平均效率在50%左右。
浅析液力耦合器推力轴承的运行维护办法摘要:本文通过对一次事故的分析,提出了液力耦合器推力轴承运行维护的办法和注意事项,供同行们参考。
核心词;推力轴承;工作面;油膜0 引言推力轴承是发电厂转动机械广泛使用的部件之一,在发电厂日常的安全运行中肩负着重要的作用。
维护好推力轴承,使其保持良好的状态就含有重要的意义。
广东省茂名热电厂#5 机组配备的两台给水泵(沈阳水泵厂CHTC5/5SP-2 型,现场编号为A 泵、B 泵)配套进口奥地利福伊特驱动技术有限公司R15K-551.1型液力耦合器。
液力耦合器调速原理

液力耦合器调速原理调速型液力耦合器主要由泵轮、涡轮、旋转外套和勺管组成,泵轮和涡轮均为具有径向叶轮的工作轮,泵轮与主动轴固定连接,涡轮与从动轴固定连接;主动轴与电动机连接,而从动轴则与风机或水泵连接。
泵轮与涡轮之间无固体的部件联系,为相对布置,两者的端面之间保持一定的间隙。
由泵轮的内腔p和涡轮的内腔t共同形成的圆环状的空腔称为工作腔。
若在工作腔内充以油等工作介质,则当主动轴带着泵轮高速旋转时,泵轮上的叶片将驱动工作油高速旋转,对工作油做功,使油获得能量(旋转动能)。
同时高速旋转的工作油在惯性离心力的作用下,被甩向泵轮的外圆周侧,并流入涡轮的径向进口流道,其高速旋转的旋转动能将推动涡轮作旋转运动,对涡轮做功,将工作油的旋转动能转化为涡轮的旋转动能。
工作油对涡轮做功后,能量减少,流出涡轮后再流入泵轮的径向进口流道,在泵轮中重新获得能量。
如此周而复始的重复,形成了工作油在泵轮和涡轮中的循环流动。
在这个过程中,泵轮驱动工作油旋转时就把原动机的机械能转化为工作油的动能和压力势能,这个原理与叶片式泵的叶轮相同,故称此轮为泵轮;而工作油在进入涡轮后由其所携带的动能和压力势能在推动涡轮旋转时对涡轮做功,又转化为涡轮输出轴上的机械能,这个原理与水轮机叶轮的作用相同,故称此轮为涡轮。
涡轮的输出轴又与风机或水泵相联接,因此输出轴又把机械能传给风机或水泵,驱动风机水泵旋转。
这样就实现了电动机轴功率的柔性传递。
只要改变工作腔内工作油的充满度,亦即改变循环圆内的循环油量,就可以改变液力耦合器所传递的转矩和输出轴的转速,从而实现了电动机在定速旋转的情况下对风机的无级变速。
工作油油量的变化是通过一根可移动的勺管(导流管)位置的改变而实现的:勺管可以把其管口以下的循环油抽走,当勺管往上推移时,在旋转外套中的油将被抽吸,使工作腔内的工作油量减少,涡轮减速,从而使风机减速;反之,当勺管往下推移时,风机将升速。
调速型液力偶合器的工作原理

调速型液力偶合器的工作原理调速型液力偶合器,由于具有空载及慢速起动、无级调速等功能,因而在国民经济的各行业得到广泛应用。
1、液力偶合器基本构成下图是调速型液力偶合器基本构成原理图。
▲液力偶合器基本构成原理图1—背壳2—涡轮3—泵轮4—外壳5—电动执行器6—勺管7—油泵8—压力表9—温度表10—铂热电阻11—压力变送器12—油冷却器13—综合参数测试仪(现场用)14—综合参数测试仪(控制室用)15—转速传感器16—转速仪17—伺服放大器18—电动操作器19—液位传感器20—液位报警器21—电加热器22—电加热自动控制器主要是由泵轮、涡轮和旋转外套组成。
由泵轮与涡轮、涡轮与旋转外套之间分别形成两个腔室。
泵轮与涡轮之间形成的是环形空腔,两轮内分别装有20~40片径向叶片,涡轮内叶片比泵轮叶片少1~4片,以免共振。
泵轮安装在主动轴端部,主动轴与电动机轴连接;而涡轮与从动轴连接,从动轴连接泵的转轴。
当泵轮在主动轴驱动下旋转时,循环圆内的工作油在离心力作用下沿径向流道外甩而升压,在出口以径向相对速度与圆周速度的合速度冲入涡轮进口径向流道,工作油在涡轮的径向流道内动量矩降低了,进而对涡轮产生了转动力矩,使涡轮旋转。
工作油消耗了能量之后从涡轮出口流出,又流入泵轮入口径向流道,以重新获得能量。
就这样,工作油在循环圆内周而复始地自然循环,传递能量。
另一空腔是由涡轮与旋转外套构成,腔内有从泵轮与涡轮的间隙流出的工作油,随着旋转外套和涡轮旋转。
在离心力作用下,工作油在此腔室内沿外圆形成油环。
泵轮的转速是固定的,而涡轮的转速则是根据工作油量的多少而改变,工作油越多,泵轮传给涡轮的力矩越大,则涡轮转速越高,反之涡轮转速越低。
因而,只要改变工作油量就可以改变涡轮转速。
而循环圆内工作油量的控制有三种方法:(1)移动旋转内套空腔中勺管端口的位置改变工作油量;(2)改变由工作油泵经控制阀进入循环圆内的进油量;(3)这两种方法的联合使用。
液力耦合器和变频器区别

高压大功率电动机变频调速与液力偶合器调速运行比较上海发电设备成套设计研究所 李南坤一、变频调速与液力偶合器调速的工作原理电动机采用变频调速后,电动机转轴与负载直接相连,但电动机不再由电网直接供电,而是由变频器供电,变频器通过改变电动机的供电频率改变电机转速,因此可以实现相当宽的频率范围内无级调速,而且在全范围内具有优异的效率和功率因素特性。
采用变频调速后,异步电动机转速n=60f(1-s)/p,其中f为变频器输出频率,s为异步电动机转差率,p为电动机极对数。
液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量并改变输出转速的,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载,这样,可以通过控制工作腔内参与能量传递的工作油多少来控制输出轴的力矩,达到控制负载的转速的目地。
因此液力偶合器也可以实现负载转速无级调节。
如采用液力偶合器调速,则电动机转轴连接到液力偶合器,而负载连接到液力偶合器,电动机仍由电网供电,电动机仍全速运行。
二、变频调速与液力偶合器调速的节能比较1、功率损耗的原因电动机本身功率损耗除外,无论是变频调速还是液力偶合器调速,均存在额外的功率损耗,液力偶合器从电动机输出轴取得机械能,通过液力变速后送入负载,其效率不可能为1;变频器从电网取的电能,通过逆变后送入电动机电枢,其效率也不可能是1。
而且在全转速范围内,两种方式的效率曲线也不一样。
图1“两种调速方式效率曲线”为典型的液力偶合器和变频器(高高变频器)的效率-转速曲线,随着输出转速的降低,液力偶合器的效率基本上正比降低(例如:额定转速时效率0.95,75%转速时效率约0.72,20%转速时效率约0.19),而变频器在输出转速下降时效率仍然较高(例如:额定转速时效率0.97,75%以上转速时效率大于0.95,20%以上转速时效率大于0.9)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液力耦合器调速原理
调速型液力耦合器主要由泵轮、涡轮、旋转外套和勺管组成,泵轮和涡轮均为具有径向叶轮的工作轮,泵轮与主动轴固定连接,涡轮与从动轴固定连接;主动轴与电动机连接,而从动轴则与风机或水泵连接。
泵轮与涡轮之间无固体的部件联系,为相对布置,两者的端面之间保持一定的间隙。
由泵轮的内腔p和涡轮的内腔t共同形成的圆环状的空腔称为工作腔。
若在工作腔内充以油等工作介质,则当主动轴带着泵轮高速旋转时,泵轮上的叶片将驱动工作油高速旋转,对工作油做功,使油获得能量(旋转动能)。
同时高速旋转的工作油在惯性离心力的作用下,被甩向泵轮的外圆周侧,并流入涡轮的径向进口流道,其高速旋转的旋转动能将推动涡轮作旋转运动,对涡轮做功,将工作油的旋转动能转化为涡轮的旋转动能。
工作油对涡轮做功后,能量减少,流出涡轮后再流入泵轮的径向进口流道,在泵轮中重新获得能量。
如此周而复始的重复,形成了工作油在泵轮和涡轮中的循环流动。
在这个过程中,泵轮驱动工作油旋转时就把原动机的机械能转化为工作油的动能和压力势能,这个原理与叶片式泵的叶轮相同,故称此轮为泵轮;而工作油在进入涡轮后由其所携带的动能和压力势能在推动涡轮旋转时对涡轮做功,又转化为涡轮输出轴上的机械能,这个原理与水轮机叶轮的作用相同,故称此轮为涡轮。
涡轮的输出轴又与风机或水泵相联接,因此输出轴又把机械能传给风机或水泵,驱动风机水泵旋转。
这样就实现了电动机轴功率的柔性传递。
只要改变工作腔内工作油的充满度,亦即改变循环圆内的循环油量,就可以改变液力耦合器所传递的转矩和输出轴的转速,从而实现了电动机在定速旋转的情况下对风机的无级变速。
工作油油量的变化是通过一根可移动的勺管(导流管)位置的改变而实现的:勺管可以把其管口以下的循环油抽走,当勺管往上推移时,在旋转外套中的油将被抽吸,使工作腔内的工作油量减少,涡轮减速,从而使风机减速;反之,当勺管往下推移时,风机将升速。