基于MATLAB的齿轮传动系统优化设计

基于MATLAB的齿轮传动系统优化设计
基于MATLAB的齿轮传动系统优化设计

基于MATLAB的齿轮传动系统优化设计

摘要:某高速重载齿轮进行了优化设计,在分析齿轮在各工况下的弯曲强度后,根据齿轮的优化设计原则,选择齿轮体积最小为优化设计原则,对传动齿轮中的小齿轮进行了优化设计,设计模数、齿数、齿宽系数、螺旋角为变量,根据各参数的设计要求来确定约束条件,同时根据齿根弯曲疲劳强度和齿面接触疲劳强度进行条件约束,最后用MATLAB进行编程计算,最后得出优化后的结果,该结果满足要求。本文的研究对机械系统的优化设计具有指导意义和工程应用价值。关键词:齿轮;优化设计;MATLAB;

0引言

优化设计是近年发展起来的一门新的学科,也是一项新技术,在工程设计的各个领域都已经得到了更为广泛的应用。通过实际的应用过程表明:工程设计中采用优化设计这种新的科学设计方法,不仅使得在解决复杂问题时,能够从众多纷繁复杂的设计方案中找到尽可能完善的或者最适合的设计方案,而且,采用这种方法还能够提高设计效率和设计质量,使其的经济和社会效益都非常明显。优化设计的理论基础是数学规划,采用的工具是计算机。

优化设计具有一般的设计方法所不具备的一些特点。优化设计能够使各种设计参数自动向更优的方向进行调整,直到找到一个尽可能完善的或最适合的设计方案。一般的设计方法只是依靠设计人员的经验来找到最佳方案,这样不足以保证设计参数一定能够向更优方向调整,也不能够保证一定能找到最适合的设计方案。优化设计的手段是采用计算机,在很短的时间内就可以分析一个设计方案,并判断方案的优劣、是否可行,因此就能够从大量的方案中选出更加适合的设计方案,这是常规设计所不能比的。

1 机械系统优化设计方法概述

许多机械工程设计都需要进行优化。优化过程可以分为三个部分:综合与分析、评价、改变参数三部分组成。其中,综合与分析部分的主要功能是建立产品设计参数与设计性能、设计要求之间的关系,这也就是一个建立数学模型的过程。评价部分就是对该产品的性能和设计要求进行分析,这就相当于是评价目标函数是否得到改善或者达到最优,也就是检验数学模型中的约束条件是否全部得到满足。改变参数部分就是选择优化方法,使得目标函数(数学模型)得到解,同时根据这种优化方法来改变设计参数。

在许多机械工程设计问题中,优化设计的目标是多种多样的,按照所追求的目标的多少,目标函数可以分为单目标函数和多目标函数。以多级齿轮传动系统设计过程为例,要求在满足规定的传动比和给定最小齿轮、大齿轮直径的条件下,追求系统的转动惯量最小,箱体的体积最小,各级传动中心距和最小,承载能力最高,寿命最长等,这就是一个多目标函数。目标函数作为评价方案中的一个很重要的标准,它不一定有明显的物理意义、量纲,它只是代表设计指标的一个值。所以,目标函数的建立是否正确是优化设计中很重要的一项工作,它既要反映用户的需求,又要敏感地、直接地反映设计变量的变化,对优化设计的质量及计算难易程度都有一定的影响。表2.1给出了常用优化设计中的可供选择的优化目标。

优化设计问题的前提是选择优化设计方法,选用哪个方法好,这就主要是由优化设计方法的特性和实际设计问题的具体情况来决定。一般来讲,评价一种优

化设计方法的优劣可以从以下几个方面进行考察:

(1)可靠性:指在一定的合理精度要求下,在一定时间内求解各种不同类型问题的成功率。(2)精度:值求得最优化结果的解与原问题解比例的得接近程度问题。(3)效率:指对同一问题,给定初始点的情况下,精度相同的情况下,求解时所需要的机时数或者迭代次数,也就是说在相同条件下的计算成本的问题。计算效率是影响计算成功主要因素之一。(4)通用性:优化方法的使用范围以及对各类优化设计问题的适用性,具体指的是是否有对函数性态的限制,占用内存的限制等。(5)稳定性,指方法的求解稳定性。(6)全局收敛法,指优化方法是否会陷入局部最优。适应性和收敛性会影响优化设计方法的计算效率。实际经验证明,任何一种优化设计方法都不可能在整个完整的计算过程中保持较好的收敛性。(7)初始条件敏感性:它的意思是指选择的初始条件对目标函数是否能够收敛到最优的影响程度。如果从一个不好的初始点出发,目标函数也能够收敛到最优解,则说明其初始条件的敏感性低。(8)多变量敏感性:指优化设计目标函数中的设计变量的个数即维数的敏感程度,一般来说,对于用直接法来求解的函数,设计变量的个数过多会导致计算工作量加大,从而导致计算的精度降低。(9)约束敏感性:是指对约束条件多少的敏感程度。设计空间随着约束条件的增多而逐渐减小,使得多变量敏感性加大,降低了计算过程的稳定性。

2齿轮传动系统的基本设计

机械设计优化设计中常采用的优化设计方法有进退法、黄金分割法、共轭梯度法、坐标轮换法、复合形法等。下面设计一种齿轮系统,并基于Matlab对系统进行优化设计。

高速重载齿轮时常会受到加速度大、冲击载荷大、启动、制动等的影响。因此,为保证运行的安全性和可靠性,齿轮弯曲强度的安全系数应高于接触强度的安全系数。齿轮的主要失效形式主要有:轮齿折断、齿面磨损、齿面胶合、齿面点蚀、塑性变形等。由此可见,高速重载齿轮的设计必须保证齿轮在整个工作寿命期间不失效,由于目前还没有建立起工程实际中行之有效的设计方法和设计数据,目前按照保证齿根弯曲疲劳强度和齿面接触疲劳强度两个准则来设计齿轮。表1为某高速重载齿轮传动系统的基本参数,按照表1要求,对传动系统进行基本设计,最终得到系统的基本参数如表2所示。

表1 齿轮的基本参数

模数m=6

分度圆压力角

α=

20

分度圆螺旋角

β=

20

齿顶系数

*1

ha=

c=

顶隙系数*0.25

b=

齿宽90

)

)

进一步选择起动、持续、最高速度三种工况,对本设计的齿轮进行强度校核。得到表2所示参数下的齿轮系统主、从动轮在在起动、持续、最高速三种工况下的承载能力在各工况下的安全系数满足较高的可靠度,齿轮的接触强度是达到了设计要求,同时齿轮在各工况下的弯曲强度安全系数均大于高可靠度的安全系数,因此轮齿的弯曲强度足够。

3基于Matlab的齿轮优化设计

3.1优化数学模型的建立

齿轮优化设计的数学模型的建立一般包括三部分:(1)设计变量:一般选用齿轮传动的基本几何参数或性能参数面包括:齿轮齿数、模数、齿宽系数、螺旋角、变位系数、和中心距分离系数等。(2)目标函数:常见的目标函数有体积(或者质量)最小、承载能力最大、工作寿命最长、振动最小等。(3)约束条件:一般的满足条件是满足接触疲劳强度、弯曲疲劳强度、齿数不少于发生根切的最小齿数、传递动力的齿轮的模数不小于2mm,齿宽不引起过分的载荷分布不均现象、传动比误差不大于给定的误差设计要求等。

在斜齿轮传动中,主要的参数有模数、齿数、齿宽系数、螺旋角等。在这几个重要的变量中,模数决定了齿轮的大小和强度,当模数一定的时候,齿数就决定分度圆的大小,螺旋角也是一个重要的参数,它直接影响齿轮的形状、受力的大小和尺寸。所以,在齿轮传动的设计中,模数、小齿轮的齿数、螺旋角和齿宽系数的选择将直接影响传动装置的外廓尺寸和传动质量的好坏。因此选择模数、小齿轮的齿数、螺旋角和齿宽系数等作为设计变量。

3.2建立目标函数

目标函数根据一般的优化方法可选择的目标来确定,在齿轮传动时,一般要求传动装置结构紧凑、重量轻、节省材料、成本低。本文中选择的优化目标是齿轮体积最小,可以用函数表示为:

23()(1)()4cos n m z f x u π

?β?=?+?? (1)

则目标函数确定为:

231243()(1)()4x x f x u x x π

=?+? (2)

其中:u —传动比。

3.3确定约束条件

约束条件是用来判定目标函数中设计变量取值的规定,齿轮传动中,约束条件包括边界约束条件和性能约束条件。根据不发生根切的最小齿数来决定,斜齿轮按照当量齿数来计算:

213

3()170(cos )x G X x =-≤ (3) 按照小齿轮齿数的一般取值范围来确定边界条件,斜齿轮按照当量齿数来计算: 13400cos z β

-≥ (4) 即: 213233()40400cos (cos )x z G X x β=-=-≤ (5)

根据齿轮齿宽系数的设计要求来确定小齿轮齿宽系数:

0.40?-≥ (6) 1.20?-≥ (7)

即:

34()0.40G X x =-≤ (8)

44()X 1.20G X =-≤ (9)

根据螺旋角的设计要求确定螺旋角的边界范围,斜齿轮传动一般选择的;螺旋角的范围是8~20 :

80β-≥ (10) 200β-≤ (11)

根据齿根弯曲疲劳强度进行约束:

[]0F F σσ-≥ (12)

[]7F F ()0G X σσ=-≤ (13)

齿面接触疲劳强度

[]0H H σσ-≥ (14) []8H H ()0G X σσ=-≤ (15)

齿轮优化的数学模型可建立如下:

{}1234,,,min ()

..()0T

j X x x x x f x s t G X =????≤?(1,2,...,8j =) (16) 3.4基于MATLAB 优化工具箱求解

利用MATLAB 工具箱中的fmincon 函数求解,首先需编写M 文件。代码如下:

function[c,ceq]=mynas(x)

c(1)=17-x(2)/cos(x(3))^3;

c(2)=x(2)/cos(x(3))^3-40;

c(3)=8112420*cos(x(3))^3/ x(1)^3*x(2)^2* x(4)-490;

c(4)=707879.071*cos(x(3))^1.5 /x(1)*x(2)*sqrt(x(1)*x(2)*x(4)/cos(x(3)))-1227; ceq=[];

随后,在MATLAB 主窗口中输入:

fun= '15*pi*x(4)*x(1)^3*x(2)^3/cos(x(3)) ^3';

x0=[4,13,20,1];

A=[0,0,0,-1;0,0,0,1;0,0,-1,0;0,0,1,0];

b=[-0.4,1.2,-8,20];

Aeq=[];

beq=[];

lb=[];

ub=[];

[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,@mynas)

输出的结果如下:

图1 MATLAB 的优化结果

4总结

本文对某高速重载齿轮进行了优化设计,在分析齿轮在各工况下的弯曲强度安全系数也达到了高可靠度安全系数的要求的基础上,根据齿轮的优化设计原则对传动齿轮中的小齿轮进行了优化设计:优化设计的目标是要满足体积最小,选模数 、齿数 、齿宽系数 、螺旋角 为设计变量,根据各参数的设计要求来确定

约束条件,同时根据齿根弯曲疲劳强度和齿面接触疲劳强度进行条件约束,最后用MATLAB进行编程计算,最后得出优化后的结果,该结果满足要求。本文的研究对机械系统的优化设计具有指导意义和工程应用价值。

参考文献:

[1] 王大康,卢颂峰.机械设计课程设计[M].北京:北京工业大学出版社,2000.

[2] 濮良贵,纪名刚主编.机械设计.北京:高等教育出版社,2001.

[3] 曹保金,秦小屿.MATLAB工具箱在机械优化设计中的应用[J].现代机械,2009(6):11-12.

[4] 万耀青.机械优化设计建模与优化方法评价[M].北京:北京理工大学出版社,1995.

[5] V. Senthil Kumar, D.V. Muni, G.Muthuveerappan.Optimization of asymmetric spur gear drives to improve The bending load capacity [J]. Mechanism and Machine Theory.2008, (43):829–858.

[6] 西北工业大学机械原理及机械零件教研组.机械设计[M].北京:人民教育出版社,1978.

[7] 吴宗泽,王中发.机械设计手册[M].北京:北京理工大学版社,1998.

[8] 张月英,李焕芳.单级斜齿圆柱齿轮的优化与分析[J].机械传动,2005,29(2):47-49.

[9] 叶素娣,陈科.单级圆柱齿轮减速器的优化设计[J].组合机床与自动化加工技术,2006(7):48-50.

[10] 刘惟信. 机械最优化设计[M]. 北京:清华大学出版社,1994.

matlab优化设计

MATLAB优化设计 学院:机电学院 专业:机械设计制造及其自动化 班级:072&&&-** 学号:20131****** 姓名:大禹 指导老师:祯 2015年10月25日

题目 1 1、求解如下最优化问题 步骤一:对已有的数学模型matlab 编程 1. 编写.m 文件并保存: h=[2 ,-2;-2, 4]; %实对称矩阵 f=[-2;-6]; %列向量 a=[1, 1;-1, 2]; %对应维数矩阵 b=[2;2]; %列向量 lb=zeros(2, 1); [x,value]=quadprog(h, f, a ,b ,[] ,[], lb) 2. 运行.m 文件结果如图1.0所示: subject to 2 21≤+x x 22-21≤+x x 0 21≥x x ,2 2 2121212262)(m in x x x x x x x f +-+--=

图1.0题目一文件运行结果 步骤二:matlab运行结果分析阶段 由图1.0知,当x1=0.8,x2=1.2时,min f (x)= -7.2。 题目 2 2、某农场拟修建一批半球壳顶的圆筒形谷仓,计划每座谷仓容积为300立方米,圆筒半径不得超过3米,高度不得超过10米。半球壳顶的建筑造价为每平方米150元,圆筒仓壁的造价为每平方米120元,地坪造价为每平方米50元,求造价最小的谷仓尺寸为多少?

步骤一:题目分析阶段 设:圆筒的半径为R,圆筒的高度为H 。 谷仓的容积为300立方米,可得: 3003 232=+R H R ππ 圆筒高度不得超过10米,可得: 100≤≤H 圆筒半径不得超过3米,可得: 30≤≤R 当造价最小时: 2225021202150),(m in R H R R H R f πππ+?+?= 步骤二:数学模型建立阶段 2 225021202150),(m in R H R R H R f πππ+?+?=

最优化方法课程教学大纲

《最优化方法》课程教学大纲 Methods of Optimization 课程代码: 课程性质:专业基础理论课/选修 适用专业:信息计算、统计学开课学期:6 总学时数:56总学分数:3.5 编写年月:2002年3月修订年月:2007年7月 执笔:刘伟 一、课程的性质和目的 最优化计算方法是在生产实践和科学实验中选取最佳决策,研究在一定限制条件下,选取某种方案,以达到最优目标的一门学科,广泛应用与空间科学、军事科学、系统识别、通讯、工程设计、自动控制、经济管理等各个领域,是工科院校高年纪学生、研究生、应用数学专业学生和搞优化设计的工程技术人员的一门重要课程。通过本课程教学,使学生掌握最优化计算方法的基本概念和基本理论,初步学会处理应用最优化方法解决实际中的碰到的各个问题,培养解决实际问题的能力。 二、课程教学内容及学时分配 (一)教学内容 1. 最优化方法和最优化模型 最优化方法定义、最优化问题的数学模型与分类;根据问题特点(无约束最优化与约束最优化),根据函数类型(线性规划,非线性规划);最优化方法(解析法,直接法),最优解与极值点。 2.基础知识 多元函数泰勒公式的矩阵形式,古典极值理论问题,二次函数求梯度公式,凸集,凸函数,凸规划,几个重要的不等式。 3. 常用的一维搜索方法 一维搜索法是最优化的基础,“成功-失败”法的思想与算法,黄金分割法(0.618法)的思想与算法,二次插值法,三次插值法,D。S。C法,Powell 法等方法的思想与算法。 4. 无约束最优化方法 无约束最优化方法是最优化方法中的基本方法。最速下降法的思想与算法步骤,牛顿法的思想与算法步骤,共轭方向法的思想与算法步骤,共轭梯度法的思想与算法步骤,变尺度法(DFP法和BFGS法)的思想与算法步骤 5. 约束最优化方法 约束最优化方法通常约束问题转化为无约束问题求解。序列无约束极小化方法(SUMT-外点法与SUMT-内点法)的思想与算法步骤,内点的求法,其他罚函数法,Frank-Wolfe法的思想与算法步骤

2019-2020年高中语文 2 人是什么优化设计 大纲人教版第5册

2019-2020年高中语文 2 人是什么优化设计 大纲人教版第5册 1作者认为人是由追忆往事、把握现时和憧憬未来三部分组成。为什么说对现时的把握应该是重点,比重应该占95%? 参考答案 对往事的追忆能借助于昔日这面反射镜来照亮当前人生的道路,增强憧憬未来的信心和勇气。对未来的憧憬是一个人生命力旺盛的标志之一,而对理想不断追求的过程能使人真正感到幸福和满足,这种不断追求、充满希望的人,就是孔子所说的“生无所息”的强者。伟大的志向造就伟大的人物,但要以牢牢把握现时为必要前提。因为只有牢牢地把握现时的每一分钟,以最有效的方式献身于振兴中华的伟大事业,才是未来美景最可靠的保证。所以说,把握现时应是重点,比重应占95%。 2“枯藤”“老树”“昏鸦”这些意象出自谁的笔下?你能背诵其原作吗?为什么说这些意象充满伤感? 参考答案 出自元代马致远的《天净沙·秋思》。其原曲为:“枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。”原曲第一句就是“枯藤老树昏鸦”,其中“枯”“老”“昏”三个字修饰“藤”“树”“鸦”,六个字组成三个词,构成三种事物,用一系列名词排列成句式,它们是作者精选的典型景物,尤其是“藤”“树”“鸦”的色彩情调贴切地衬托出游子的思绪,使得诗句呈现出一幅深秋傍晚的荒凉萧索图景,表现出流落者孤独、凄清、悲凉的心境。情调感伤低沉。 3对往事的追忆、对“现时”的把握、对未来的憧憬,三者间的联系是什么? 参考答案 三者有不可分割的联系。失去对往事的回忆和对未来的希望,就难以把握“现时”。把握不了“现时”的人则不成其为人。回忆固然有其意义,但毕竟是远了、暗了的暮霭,对未来的希望才是近了、亮了的晨光。 1为什么“记得绿罗裙,处处怜芳草”能在读者心中营造出“甜美的忧郁”? 提示 牛希济的原词为:“春山烟欲收,天淡星稀小。残月脸边明,别泪临清晓。语已多,情未了,回首犹重道:‘记得绿罗裙,处处怜芳草。’”诗人由天涯芳草,联想到闺人芳草一般碧绿的罗裙,回忆起伤心离别的春晓,因而说出了为了那绿罗裙,我珍爱着每一株芳草的话语。整首词写诗人的离情别绪,而在面对芳草引起的回忆中,伤离别的情景也包含着淡淡的温馨,正是“甜美的忧郁”的境界。 2作者把“现时”看成是“1”,把对未来的憧憬看成是“0”,是为了说明什么? 提示 要说明只有把握现时,努力工作,才能实现理想。理想越是远大,工作越是努力,数值越是巨大。这是要说明憧憬未来与把握现时要紧紧结合起来,既要有远大志向,又要努力工作。 1.形近字的分辨 ?????)击(阻)(击狙。 。ǔūz j ?????)盘子(舔)犊(舐。。n ti sh ǎì ?????)(薄鄙)(簿财。。ób bu ?????)改(篡)著(纂。 。n cu n zu àǎ

基于MATLAB的优化设计

基于MATLAB的曲柄摇杆机构优化设计 1.问题的提出 根据机械的用途和性能要求的不同,对连杆机构设计的要求是多种多样的,但这些设计要求可归纳为以下三种问题:(1)满足预定的运动规律要求;(2)满足预定的连杆位置要求;(3)满足预定的轨迹要求。在在第一个问题 里按照期望函数设计的思想,要求曲柄摇杆机构的曲柄与摇杆转角之间按照φ=f(?)(称为期望函数)的关系实现运动,由于机构的待定参数较少,故一 般不能准确实现该期望函数,设实际的函数为φ=F(?)(称为再现函数),而再 现函数一般是与期望函数不一致的,因此在设计时应使机构再现函数φ=F(?) 尽可能逼近所要求的期望函数φ=f(?)。这时需按机械优化设计方法来设计曲 柄连杆,建立优化数学模型,研究并提出其优化求解算法,并应用于优化模型的求解,求解得到更优的设计参数。 2.曲柄摇杆机构的设计 在图1所示的曲柄摇杆机构中,l1、l2、l3、l4分别是曲柄AB、连杆BC、摇杆CD和机架AD的长度。这里规定?0为摇杆在右极限位置φ0时的曲柄起始 位置角,它们由l1、l2、l3和l4确定。 图1曲柄摇杆机构简图 设计时,可在给定最大和最小传动角的前提下,当曲柄从?0转到?0+90?时,要求摇杆的输出角最优地实现一个给定的运动规律f(?)。这里假设要求: (?-?0)2(1)φE=f(?)=φ0+2 3π

s=30;qb=1;jj=5;fx=0; fa0=acos(((qb+x(1))^2-x(2)^2+jj^2)/(2*(qb+x(1))*jj)); %曲柄初始角 pu0=acos(((qb+x(1))^2-x(2)^2-jj^2)/(2*x(2)*jj));%摇杆初始角for i=1:s fai=fa0+0.5*pi*i/s; pui=pu0+2*(fai-fa0)^2?(3*pi); ri=sqrt(qb^2+jj^2-2*qb*jj*cos(fai)); alfi=acos((ri^2+x(2)^2-x(1)^2)/(2*ri*x(2))); bati=acos((ri^2+jj^2-qb^2)(/2*ri*jj)); if fai>0&fai<=pi psi=pi-alfi-bati; elseif fai>pi&fai<=2*pi psi=pi-alfi+bati; end fx=fx+(pui-psi)^2; end f=fx; (2)编写非线性约束函数M文件confun.m function[c,ceq]=confun(x); qb=1;jj=5;m=45*pi/180;n=135*pi/180; c(1)=x(1)^2+x(2)^2-(jj-qb)^2-2*x(1)*x(2)*cos(m); %最小传动角约束c(2)=-x(1)^2-x(2)^2+(jj+qb)^2+2*x(1)*x(2)*cos(n); %最大传动角约束ceq=[]; (3)在MATLAB命令窗口调用优化程序 x0=[6;4]; lb=[1;1]; ub=[]; %线性不等式约束 a=[-1-1;1-1;-11];b=[-6;4;4];[x,fn]=fmincon(@optimfun, x0,a,b,[],[],lb,ub,@confun); (4)运行结果

机械优化设计课程教学大纲知识分享

《机械优化设计》课程教学大纲 一.课程基本信息 开课单位:机械工程学院 英文名称:Mechanical Optimize Design 学时:总计48学时,其中理论授课36学时,实验(含上机)12学时 学分:3.0学分 面向对象:机械设计制造及其自动化,机械电子工程等本科专业 先修课程:高等数学,线性代数,计算机程序设计,工程力学,机械原理,机械设计 教材:《机械优化设计》,孙靖民主编,机械工业出版社,2012年第 5版 主要教学参考书目或资料: 1.《机械优化设计》,陈立周主编,上海科技出版社,1982年 2.《机械优化设计基础》,高健主编,机械工业出版社,2000年 3. 其它教学参考数目在课程教学工作实施前另行确定 二.教学目的和任务 优化设计是60年代以来发展起来的一门新学科,它是将最优化方法和计算机技术结合、应用于设计领域而产生的一种现代设计方法。利用优化设计方法可以从众多的设计方案中寻找最佳方案,加快设计过程,缩短设计周期,从而大大提高设计效率和质量。优化设计方法目前已经在机械工程、结构工程、控制工程、交通工程和经济管理等领域得到广泛应用。在机械设计中采用最优化方法,可以加速产品的研发过程,提高产品质量,降低成本,从而达到增加经济效益的目的。学生通过学习《机械优化设计》课程,可以掌握优化设计的基本原理和方法,熟悉建立最优化问题数学模型的基本过程,初步具备对工程中的优化设计问题进行建模、编程和计算的应用能力,为以后从事有关的工程技术工作和科学研究工作打下一定的基础。 三.教学目标与要求 本门课程通过授课、计算机编程等教学环节,使学生了解优化设计的基本思想,优化设计在机械中的作用及其发展概况。初步掌握建立数学模型的方法,掌握优化方法和使用MATLAB优化工具箱能力。并具备一定的将机械工程问题转化为最优化问题并求解的应用能力 四.教学内容、学时分配及其基本要求 第一章优化设计概述(2学时) (一)教学内容 1、课程的性质、优化的含义;优化方法的发展与应用;机械优化设计的内容及目的;机械优化设计的一般过程 2、机械优化设计的基本概念和基本术语;优化设计的数学模型;优化问题的几何描述;优化设计的基本方法 (二)基本要求 机械优化设计的内容及目的。明确优化的含义、任务,性质、内容、明确本课程的研究对象、、1. 2、了解机械忧化设计的一般过程(步骤)。 3、掌握设计变量、目标函数、约束条件以及优化设计数学模型的一般形式。 第二章优化方法的数学基础(6学时) (一)教学内容 1、函数的梯度与二阶导数

2019-2020年高中语文 7 修辞是一个选择过程优化设计 大纲人教版第6册

2019-2020年高中语文 7 修辞是一个选择过程优化设计大纲人教版第6 册 1作者认为:“修辞就是在运用语言的时候,根据一定的目的精心地选择语言材料这样一个工作过程。”作者是怎样解释这个观点的? 明确先举个非常熟悉的例子,再指出容易干扰思路的认识,接着说选择的标准,把一切手段都归之于“选择”,深入浅出地解释了观点。 2怎样理解“修辞不是把话这么装饰那么装饰,更不是自己制造什么花样翻新的说法”这句话? 明确作者为了打消一些人对“修辞”的畏惧感而指出这是一种偏颇认识。为装饰而装饰,便容易忘掉准确、易懂,达不到交流的目的。至于现在一些所谓新的语言,如“新新人类”等一些词汇,有许多是不规范的,而有些新的词汇出现,则是伴随着新事物产生的,另当别论。3作者提出的“选择”的标准是什么?怎样理解这些标准? 明确“选择”的标准,一是准确性、表现力,二是时代性、社会性。这两条标准,一是从普遍性角度看,二是从发展性角度说,联系实际,切中要害。这两条标准的关键还是准确性和表现力,第二条标准是针对实际问题强调的一个方面,仍可以归到准确性和表现力上。而在准确性和表现力之间,又以准确性更为重要。 修辞选择要做到“准确性且有表现力”,需要考虑什么?结合原文和自己的体会,谈谈你的理解。 提示修辞选择要做到“准确性且有表现力”,不仅要考虑主观方面的目的,也要考虑客观方面的要求。 主观范围主要是指自我意识方面,如选择语言材料,用什么样的语言表达准确,借助什么方式进行表达,都可遵循自己的主观意愿。客观是与主观相对的,它主要是指客观要求,它要求选择语言材料时要考虑对象,注意场合,在此基础上采取恰当的说法,注意修养,注意精神面貌。 1.字形辨识 (1)气、汽 气:本义是云气,引申为许多义项。例:空气、气息、上气不接下气、气象、香气、勇气、娇气、受气。 汽:形容为水。义项①:液体或固体受热而成的气体。例:汽车。义项②:特指水蒸气。例:汽船、汽笛、汽锤、汽水、汽车、汽油。 (2)申、伸 申:作“说明”讲。例:申述、三令五申、重申、引申。 伸:指肢体或物体的一部分展开。例:伸展、伸直、延伸。 (3)竖、树 竖:指跟地面垂直的,如“竖井”;树:有建树的意思。所以“竖立”和“树立”是完全不同的两个意思。 2.字形与字音 he 貌合(和)神离 随声附和(合)

机械优化设计MATLAB程序文件

机械优化设计作业1.用二次插值法求函数()()()22 ?极小值,精度e=0.01。 t t =t 1- + 在MATLAB的M文件编辑器中编写的M文件,如下: f=inline('(t+1)*(t-2)^2','t') a=0;b=3;epsilon=0.01; t1=a;f1=f(t1); t3=b;f3=f(t3); t2=0.5*(t1+t3);f2=f(t2); c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=0; while(abs(t4-t2)>=epsilon) if t2f4 f1=f2;t1=t2; t2=t4;f2=f4; else f3=f4;t3=t4; end else if f2>f4 f3=f2;t3=t2; t2=t4;f2=f4; else f1=f4;t2=t4; end end c1=(f3-f1)/(t3-t1); c2=((f2-f1)/(t2-t1)-c1)/(t2-t3); t4=0.5*(t1+t3-c1/c2);f4=f(t4); k=k+1; end %输出最优解 if f2>f4 t=t4;f=f(t4); else t=t2;f=f(t2); end fprintf(1,'迭代计算k=%3.0f\n',k) fprintf(1,'极小点坐标t=%3.0f\n',t) fprintf(1,'函数值f=%3.4f\n',f)

运行结果如下: 迭代计算k= 7 极小点坐标t= 2 函数值f=0.0001 2.用黄金分割法求函数()32321+-=t t t ?的极小值,精度e=0.01。 在MATLAB 的M 文件编辑器中编写的M 文件,如下: f=inline('t^(2/3)-(t^2+1)^(1/3)','t'); a=0;b=3;epsilon=0.01; t1=b-0.618*(b-a);f1=f(t1); t2=a+0.618*(b-a);f2=f(t2); k=1; while abs(b-a)>=epsilon if f1

基于MATLAB的生产过程中最大利润问题的优化设计

基于MATLAB的生产过程中最大利润问题的优化设计

2010-2011 学年一学期研究生课程考核 (读书报告、研究报告) 考核科目:现代设计理论与方法 学生所在院(系):机电工程学院 学生所在学科:车辆工程 姓名:陈松 学号:Y100201802 题目:基于MATLAB的生产过程中最大利润问题的优化设计

基于MATLAB的生产过程中最大利润问题的优化设计 在工厂编制生产计划中,使产品的计划利润最大是通常的目标。可是,在生产过程中,总是有种种条件的限制,使得我们的生产成本增多,从而导致利润并没有达到理想值。为了解决如何在有约束条件下解决最大利润的问题,我们通常将这些有约束的最优化问题转化为无约束最优化问题。而通过MATLAB现成的优化工具箱,我们可以通过调用最佳优化函数求解,从而更好的计算出生产产品所获得最大利润。 1.数学模型的建立

建立数学模型,即用数学语言来描述最优化问题,模型中的数学关系式反 映了最优化问题所要达到的目标和各种约束条件。而通过这些约束条件,我们能更好的制定新的生产计划,以便克服生产过程中的某些不利于生产的约束,从而更大的降低产品生产成本,使利润最大化。 1.1设计变量的确定 设计变量是指设计过程中可以进行调整和优选的独立参数,分为连续变量和离散变量。而本文主要用的是连续变量,设计变量一般表示为: 式中,X i 表示生产产品的台数,而当我们确定了生产每台的利润后,我们 就能知道X i 台的利润。 1.2目标函数的确定 已知某工厂能生产A、B、C三种产品,每月生产的数量分别为X 1,X 2 , X 3,产品每台利润分别为m 1 ,m 2 ,m 3 ,则可知该厂每月的利润为: Y= m 1 *X 1 + m 2 *X 2 + m 3 *X 3 即目标函数为: X * m + X * m + X * m ) ( 3 3 2 2 1 1 = X F 简化为: F(X)= i i X M*i=1,2,3 1.3约束条件的建立 生产A、B、C三种产品需用到四种机器V1、V2、V3、V4,每种机器的生产能力分别为K1、K2、K3、K4,所以有: 1)用V1每月生产的A、B、C三种部件分别为N1、N2、 N3,则:g 1(x)=N1*X 1 +N2*X 2 +N3*X 3 ≤K1 2)用V2每月生产的A、B、C三种部件分别为N11、N12、 N13,则:g 2(x)=N11*X 1 +N12*X 2 +N13*X 3 ≤K2 3)用V3每月生产的A、B、C三种部件分别为N21、N22、N23, 则:g 3(x)=N21*X 1 +N22*X 2 +N23*X 3 ≤K3

matlab(四连杆优化设计)

机械优化设计在matlab中的应用 东南大学机械工程学院** 一优化设计目的: 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 " 二优化设计步骤: 1.机械优化设计的全过程一般可以分为如下几个步骤: 1)建立优化设计的数学模型; 2)选择适当的优化方法; 3)编写计算机程序; : 4)准备必要的初始数据并伤及计算; 5)对计算机求得的结果进行必要的分析。 其中建立优化设计数学模型是首要的和关键的一步,它是取得正确结果的前提。优化方法的选取取决于数学模型的特点,例如优化问题规模的大小,目标函数和约束函数的性态以及计算精度等。在比较各种可供选用的优化方法时,需要考虑的一个重要因素是计算机执行这些程序所花费的时间和费用,也即计算效率。 2.建立数学模型的基本原则与步骤 ①设计变量的确定; — 设计变量是指在优化设计的过程中,不断进行修改,调整,一直处于变化的参数称为设计变量。设计变量的全体实际上是一组变量,可用一个列向量表示: x=。 ②目标函数的建立; 选择目标函数是整个优化设计过程中最重要的决策之一。当对某以设计性能有特定的要求,而这个要求有很难满足时,则针对这一性能进行优化会得到满意的效果。目标函数是设计变量的函数,是一项设计所追求的指标的数学反映,因此它能够用来评价设计的优劣。 目标函数的一般表达式为: 。 f(x)=,要根据实际的设计要求来设计目标函数。 ③约束条件的确定。 一个可行性设计必须满足某些设计限制条件,这些限制条件称为约束条件,简称约束。 由若干个约束条件构成目标函数的可行域,而可行域内的所有设计点都是满足设计要求的,一般情况下,其设计可行域可表示为

商业模式优化设计与企业2次腾飞创新突破培训课程大纲.doc

商业模式优化设计与企业二次腾飞创新突 破培训课程大纲1 商业模式优化设计与企业二次腾飞创新突破培训课程大纲 培训收益: ★终身复训制度:学员结业后,经提前20天申请可返校参加学习,不收取任何费用。结合实践、温故知新,并享受更广阔的平台、与更多的企业家朋友建立友谊。 ★定期沙龙活动:多次组织6—10家海内外知名的金融机构与学员的优秀企业对接,最大程度地解决学员企业融资渠道与上市突破问题。毕业学员亦可重复参与该活动。 ★创新学员联盟:学员毕业即获得联盟编号,纳入创新研修班联盟。定期联盟活动可增进学员交流、缔造产业链和跨产业链战略联盟;共享产业和金融资讯,开阔金融视野,加速企业发展,提升企业竞争力。 教学模式: 班主任带班、组长协调、学员轮流管理制度;[课程+ 互动+ 实践] 三位一体的教学模式 课程:突出当前热点、难点,一流专家零距离面授,剖析最新案例,引领讨论,激发思考和创造。 互动:辅以讲座、沙龙、酒会、标杆参观考察以及小范围座谈、项目对接等灵活有效的互动模式。联合红杉基金、德丰杰全

球创投基金、富达亚洲风险投资、北极光创投、汉能投资、诺德基金、美国中经合、经纬创投、兰馨亚洲、德邦证券、中科创业等诸多精英共同担纲教学与咨询顾问,拓展学员视野。 实践:每门课程都提供实操性工具和模型;授课每6小时学员填写一次收获心得和改进提升承诺表,组长负责每次学习作业的讨论组织,班主任负责学员企业改变提升承诺表的追踪落地。课程中每位学员都会设计出自己企业的商业模式。 参与学习、激发思考、改变创造、实践落地,学习成果才会最终巩固和放大。 游学课堂:(自愿参加) ★国内外著名创新企业考察参观(美国、欧洲、日本、韩国、香港) ★企业家论坛,经验分享、交流互动 ★感商悟道,参与电视台、新媒体合作活动 课程背景: 2000年经济泡沫破裂的模式反思,2008年金融海啸下的商业模式博弈,2009年创业板上市“二高六新”的模式设计、2010年国家十二五战略规划纲要下的模式战略规划……危机与商机并存,商业模式创新经营已经成为企业的竞争常态和腾飞方向。 地上本来没有路,走的人多了,就有了路——企业经营壮大勇于探索;地上本来就有路,走的人多了,就没有路——商业模

30586机械优化设计考纲

高纲1513 江苏省高等教育自学考试大纲 30586 机械优化设计 南京理工大学编 江苏省高等教育自学考试委员会办公室 Ⅰ课程性质与课程目标 一、课程性质和特点 《机械优化设计》是高等工科院校中机械设计制造及其自动化专业现代设计方法模块的一门选修课程,它综合运用先修课程所学到的数学、计算机编程和机械等方面知识与理论,来解决机械工程领域内有关机构、机械零部件、机械结构及机械系统的优化设计问题及机械工程领域的其他优化问题。通过课程的学习可以培养学生运用现代设计理论与方法来更好地解决机械工程设计问题的能力。为进一步深入学习现代机械设计的理论与方法及更好地从事机械工程方面的设计、制造和管理等相关工作打下良好的基础。本课程的特点是数学基础理论与计算机编程语言与机械设计专业知识高度结合的综合课程。 二、课程目标 本门课程通过授课、练习和上机实践等教学环节,使学生树立机械优化设计的基本思想,了解机械优化设计的基本概念,初步掌握建立优化数学模型的基本方法和要求,了解和掌握一维搜索、无约束优化和约束优化中的一些基本算法及各种基本优化方法的特点和相关优化参数的选用原则,具有一定的编制和使用优化软件工具的能力,并具备一定的将机械工程问题转化为最优化问题并求解的应用能力。 三、与相关课程的联系与区别 本课程教学需要的先修课程:高等数学、理论力学、材料力学、机械原理、机械设计、机械制造装备设计、计算机编程语言。 本门课程要利用高等数学中有关偏导数、函数、极值、线性代数和矩阵等知识来

构建优化的方法;利用力学、机械设计和机械制造等方面的专业知识将工程问题转化成规范的优化设计数学模型,并利用计算机编程语言将优化方法和数学模型转化成可以执行的计算机程序,从而得到优化问题的解。因此,它既区别于基础的数学、力学课程和计算机编程语言课,又不同于机械设计和机械制造等机械专业课程,是利用数学方法和编程语言来解决机械工程设计问题的综合性课程。需要培养学生综合应用各选修课程知识解决工程设计问题的能力。 四、课程的重点和难点 本课程的重点内容:机械优化设计的基本概念、一维搜索优化方法、基本的无约束优化方法和约束优化方法。 本课程的次重点内容:机械优化数学模型建立方法和原则、优化设计的数学基础、线性规划方法、多目标和离散变量的优化方法。 本课程的的难点内容:约束优化方法、优化方法在机械工程设计中的实际应用。 Ⅱ考核目标 本大纲在考核目标中,按照识记、领会和应用三个层次规定其应达到的能力层次要求。三个能力层次是递升的关系,后者必须建立在前者的基础上。各能力层次的含义是: 识记(Ⅰ):要求考生能够识别和记忆本课程中有关优化设计数学模型和各种基本优化方法基本概念、基本原理、算法特点、算法步骤等主要内容并能够根据考核的不同要求,做正确的表述、选择和判断。 领会(Ⅱ):要求考生能够领悟和理解本课程中有关优化问题数学建模、求解及各种基本优化方法的概念及原理的内涵及外延,理解各种优化方法的数学基础和求解步骤的确切含义,掌握每种方法的适用条件和优化参数选用原则;理解相关知识的区别和联系,做出正确的判断、解释和说明。 应用(Ⅲ):要求考生能够根据所学的方法,对简单的优化问题求解,得出正确的结论或做出正确的判断。能够针对具体、实际的工程情况发现问题,并能探究解决问题的方法,建立合理的数学模型,用所学的优化方法进行求解,并学会编程或利用现有优化软件求解优化问题。 Ⅲ课程内容与考核要求 绪论 一、学习目的与要求 了解机械优化设计的特点、发展概况以及本课程的主要内容。 二、课程内容 传统设计和优化设计的特点和区别,机械优化设计发展概况及本课程的主要内容。 三、考核知识点与考核要求 1. 传统设计和优化设计 识记:传统设计特点,传统设计流程; 领会:优化设计特点,现代设计流程。 2. 机械优化设计发展概况

matlab与优化设计

机械优化设计课程设计 题目:齿轮减速器最优化设计班级:机械班 成员

2013年6月19日 一.设计题目:二级斜齿圆柱减速器的最优化设计二.设计要求:要求减速器有最小的体积和最紧凑的结

构 三.原始数据: 四.设计内容 1.设计方案的拟定及说明 2.电动机的选择及参数计算 3.带轮的初选与计算 4.计算圆柱斜齿轮的输入转矩、传动比、转速,然 后建立数学模型编写matlab语言程序,运行 程序包括geardesign. m 齿轮系统设计主程序 Gearobjfun. m目标函数子程序 Gearconstr. m 约束条件子程序 Gearparameter.m许用应力计算子程序 5.输出结果

1.该减速器为二级斜齿圆柱减速器,低速级采用二级斜齿圆 柱齿轮传动,选择三相交流异步电动机,v带传动 2.确定电动机的容量: 选择电动机的容量应保证电动机的额定功率大于等于工作机所需要的功率 电动机参数t=60/40=1.5s v=s/t=6.0*10^-3m/s P=0.5FV=0.5*110*60*0.001=3.3kw 1.η=η1* η32*η23*η4*η5 其中齿轮传动η1=0.96滚动轴承η2=0.98齿轮传动η3=0.97联轴器η4=0.99卷筒η5=1.0 η=0.96*0.98^3*0.97^2*0.99*1.00=0.84 P d=3.3\0.84=2.93kw 三,确定电动机的转速 已知压片机的转速40piece/min带传动的传动比i1=2~4 二级齿轮减速器的传动比i2=8~40,所以电动机的转动范围n=i1i2n=640~6400r/min 可行方案如下 确定电动机的转速具体数据如下 计算减速器输入转矩T1,输入转速n,总传动比i

商业模式优化设计与企业二次腾飞创新突破培训课程大纲 (1)

商业模式优化设计与企业二次腾飞创新突破培训课程大纲 培训收益: ★终身复训制度:学员结业后,经提前20天申请可返校参加学习,不收取任何费用。结合实践、温故知新,并享受更广阔的平台、与更多的企业家朋友建立友谊。 ★定期沙龙活动:多次组织6—10家海内外知名的金融机构与学员的优秀企业对接,最大程度地解决学员企业融资渠道与上市突破问题。毕业学员亦可重复参与该活动。 ★创新学员联盟:学员毕业即获得联盟编号,纳入创新研修班联盟。定期联盟活动可增进学员交流、缔造产业链和跨产业链战略联盟;共享产业和金融资讯,开阔金融视野,加速企业发展,提升企业竞争力。 教学模式: 班主任带班、组长协调、学员轮流管理制度;[课程 + 互动 + 实践] 三位一体的教学模式 课程:突出当前热点、难点,一流专家零距离面授,剖析最新案例,引领讨论,激发思考和创造。 互动:辅以讲座、沙龙、酒会、标杆参观考察以及小范围座谈、项目对接等灵活有效的互动模式。联合红杉基金、德丰杰全球创投基金、富达亚洲风险投资、北极光创投、汉能投资、诺德基金、美国中经合、经纬创投、兰馨亚洲、德邦证券、中科创业等诸多精英共同担纲教学与咨询顾问,拓展学员视野。 实践:每门课程都提供实操性工具和模型;授课每6小时学员填写一次收获心得和改进提升承诺表,组长负责每次学习作业的讨论组织,班主任负责学员企业改变提升承诺表的追踪落地。课程中每位学员都会设计出自己企业的商业模式。 参与学习、激发思考、改变创造、实践落地,学习成果才会最终巩固和放大。 游学课堂:(自愿参加) ★ 国内外著名创新企业考察参观(美国、欧洲、日本、韩国、香港) ★ 企业家论坛,经验分享、交流互动 ★ 感商悟道,参与电视台、新媒体合作活动 课程背景: 2000年经济泡沫破裂的模式反思,2008年金融海啸下的商业模式博弈,2009年创业板上市“二高六新”的模式设计、2010年国家十二五战略规划纲要下的模式战略规划……危机与商机并存,商业模式创新经营已经成为企业的竞争常态和腾飞方向。

转向梯形优化设计matlab程序

优化计算MATLAB程序 首先,将目标函数写成M文件,其程序语句如下; function f = fun (x) global K L thetamax alpha for i=1:61 f = 0 betae = atan(tan(alpha(i)/(1-(K/L)*tan(alpha(i)))); A(i)=2*x(1).^2*sin(x(2)+alpha(i)); B(i)=2*K*x(1)-2*x(1).^2*cos(x(2)+alpha(i)); C(i)=2*x(1).^2-4*x(1).^2*(cos(x(2)).^2+4*K*x(1)*cos(x(2))-2*K*x(1)* cos(x(2)+alpha(i)); theta3(i)= 2*acot((A(i)+sqrt(A(i).^2+B(i).^2-C(i).^2))/(B(i)+C(i))); beta(i)=x(2)+theta3(i)-pi; if alpha(i)<=pi/18 f(i)=1.5*abs(beta(i)-betae3(i)); elseif alpha>=pi/18,alpha(i)<=pi/9;f(i)=abs(betaa(i)-betae3(i)); elsef(i)=0.5*abs(beta(i)-betae3(i)); global K L thetamax alpha K=input L=input thetamax=input x0(1)=input

x0(2)=input thetamax = thetamax*pi/180; x0(2)=x0(2)*pi/180;lb(1)=0.17K; lb(2)=0.17*K; ub(1)=acot(K/(1.2*L))ub(2)=pi/2; alpha=linspace (0, theamax ,61); lb=[lb(1),lb(2)]; ub=[ub(1),ub(2)];x(0)=[x0(1),x0(2)]; options = optimset ( ‘TolFun’,‘le-10’,‘TolCon’,‘le-6’) [x,resnorm] = lsqnonlin(‘fun’,x0,lb,ub,options) g lobal K L thetamax alpha K = input L= input thetamax= input x ( 1) = input x ( 2) = input thetamax = thetamax * pi/ 180; x ( 2) = x ( 2) * pi/ 180; alpha= linspace( 0, thetamax , 61) ; fo r i= 1∶61 betae= atan( tan( alpha( i) ) / (( 1- K/ L) * tan( alpha( i) ) ) ) ; A ( i) = 2* ( x ( 1) ) .∧2* sin ( x ( 2) + alpha( i) ) ; B( i) = 2* K* x( 1) - 2* ( x ( 1) ) . ∧2* cos( x( 2) + alpha( i) ) ) ;

(完整word版)优化设计Matlab编程作业

优化设计

无约束优化 min f(x)= 21x +22x -21x 2x -41x 初选x0=[1,1] 程序: Step 1: Write an M-file objfun1.m. function f1=objfun1(x) f1=x(1)^2+2*x(2)^2-2*x(1)*x(2)-4*x(1); Step 2: Invoke one of the unconstrained optimization routines x0=[1,1]; >> options = optimset('LargeScale','off'); >> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options) 运行结果: x = 4.0000 2.0000 fval = -8.0000 exitflag = 1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007 algorithm: 'medium-scale: Quasi-Newton line search' message: [1x85 char] 非线性有约束优化 1. Min f(x)=321x +2 2x +21x -32x +5

Subject to: 1g (x)=1x +2x +18≤0 2g (x)=51x -32x -25≤0 3g (x)=131x -412 2x 0≤ 4g (x)=14≤1x 130≤ 5g (x)=2≤2x 57≤ 初选x0=[10,10] Step 1: Write an M-file objfun2.m function f2=objfun2(x) f2=3*x(1)^2+x(2)^2+2*x(1)-3*x(2)+5; Step 2: Write an M-file confun1.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18; 5*x(1)-3*x(2)-25; 13*x(1)-41*x(2)^2; 14-x(1); x(1)-130; 2-x(2); x(2)-57]; % Nonlinear inequality constraints ceq=[]; Step 3: Invoke constrained optimization routine x0=[10,10]; % Make a starting guess at the solution >> options = optimset('LargeScale','off'); >> [x, fval] = ... fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options) 运行结果: x = 3.6755 -7.0744 fval = 124.1495

MATLAB第12章工程优化设计实例

MATLAB第12章工程优化设计实例 第12章工程优化设讣实例优化设讣的数学模型 优化设讣的数学模型是描述实际优化问题的设计内容、变量关系、有关设计条件和意图的数学表达式,它反映了物理现象各主要因素的内在联系,是进行优化设计的基础。优化设计数学模型的三大要素: ?设计变量 ?约束条件 ? LI标函数 1.设计变量 一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺寸等儿何量,也可以是质量等物理量,还可以是应力、变形等表示丄作性能的导出量。设计变量:在设讣过程中进行选择并最终必须确定的各项独立的基本参数,乂叫做优化参数。 设计变量的全体实际上是一组变量,可用一个列向量表示 2.约束条件 设计空间是所有设计方案的集合,但这些设计方案有些是工程上所不能接受 的。如一个设计满足所有对它提出的要求,就称为可行设计。 一个可行设讣必须满足某些设讣限制条件,这些限制条件称作约束条件,简称约 束。3.目标函数 为了对设计进行定量评价,必须构造包含设讣变量的评价函数,它是优化的口标, 称为LI标函数,以F(X)表示。

FxFxxx ()(),, , , 12n 在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最后求得 F(X)值最好或最满意的X值。在构造LI标函数时,应注意:訂标函数必须包含全部设计变量,所有的设计变量必须包含在约束函数中。 模型输入时需要注意的问题 使用优化工具箱时,山于优化函数要求口标函数和约束条件满足一定的格式,所以需要用户在进行模型输入时注意以下儿个问题: 1.目标函数最小化 优化函数 fminbnd、fminsearchx fminunc、fmincon、fgoalattdin、fminmax 和1 sqnonlin都要求LI标函数最小化,如果优化问题要求LI标函数最大化,可以通过使该LI标函数的负值最小化即-f(x)最小化来实现。近似地,对于quadprog函数提供-H 和-f,对于1 inprog函数提供-f。 2.约束非正 优化工具箱要求非线性不等式约束的形式为Ci(x)?0,通过对不等式取负可以达到使大于零的约束形式变为小于零的不等式约束形式的U的,如Ci (x)?0形式的约束等价于- Ci(x)?0;Ci(x)?b形式的约束等价于- Ci(x)+b?0。 3.避免使用全局变量 Fmincon是mat lab最主要内置的求解约束最优化的函数,该函数的优化问题的标准形式为:1.数学模型标准形式: min f , X, s. t. AX?b ,线性不等式约束, AeqX二beq ,线性等式约束, C(X)?0 ,非线性不等式约束条件,

现代机械优化设计课程论文

现代机械优化设计 摘要:机械优化设计是近年来发展起来的一门新的学科,起始于20世纪60年代,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。在机械应用的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量 关键词:优化设计;方法特点;发展态势 一、机械优化设计的设计思想 机械优化设计是为了适应于不断发展的生产现代化而发展起来的。它建立在数学规划理论和计算机程序设计基础上,通过有效的实验数据和科学的评价体系来从众多的设计方案中寻到尽可能完善的或最适宜的设计方案。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益。 所谓优化设计就是在规定的各种设计限制条件下,将实际设计问题首先转为最优化问题,然后运用最优化理论和方法,在电子计算机上进行自动调优计算,从满足各种设计要求及限制条件的全部可行方案中,选定出最优设计方案。就最优化的理论和方法而言,继古典的微分法和变分法之后,出现有数学规划优化法、准则优化法、混合法及利用遗传算法、人工神经网络的优化方法等。进入21世纪,工程技术人员普及应用最优化方法是必然趋势 1.设计变量 设计变量是指在设计过程中我们必须全面考虑确定的各项独立参数,一旦这些设计参数全部确定了,设计方案也就完全确定了。他们在整个设计过程中相当于一个个变量,变量的多少与数值大小直接影响着优化工作的复杂程度。也就是说,设计变量数目越多,设计空间的维数越大,优化设计工作也就越复杂,同时效益也越显著。因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 2.约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,而优化设计问题大多数是约束的优化问题。针对优化设计数学模型要素的不同情况,可将优化设计方法进行分类。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组设计变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。 3.目标函数 在优化设计过程中,每一个变量之间都存在着一定的相互关系这就是用目标函数来反映。他可以直接用来评价方案的好坏。在优化设计中,可以根据变量的多寡将优化设计分为单目标优化问题和多目标优化问题,而我们最常见的就是多目标函数优化。 一般而言,目标函数越多,设计的综合效果越好,但问题求解越复杂。在实际的设计问题中,常常会遇到在多目标函数的某些目标之间存在矛盾的情况,这就要求设计者正确处理各目标函数之间的关系。对这类多目标函数的优化问题的研究,至今还没有单目标函数那样成熟。 二、机械优化设计的主要特点 在优化设计过程中,每一种优化方法都是针对某一种问题而产生的,都有各自的特点和

相关文档
最新文档