汽车空调电控系统
汽车电控系统中电磁的干扰及检修

汽车电控系统中电磁的干扰及检修随着汽车电子化水平的不断提高,汽车电控系统已经成为了现代汽车中极为重要的部分。
在汽车电子设备日益复杂的今天,电磁干扰成为了影响汽车电控系统正常运行的一个重要因素。
电磁干扰不仅会造成汽车电子设备的故障,甚至对汽车本身的安全性和稳定性产生影响。
对汽车电控系统中电磁干扰的检修工作显得尤为重要。
1. 发动机系统:发动机的高压电磁干扰是汽车电控系统中常见的问题。
特别是在点火系统中,由于高压电流的传输,可能会产生大量的电磁辐射,将对附近的电子设备产生干扰。
3. 空调系统:汽车空调系统中的电动机和压缩机都是较强的电磁辐射源,在运行过程中会产生较大的干扰。
4. 其他系统:除了上述系统外,汽车中还包括了音响系统、防盗系统、导航系统等,这些系统中的电磁干扰同样也需要引起重视。
以上这些都是导致汽车电控系统中电磁干扰的主要来源,因此在汽车电控系统的设计和安装过程中,就需要对这些干扰源进行有效地控制和防范。
二、汽车电控系统中电磁干扰对电子设备的影响1. 系统故障:电磁干扰会直接导致电子设备的故障,例如导航系统出现定位偏移、音响系统出现声音失真等。
2. 系统性能降低:电磁干扰还会造成电子设备的性能下降,例如传感器的精度降低,电控单元的响应速度变慢等。
3. 电子设备寿命缩短:长期受到电磁干扰的影响,会加速电子设备的老化,导致寿命缩短,甚至造成设备损坏。
4. 安全隐患:在某些情况下,电磁干扰可能会引发电子设备的误动作,进而影响到汽车的行驶安全。
以上这些影响都显示了电磁干扰在汽车电控系统中的严重性,因此及时有效地对电磁干扰进行检修显得尤为重要。
1. 电磁屏蔽:对于一些电磁辐射较强的系统,可以在设计和安装时预先加装屏蔽罩或屏蔽材料,有效地减少电磁辐射的产生。
2. 线束布置:对于汽车电磁干扰的检修中,线束的布置也是一个重要的方面。
合理的线束布置可以减少电磁干扰的传导,从而减少干扰的产生。
3. 接地处理:对于一些敏感的电子设备,良好的接地处理同样可以有效地减少电磁干扰的产生。
简述电动空调系统的工作原理

简述电动空调系统的工作原理电动空调系统是一种用于车辆的空气调节系统,其主要作用是调节车内温度、湿度和空气流动,并向车内供应舒适的空气。
这种系统可以通过电动马达控制空调压缩机、风扇、空气进出门和各种传感器等元件,实现对车内气候环境的有效控制。
电动空调系统的主要组成部分包括:压缩机、冷凝器、蒸发器、膨胀阀、风扇、电控系统和各种传感器。
其工作原理可以分为以下几个步骤:第一步,压缩机工作。
电动空调系统的压缩机是一个关键组件,它的主要作用是将低温低压的制冷剂压缩成高温高压的气体,从而使制冷剂在蒸发器中有效地吸收车内热量。
压缩机工作的原理是:当切断压缩机的磁力铁电路时,压缩机内的气体因为压力的变化和温度的改变而发生膨胀,然后通过传动系统将膨胀产生的机械能转化成压缩机的输出功率。
这样,压缩机就可以使制冷剂的压力和温度均升高,并将其送至冷凝器。
第二步,冷凝器散热。
压缩机产生的高温高压制冷剂流经冷凝器后,制冷剂通过与外部空气的热交换而升温,吸收冷凝器的热量。
风扇将外部空气吸入冷凝器并带走其中的热量,从而使制冷剂的温度逐渐降低。
第三步,蒸发器制冷。
制冷剂在经过冷凝器后,进入到蒸发器中。
在蒸发器内,受到膨胀阀的控制,制冷剂压力迅速降低,从而使其温度急剧下降。
接着,通过风扇将车内的空气吸入蒸发器中,并接触到制冷剂,将车内的热量吸收并降温。
制冷剂也从液态变成气态。
第四步,空气进出门调节。
在电动空调系统中,空气进出门主要是通过电控系统来实现。
车内气温和车外气温一般都不同,电控系统会根据车内气温和车外气温的差异来调节外部空气的进出量,从而实现车内温度的控制和调节。
第五步,传感器监测。
电动空调系统中有很多传感器,包括温度传感器、湿度传感器、空气流量传感器等。
这些传感器会监测车内和车外的气温、湿度和空气流量等参数,并将其传输到电控系统中。
电控系统通过这些传感器的信息,来控制空气调节元件,从而实现对车内气候环境的有效控制。
电动空调系统通过控制压缩机、冷凝器、蒸发器、膨胀阀、风扇等元件,实现对车内气候环境的有效控制。
新能源汽车空调控制系统

新能源汽车空调控制系统摘要:传统燃油汽车空调结构主要有:压缩机、冷凝器、蒸发器、膨胀阀、储液罐、控制系统和送风及其管路系统组成。
空调压缩机主要动力来源于发动机,空调主要能耗是压缩机和冷凝器。
大家熟知传统汽车空调工作原理,这里不再介绍,这类空调共同特点是由发动机直接提供动力,消耗发动功率约为20%,且效率转化值不足40%。
如何降低能耗,提高效率一直是空调领域关注的焦点。
新能源汽车空调在结构上大体与传统汽车近似,电动汽车空调制冷系统主要由:电动压缩机、电动压缩机控制器、冷凝器、管路系统(液体管、压缩机排气管、压缩机吸气管)、室内温度传感器、室外温度传感器、阳光传感器、空调主机(蒸发器、加热器、温度风门执行器、模式风门执行器、内外循环风门、鼓风器、蒸发器温度传感器)、膨胀阀、空调控制器等零部件构成。
但是电动汽车空调系统不但要满足汽车制冷需要,还要制热。
目前电动汽车空调制热主要采用PTC加热和电热管加热的两种模式,由于系能源电动汽车动力取自电动机,能量来源与动力电池,所以多数国内车企在使用电动压缩机直接利用蓄电池供电带动其工作,虽然电动压缩机比就流行使用无刷永磁直流电动机,电子控制单元等是其结构简单,体积小、制冷效率高,但是仍然影响电动汽车的续航里程,而且制热的效率也不高。
鉴于目前新能源汽车空调现状,其明显的缺陷制约着我国新能源电动汽车的普及。
特别是北方地区,冬季车内制热可损失大约50%的续航里程。
如果我国要在全国范围内推广新能源电动汽车一些关键技术还亟需解决。
关键词:空调;新能源;汽车;控制一:新能源汽车空调系统发展趋势未来新能源汽车空调系统的发展趋势还是集中在高效控制,节能环保上来。
在空调控制方面上,传统汽车空调目前采用ECU电控系统加“变排量控制”。
在效率上有所提升。
新能源电动汽车采用电动压缩机,在电控领域我们可以借鉴家用空调的控制模式采用“变频控制”,目前各空调厂家已经研究交流变频电动压缩机,而且变频空调在技术上比较成熟,主攻方向是车内的应用。
学习情境1

•
上一页 下一页
返回
任务1电控空调制冷系统不制冷 故障的检测与修复
• 此外,除了普通自动空调所用的传感器之外,电控空调系统还利用 发动机冷却液温度、车速和节气门位置等传感器信号。现代轿车上用 得最多的就是电控空调。
• 2.汽车电控空调制冷系统主要部件的结构与工 作原理
• 汽车电控空调制冷系统主要由制冷循环系统与电气控制系统两大部 分组成。
•
•
④BI-LEV键。此键是混合气按键,其工作位置、温度、鼓风机转 速的调节与AUTO键功能相同,但空气的分配不同,暖风和冷风按给 定的路线以相同的流量从中央出风口和下出风口吹出,只有少量空气 吹到挡风玻璃上。
上一页 下一页
返回
任务1电控空调制冷系统不制冷 故障的检测与修复
• • ⑤DEF键。此键是除霜键,按下此键,大部分空气通向风窗玻璃进 行除霜、除雾。此时空调鼓风机以高速运转。 ⑥WARMER和COOLER键。此键用来调节车内温度,范围在 18℃~29℃,按一下WARMER键,温度可升高1℃,超过29℃时,显 示“HI”;按一下COOLER键,温度下降1℃,低于18℃时,显示 “LO”。 HI和LO分别对应于全自动空调的最大采暖和最大制冷能力,在这 两个位置上温度自动调节不起作用。
• •
温低压雾状制冷剂进入蒸发器,同时分隔了制冷系统的高、低压侧。
上一页 下一页
返回
任务1电控空调制冷系统不制冷 故障的检测与修复
• • b)根据制冷负荷以及压缩机转速的改变,及时调整制冷系统循环的 制冷剂量,以保持制冷剂的正常工作及车内温度的稳定。 c)以感温包作为感温反馈元件,保证蒸发器出口有合适的过热度, 防止液态制冷剂进入压缩机产生液击,并使蒸发器的容积得到有效利 用。 热力膨胀阀根据平衡方式可分为内平衡式和外平衡式两种;根据外 形可分为F形、H形等。 如图1-12所示为内平衡式膨胀阀工作原理示意图。膨胀阀膜片承受 3个力的作用,分别是:Pf表示感温包内制冷剂气体对膜片的压力;Pe 表示蒸发器进口处制冷剂压力;Ps表示弹簧的弹力。
汽车电控系统工作原理

汽车电控系统工作原理
汽车电控系统是现代汽车中至关重要的一部分,它负责监控和控制车辆的各种功能,以确保车辆的安全性、性能和燃油效率。
汽车电控系统包括发动机控制单元(ECU)、变速器控制单元、刹车控制系统、空调控制系统等。
这些系统通过传感器和执行器之间的信息交换和控制来实现汽车的各种功能。
汽车电控系统的工作原理可以简单概括为以下几个步骤:
1. 传感器采集数据,汽车上安装了各种传感器,如氧传感器、车速传感器、油门位置传感器等,它们负责监测车辆的各种参数,如发动机转速、车速、油门开度等。
2. 数据处理,传感器采集到的数据被送往发动机控制单元(ECU)等控制单元,这些控制单元会对数据进行处理和分析,以确定最佳的控制策略。
3. 控制执行器,根据处理后的数据,控制单元会向执行器发送指令,比如调整发动机点火时机、喷油量、变速器换挡等,以实现最佳的动力输出和燃油效率。
4. 反馈控制,在执行器执行指令后,传感器会再次采集数据并反馈给控制单元,以便对控制策略进行调整和优化。
通过这样的过程,汽车电控系统可以实现对发动机、变速器、刹车等关键部件的精准控制,以确保车辆的性能、安全性和燃油效率。
同时,汽车电控系统也为汽车后续的智能化发展提供了基础,例如自动驾驶技术的实现离不开先进的电控系统。
总的来说,汽车电控系统的工作原理是通过传感器采集数据、控制单元处理数据、执行器执行指令和反馈控制的循环过程,以实现对车辆各种功能的精准控制和优化。
这一系统的不断创新和发展将为汽车行业带来更多的便利和安全性。
浅谈新能源汽车空调系统工作原理与检修注意事项

浅谈新能源汽车空调系统工作原理与检修注意事项随着新能源汽车的逐渐普及,其空调系统也成为了一个非常重要的组成部分。
新能源汽车空调系统与传统汽车空调系统相比,在工作原理和维修保养等方面都有一些不同。
本文将对新能源汽车空调系统的工作原理和检修注意事项进行简要介绍。
新能源汽车空调系统通常采用电动压缩机,通过电池为主要能源,将电能转换为机械能,压缩制冷剂,从而达到降温的目的。
具体工作原理如下:1. 压缩机工作原理电动压缩机是新能源汽车空调系统的核心部分。
其工作原理与传统汽车空调系统中的压缩机相似,都是通过压缩制冷剂将其压缩成高压高温气体,然后通过传统汽车空调系统中的蒸发器和冷凝器来实现热交换,从而达到制冷和加热的目的。
不同的是,电动压缩机是由电池直接驱动的电动机,不需要内燃机来驱动,具有零排放和低噪音等优点。
2. 制冷剂循环原理新能源汽车空调系统的制冷剂循环原理与传统汽车空调系统相同。
制冷剂在压缩机的作用下被压缩成高温高压气体,然后由高压管路送往冷凝器,在冷凝器中进行散热,变成高压液体,然后由扩散阀调节,进入蒸发器,在蒸发器中蒸发降温后,再由吸气管路返回压缩机,循环往复。
3. 控制系统工作原理新能源汽车空调系统的控制系统由电控单元、传感器和执行器等部分组成。
电控单元通过传感器采集空调系统各个部分的参数,并对空调系统进行控制和调节。
执行器包括电动压缩机、扩散阀和风机等部件。
电控单元通过控制执行器的功率,实现空调系统的各项控制功能。
新能源汽车空调系统的维护和保养相对于传统汽车空调系统更为重要,因为其组成部件相对更加精密,部件之间的匹配也更为复杂。
以下是一些需要注意的维修保养事项:1. 定期清洁空调系统新能源汽车空调系统在运行时会吸入空气和灰尘等杂物,如果长时间不清洗,就会影响空调系统的工作效率和寿命,甚至可能导致系统故障。
应定期清洗空调系统并更换滤芯。
2. 正确使用空调系统新能源汽车空调系统使用中,尽量避免突然制冷或加热等剧烈变化,应逐渐调整空调状态。
汽车空调控制系统及配风方式

第六章汽车空调掌握系统及配风方式6.1 手动调整的汽车空调系统目前,大多数中级轿车都采纳手动调整的汽车空调系统。
该系统是依靠驾驶 员拨动掌握板上的各种功能键实现对温度、通风机构和风向、风速的掌握。
下面 以国产BJ2021型汽车为例介绍手动调整的汽车空调系统。
空调掌握板空调掌握板安装在驾驶室前壁,由驾驶员操纵。
板面布局如图5-1所示。
空调掌握板上设有三个掌握开关,分别是风机开关、空调方式选择开关和温 度选择开关。
1 .风机开关风机开关设有四个不同的转速挡位,以掌握风机四种不同的转速。
风机为始 终流电动机,其转速的转变是通过调整串入风机电路的电阻来实现的。
风机调速电阻安装在风机罩的左前方,暴露在风道内,与它串联的还有一个 限温开关,当温度超过某一值时,开关断开。
风机调速电阻如图5-2所示。
风机除在停用状态不工作外,在制冷、取暖及通风状态下均可工作。
2 .空调方式选择开关图5-2风机调速电阻结构图 I-限温开关2一调速电阻3一安装板图5・1空调控制板结构图1 一风机开关2一空洞方式选择开关3 —温度选择开关空调方式选择开关用于确定空调系统的功能,即要求空调是制冷、取暖、通风还是除霜。
通过驾驶员拨动开关可处在七个不同的位置:OFF一停止位置;MAX一最冷位置;NoRM 一中冷位置;BILEVEL 一微冷位置;HEAT 一取暖位置;VENT 一通风位置; 一除霜位置。
此外,在掌握板的后面,设有真空掌握开关。
当驾驶员操纵空调方式选择开关时,真空掌握开关随之联动,通过转变真空 通路掌握真空驱动器来调整各风门的状态及热水阀的开度。
3 .温度选择开关温度选择开关是掌握温度门的开关,用钢丝和温度门连接。
温度选择当开关 处于左半区(称之为冷风区)时,温度门关死通向加热器的风道,出来的空气是未 经加热的空气。
当开关处于右半区(称之为热风区)时,温度门打开通向加热器的 风道,送入车内的空气是经过除湿后的暧空气。
温度选择开关可在左右两半区无 级连续调整,可停在任意位置,对应温度门也有确定的位置。
奥拓轿车空调电控系统

维普资讯
空调放大器和水温表相连。它是一个负温 : 接着 B路接通。 度系数热敏电阻 ,当发动机冷却水温度过 : 5 .点火控制 :当空调启 动开关接通 、 高 时 , 开 压缩 机 、 断 减轻发 动机 负载 。 ;点火 开关 位 于 s 时 , 了便 于 发 动机启 T档 为 蒸发 器 温度 传 感 器 :位 于蒸发器 出风 :动 , 时 B路 断 电 , 点火 开 关从 S 这 当 T挡 回 口处 . 也 是一 支负 温度 系数 热 敏 电阻 , 它 用 位至 O N时 . 时 0 8± . 秽 后 压缩机 电 延 . 01
.
动 起 开 是 l 挂风 机 开 关 1 .挂 风 电 葡 机 6 7线来自邑 : 一虹 Rc 一缝
B 一黑 B L一 兰
一黄 W 一白 P一柠 缸
0一拉 G 一点 y
1 空 调 控 制放 大嚣 它位 于车 内仪 表 台顿 右 下角 它通 过 一个 1 脚 针式 插头 4 ( 2 图 )与空 调 电控 系统 的其他部 分 以及整 车 电控 系统 相莲 , 是空 调控 制 中心 。 主要 这 由一个 双 运算 放大 器 ( 对输 入信 号进 行 延 时 、磁 滞处 理 ) 、一个 A T 的专用 f4 6 SI c82 ( 输 入信号 进行 逻辑处 理 . 一个典 型的 对 是 可编程 阵列 器件 ) 用于驱 动怠速 提井 电磁 了确 保整 车 的 加速 蛀能 ,当油 门踏板 踏 下 、 阀 和压 缩 机 电蹴离台 器 的驱动 三极 管 。 、 6 %行 程时 , 1 0 开关 动作 , 空调压缩 机 电磁 使 Q 2和继 电器 J 构成 。 i 离合器 断 电 .压缩机 暂时 脱离 发动 机 以减 2 .传 感 器 加 速 切 断 开 美 : 于 油 门 轻其 负荷 。 位 踏 板 下 方 。 于 奥 拓 轿 车发 动 机 排 量 小 , 由 为 水温 待 蒋 器 : 于 发 动 机 出水 口赴 , 位 与
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
5.1电磁离合器控制电路
汽车空调压缩机电磁离合器电路中主要有:A/C开关、 制冷剂高低压开关、制冷剂温度开关、冷却液温度开关、 压缩机过热开关等控制元件。压缩机是否正常工作由其 控制元件及其控制电路决定。 压缩机工作方式分为三种:手动空调压缩机控制、半自 动空调压缩机控制、全自动空调压缩机控制。
22
压力开关与电脑组合控制冷却风扇
23
电控液力马达冷却风扇电路
24
6.2.2 汽车空调系统典型实例电路
桑塔纳汽车 空调控制电路
夏利轿车 空调控制电路
25
桑塔纳汽车空调控制电路
26
夏利轿车空调控制系统电路
27
6.3 自动控制ECU系统
1.自动控制(ECU)空调控制面板 2.自动控制(ECU)空调系统功能 3.自动控制(ECU)空调组成 4.自动控制(ECU)系统工作原理
16
风机电阻
调速电阻 限温开关
17
晶体管与调速电阻组合
18
晶体管控制风机电路
熔丝 继电器
点火开关 熔丝 鼓风机开关 蓄电池
鼓风机器风扇控制电路
冷凝器/散热器风扇控制电路通常由A/C开关、冷却液温度开 关、制冷剂温度开关、制冷剂压力开关、继电器等元件组成。 车型不同,则配置风扇的数量不同,控制线路设计方面差异 也很大,但其控制方式则大同小异,下面就一些较典型的冷 凝器散热风扇电路进行分析。
13
怠速继电器
怠速继电器是当发动机处于怠速工况时,自动切断电磁离合器 电路,停止发动机驱动压缩机来稳定发动机怠速工况的装置。
接电源+
接点火线圈
接电磁离合器
接电源-
14
怠速提升控制系统
怠速提升控制 电磁阀(VSV)
真空 单向阀 源螺塞 发动机进气歧管
怠速提升阀
怠速调 化油器节气门
整螺钉
15
2.鼓风机控制电路
波纹管 式
双金属 片式
热敏电 阻式
4
波纹管式温控器
电磁离合器 蓄电池 熔丝
开关
定触点动触点 摆动框架
波纹管式温控器
波纹管 调节凸轮 毛细管 感温包
一种热力机械式温 控开关,它是将一 根由毛细管连接的 温度传感器(感温 包)安装在需要测 温的部位,通常是 插在蒸发器中间。
5
双金属片式温控器
引线
双金属片 动触点 定触点 温控器壳体
28
自动控制空调控制面板
显示屏
停止键 经济 空调开关 模式
真空开
线与晶体管电
关阀
蓄电池 子线路相连,
电 磁 离空 合调 器工
况
冷凝器风 扇继电器
由于温度变化 使热敏电阻的
通往调
阻值发生变化,
节器(冷凝器风扇 空调发电机)
从而控制电路 的接通或断开。
指
示灯
7
5.2 汽车空调自动控制部件
5.2.2 时间-温度延时继电器
在非独立式空调系统中,当发动机发出最大转矩慢速爬坡 时,发动机的冷却液温度会升得很高,这时由于车速较慢, 正面冲刷的冷却风量减少,致使散热器中的冷却液温度超 过127 ℃。功能如下: A. 切断压缩机离合器的电路,压缩机停止运行,使发动机负 荷减轻,让冷却液温度降低,冷凝器温度亦相应降低,从 而保护了发动机和冷却系统的正常运行。 B. 在发动机第一次启动时,延迟空调压缩机启动0.5~1 min,以使发动机运转稳定后再驱动空调系统。
2
手动空调压缩机控制
接蓄电 池正极
温控器
压力开关
冷气 水温 继电器 开关
空调及鼓 风机开关
压缩机 工作指示灯
电磁 离合器
冷凝器风扇电机
鼓
风 机 电
鼓风机 调速电阻
机
压缩机电磁离合器/鼓风机控制电路
蓄电池
3
5.2 汽车空调自动控制部件
5.2.1 温度控制器
温度控制器(简称温控器)是汽车空调的温度控制部件。 在离合器控制的制冷系统中,温度控制器有三种形式:
怠速控制器 汽车加速断开器
12
怠速控制器
发动机怠速控制器有两种类型: 一种是自动切断压缩机的离合器电路,使制冷系统 停止工作,减轻发动机负荷,稳定发动机的怠速性 能; 另一种是当发动机怠速并需要使用制冷系统时,发 动机能自动加大节气门开度,使发动机在怠速时转 速提高,既能保证有足够的动力维持制冷系统工作, 又能保证自身正常运转。
9
高低压组合开关
压力引入口 低压保护 动触点
低压保护定触点 弹簧 接
压力引入口
线
柱
高压保护动触点
销子
金属 高压保护
(和膜片一体) 膜片 动触点
高压保护定触点
低压保护动触点
10
三位压力开关工作过程
弹簧 隔膜
接点 (ON)
2-接点(OFF) 3-碟形弹簧
11
5.2 汽车空调自动控制部件 5.2.4汽车空调运行工况的控制装置
❖ A/C开关和水温开关联合控制型 ❖ 制冷剂压力开关与水温开关组合控制型
❖ 压力开关与电脑组合控制型
20
A/C开关和水温开关联合控制型电路
低速继电器
高速继电器
限速电阻
冷却风扇电机
A/C开关
发动机ECU
高压开关
压缩机电磁离合器
低压开关 蒸发器温度传感器
温度控制器
水温开关
21
丰 田
LS
400 冷 却 风 扇 系 统 电 路 图
8
5.2汽车空调自动控制部件 5.2.3 制冷系统压力开关
低压开关
保护压缩机在制冷 剂泄漏、压力过低 情况下不空转,避 免压缩机因缺乏润 滑油而损坏;同时 也起到低温环境保 护作用,以免增加 不必要功耗。
高压开关
高压开关是防止系 统在异常高压下工 作,保护系统不受 损坏。
三位压力开关
三位压力开关由 隔膜、碟形弹簧、 轴和接点组成。 接点包括低压接 点、高压接点及 用于控制冷凝器 风扇或发动机冷 却风扇的接点。
双金属片式温控器由两片膨胀系数不同的金属片组成,双金属 片上的触点为动触点,壳体上的触点为定触点。
6
热敏电阻式温控器工作原理图
调温电阻(点画线为放大器, ①~⑥为放大器接点)
可变电阻
热敏电阻
空调开关 点火开关 压力开关
热敏电阻式温 控器装在蒸发
器的出口用以
电磁线圈
检测蒸发器的
触点
熔丝
出口温度,热
敏电阻通过导
要使车内有个舒适的环境,除了控制车室温度,还应控 制送风量,即控制风机转速,以适应环境变化,满足驾驶员 和乘客的不同需求。
鼓风机调速一般通过改变线路中电阻来实现,根据控制 方法不同可分为以下三种形式: (1)手动鼓风机开关和调速电阻控制 (2)电控模块通过大功率晶体管控制 (3)晶体管与调整电阻器组合型