解析几何专题复习

合集下载

高三数学二轮复习专题突破课件:解析几何

高三数学二轮复习专题突破课件:解析几何
3
A.[1,+∞) B.[-1,- )
3
C.( ,1]
4
4
D.(-∞,-1]
答案:B
解析:∵y=kx+4+2k=k(x+2)+4,所以直线过定点(-2,4),曲线y=
4 − x 2 变形为x2+y2=4(y≥0),表示圆的上半部分,当直线与半圆相切时直线斜
3
率为k=- ,当直线过点(2,0)时斜率为-1,结合图象可知实数k的取值范围是
a=2
所以 ሺ2 − 3 − ሻ2 + 2 = 2 ,解得 b = 1 .
r=2
2 + ሺ1 − ሻ2 = 2
所以圆的方程为(x-2)2+(y-1)2=4.
4.[2023·广东深圳二模]过点(1,1)且被圆x2 +y2 -4x-4y+4=0所
x+y-2=0
截得的弦长为2 2的直线的方程为___________.
-2)的距离为 2 − 0 2 + 0 + 2 2 =2 2,由于圆心
α
2
5

2 2 2 2
α
αபைடு நூலகம்
α = 2sin cos =
2
2
与点(0,-2)的连线平分角α,所以sin =
10
α
6
, 所 以 cos = , 所 以 sin
4
2
4
10
6
15

× = .故选B.
4
4
4
r

(2)[2023·河南郑州二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2
解析:圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,
圆心为(2,2),半径r=2,

专题七 解析几何专题复习

专题七 解析几何专题复习

专题七、解析几何1、解析几何(椭圆、双曲线、抛物线)1、椭圆18y 16x 22=+的离心率为( )A.31 B. 21C. 33D. 222、设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线x =32a上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A. 21B. 32C. 43D. 543、中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点P (4,-2),则它的率心率为( )A.6B.5 C.26 D. 25 4、已知直线l 过抛物线C 的焦点,且与抛物线C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( ) A.18 B.24 C.36 D.485、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=34,则C 的实轴长为( ) A.2 B. 22 C.4 D.86、已知抛物线y 2=2px (p >0)的焦点为F ,点P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A.|FP 1|+|FP 2|=|FP 3|B.|FP 1|2+|FP 2|2=|FP 3|2C.2|FP 2|+|FP 1|=|FP 3|D.|FP 2|2+|FP 1|²|FP 3|7、双曲线221102x y -=的焦距为( ) A . 23 B. 24 C.33 D. 34 8、已知一正方形的两顶点为双曲线C 的两焦点,若另外两个顶点在双曲线上,则双曲线C 的离心率e =( ) A.13+ B.12+ C.215+ D. 2122+9、已知F 1、F 2是椭圆191622=+y x 的两焦点,过点后的直线交椭圆于A ,B 两点,若|AB|=5,则|AF 1|+|BF 1|=( )A.16B.11C.10D.910、设抛物线y 2=8x 的焦点为F ,准线为l,P 为抛物线上一点,P A ⊥l ,点A 为垂足,如果直线AF 的斜率为-3,那么|PF |=A. 34B. 8C. 38D.1611、已知双曲线1366422=+y x 的焦点为F 1,F 2,点P 在双曲线上,且 ∠F 1PF 2=60°,则△F 1PF 2的面积为( )A.18B. 324C. 336D.3212、已知双曲线C :12222=+by a x (a >0,b >0)半焦距为c ,若直线y =2x 与双曲线的一个交点A 横坐标为c ,则双曲线的离心率为( ) A.222+ B. 2122+ C. 13+ D.12+13、双曲线112422=-y x 的焦点到其渐近线的距离是( ) A. 32 B.2 C. 3 D.114、已知椭圆12222=+by a x (a >b >0),左焦点F (-C.0),右顶点B (a.0)与短轴的一个端点C 的连线构成的三角形恰好为直角三角形,则该椭圆的离心率是( ) A.221+- B. 231+- C. 21D.215、已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线 1222=-y ax (a >0)的顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a =( )A. 251B. 91C. 51D. 3116、设F 1, F 2分别为双曲线12222=-by a x (a >0,b >0)的左,右焦点,若双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为( )A.3x ±4y =0B.3x ±5y =0C.4x ±3y =0D.5x ±4y =0 17、过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若|AB|=8,则P=( )A.8B.6C.4D.2。

【高考数学复习 解析几何专题】第9讲 巧用同构-解析版

【高考数学复习 解析几何专题】第9讲 巧用同构-解析版

第9讲 巧用同构 知识与方法1.同构式指的是除了变量不同,其余均相同的代数式.如果实数,a b 满足()()0,,,0,f a a b f b ⎧=⎪⎨=⎪⎩是方程()0f x =的两个根.在解析几何中,变量,a b 常以点的坐标或斜率作为同构变量,便于构建坐标或斜率之间的关系,其几何形式是“一点双线”同构模型,“双线”往往是“双切线”或“双割线”,最典型的结构图是“阿基米德三角形”. 2.圆锥曲线的切点弦(1)定义:从圆锥曲线外一点向圆锥曲线引两条切线,那么经过两切点的圆锥曲线的弦叫做切点弦. (2)切点弦方程:(1)设()00,P x y 为圆222x y r +=外一点,则切点弦方程为200x x y y r +=;(2)设()00,P x y 为椭圆22221x y a b +=外一点,则切点弦方程为00221x x y ya b +=;(3)设()00,P x y 为双曲线22221x y a b -=外一点,则切点弦方程为00221x x y ya b -=;(4)设()00,P x y 为抛物线22y px =外一点,则切点弦方程为()00y y p x x =+.典型例题【例1】如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内,A B 两点,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB 恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r 的值.【分析】(1)直线l 过定点4,05P ⎛⎫- ⎪⎝⎭,则可得点,A B 的横、纵坐标的乘积为定值,考虑将12k k +用,A B 的坐标来表示.(2)是“一点双线”的同构模型,可由切线性质d r =得以斜率k 为主元的同构方程.【解析】(1)设4:(0)5l x ty t =->,代人24y x =,得22166440,Δ16055y ty t -+==->,得t >设点221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1212164,5y y t y y +==.()121212124445y y k k t y y y y ++=+==>所以12k k +的取值范围是()25,∞+. (2)由(1)知1212165k k y y ==,设过原点且与圆相切的直线为y kx =,r =,整理得()2221440r k k r --+-=.2122451r k k r -==-,得214r =,所以12r =. 【点睛】本题主要涉及直线与抛物线的位置关系,直线与圆相切的性质运用.在解决抛物线上两点连线的斜率时,用点的坐标差构建斜率是重要方法;对于双切线的同构模型,以斜率为同构变量是本题处理的自然方式.【例2】双曲线C 与椭圆22184x y +=有相同的焦点,直线y =为C 的一条渐近线. (1)求双曲线C 的方程;(2)过点()0,4P 的直线l 交双曲线C 于,A B 两点,交x 轴于点Q (点Q 与双曲线C 的顶点不重合).当12PQ QA QB λλ==,且1283λλ+=-时,求点Q 的坐标.【分析】【例】的核心条件是12PQ QA QB λλ==,变量12,λλ的“地位”是平等的,于是考虑将其坐标化,寻求变量12,λλ的同构方程.此外,从设线的视角,尝试以直线l 的斜率k 为主变元表示12,λλ及点Q 的坐标.【解析】(1)设双曲线方程为22221(0,0)x y a b a b -=>>.由题意得22844,ba b a+=-==,所以1,a b ==双曲线C 的方程为2213y x -=.(2)由题意知直线l 的斜率k 存在且不为零.设直线l 的方程为4y kx =+,则可求点4,0Q k ⎛⎫- ⎪⎝⎭.设点()()1122,,,A x y B x y .因为11144,,4,,PQ QA PQ QA x y k k λ⎛⎫⎛⎫==--=+ ⎪ ⎪⎝⎭⎝⎭,所以111144,4.x kk y λλ⎧⎛⎫-=+⎪ ⎪⎝⎭⎨⎪-=⎩所以1111411,4.x k y λλ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪=-⎪⎩因为点()11,A x y 在双曲线22:13y C x -=上,所以222116116113k λλ⎛⎫+-= ⎪⎝⎭. 所以()222111616321603k k λλ-++-=. 同理可得()222221616321603k k λλ-++-=. 若2160k -=,则4,k l =±过双曲线的顶点,不合题意, 所以2160k -≠,所以12,λλ是一元二次方程()2221616321603k x x k -++-=的两个根, 因为122328163k λλ+==--,验知Δ0>,所以2k =±. 所以点Q 的坐标是()2,0±.【点睛】“设直联曲”是解决本题的基本方法.从几何形式看,同构形态不明显;从代数视角看,才可以发现以12,λλ为同构变量. 【例3】已知抛物线2y x =和()22:11C x y ++=,过抛物线上的一点()()000,1P x y y ,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 的斜率;(2)求ABP 面积的最小值.【分析】对于(1),可设直线PB 的斜率为k ,运用切线性质求出PB 的斜率.对于(2),以坚线段AB 为底,P x 为高,考虑以两切线在y 轴上的截距12,m m 为同构变量,将ABPS表示为()0f x ,进而求最小值.【解析】(1)抛物线的焦点为1,04F ⎛⎫⎪⎝⎭,设切线PB 的斜率为k .则切线PB 的方程为14y k x ⎛⎫=- ⎪⎝⎭,即104kx y k --=.点C 到切线PB1=,所以43k =±.因为点()()000,1P x y y ,所以43k =. (2)设切线方程为y kx m =+,由点P 在直线上得00y m k x -=(1)圆心到切线的距离21210m km =⇒--=(2)将(1)式代人(2)式得()2000220x m y m x +--=(3)设方程的两个根分别为12,m m . 由韦达定理得001212002,22y xm m m m x x +==-++, 从而12AB m m =-=所以)00112ABPSAB xx ==.记函数()()()22231(2)x x x f x x x +=+,则()()223211180(2)x x x f x x '++=>+,所以ABPS的最小值为23,当01x =时取得等号. 【点睛】本题的关键是以切线截距12,m m 为同构变量,将ABPS 表示为()0f x ,其中双切线是常见的同构模型.【例4】已知点()00,A x y 在抛物线24y x =上,,P Q 是直线2y x =+ 上的两个不同的点,且线段,AP AQ 的中点,M N 都在抛物线上. (1)求0y 的取值范围;(2)若APQ 的面积等于求0y 的值.【分析】对于(1),设点()(),2,,2P a a Q b b ++,线段,AP AQ 的中点都在抛物线上,得到,a b 的同构方程,继而通过对应方程解得0y 的取值范围.对于(2),将APQ 的面积表示为同构变量,a b 的关系式.【解析】(1)设点()(),2,,2P a a Q b b ++.因为点200,4y A y ⎛⎫ ⎪⎝⎭,则AP 的中点20042,82y a y a M ⎛⎫+++ ⎪⎝⎭,代人24y x =,得()2200042440a y a y y ---++=.同理可得()2200042440b y b y y ---++=.所以,a b 是方程()2200042440x y x y y ---++=的两个根, 所以()()22200000Δ424448320y y y y y =---++=->,解得04y >或00y <.(2)点A 到PQ的距离2d ==,由韦达定理可知,200042,44a b y ab y y +=-=-++,则PQ b =-==所以21122APQSPQ d =⋅=⋅=t =,则38240t t +-=,即()()222120t t t -++=,解得2t =,即20440y y --=,解得02y =±【点睛】已知两条线段的中点在曲线上,是得到同构方程的显性条件,利用所得同构方程的判别式得到变量的限制条件,运用韦达定理构建变量之间的关系.此类方法的运用值得关注.【例5】已知点()2,4P 和抛物线2y x =,动圆()()22:11C x y m m +-=> (1)若Q 是圆C 上任意一点,且4PQ 恒成立,求实数m 的取值范围;(2)如图,过点P 作圆C 的切线分别交抛物线于点,A B ,若直线AB 恰与圆C 相切,求实数m 的值.【分析】(1)PQ 的最值当且仅当,,P Q C 三点共线时取到.(2)由于直线AB 恰与圆C 相切,于是考虑以双切线的斜率表示点,A B 的坐标,进而得到直线AB 的方程;也可考虑设点()()22,,,A a a B b b 表示直线方程. 【解析】(1)由题意知,min ||114PQ PC =+=,得4545m -+.又1m >,故m的取值范围是4⎡⎣.(2)方法1设直线,PA PB 的斜率分别为12,k k ,直线PA 的方程为()142y k x -=-,即11240k x y k --+=.直线PB 的方程为()242y k x -=-.由直线PA 与圆22:()1C x y m +-=相切,1=,整理得()22113448150k m k m m +-+-+=.同理可得()22223448150k m k m m +-+-+=.所以12,k k 是方程()223448150k m k m m +-+-+=的两个不同的根, 则()()2121244815,.*33m m m k k k k --++=-=又由点差法知,12,2PA P A A A k x x x x k =+=++=,即12A x k =-, 所以点()()2112,2A k k --. 同理可得点()()2222,2B k k --.直线AB 的方程为()A B A B y x x x x x =+⋅-,即()()()1212422y k k x k k =+----,即()()121212424y k k x k k k k =+--++-.将()*代人上式,整理得()241350m x y m ---+=. 由直线AB 与圆C 相切,1=,化简得3261720m mm +-+=,即()()22810m m m -+-=,解得2m =或4m =-±因为1m >,所以2m =.方法2设点()()22,,,A a a B b b ,则2422APa k a a -==+-.所以()()2:2AP y a a x a -=+-,即()220a x y a +--=. 因为圆C 与AP 相切,所以1d ==,整理得()2234450a m a m +-+-=.同理可得()2234450b m b m +-+-=.所以,a b 为方程()2234450x m x m +-+-=的两个根,则()2445,.*33m m a b ab --+== 从而()()222,:ABa b k a b AB y a a b x a a b-==+-=+--,即()y a b x ab =+-. 将()*代人上式,得2445:33m m AB y x --=+,即()244350m x y m --+-=. 又因为圆C 与AB 相切,所以1d ==,化简得3261720m m m +-+=,即()()22810m m m -+-=, 解得2m =或4m =-因为1m >,所以2m =.【点睛】运用设点法,得到关于,a b 的同构方程,能有效减少运算量.在抛物线中,运用点差法构建直线的斜率,进而表示直线方程,是解决抛物线问题的巧妙方法.【例6】如图,已知抛物线21C x y =:,P 是圆222y 21C x ++=:()上任意一点,过点P 作两直线12,l l ,分别交抛物线1C 于点,,,A C B D ,使得13AB CD =.(1)当M 为CD 的中点时,证明://PM y 轴; (2)求PCD 面积的取值范围.【分析】(1)11//,33PA PB AB CD AB CD PC PD =⇔==,可建立(0P x ,)()()01122,,,,y C x y D x y 三点之间的坐标关系.(2)结合(1),运用PM “铅垂高”与“水平宽”乘积的一半表示PCD 面积. 【解析】(1)证明:设点()()()001122,,,,,P x y C x y D x y .由13AB CD =可得13PA PB PC PD ==,则点010*********,,,3333x x y y x x y y A B ++++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.则211222101000101,232022,33x y x x x y x x x y y ⎧=⎪⇒-+-=⎨++⎛⎫=⎪ ⎪⎝⎭⎩. 同理有22202002320x x x y x -+-=. 则12,x x 是方程220002320x x x y x -+-=的两个根, 则1202x x x +=,即1202x x x +=. 即有//PM y 轴.(2)由(1)得212012002,32x x x x x y x +==-.222121200004422y y x x PM y y x y ++=-=-=-.则12x x -==.[]3322221200000153,3,12PCDSPM x x x y y y y =⋅-=-=++∈--.则PCD S ⎡∈⎢⎣⎦.【点睛】本题的难点在于条件13AB CD =的转译,既从几何角度得到13PA PB PC PD ==,也从坐标化角度寻找同构变量;PCD 的面积采用水平分割转化“底”与“高”,可大大减少计算量.【例7】如图,F 是抛物线24x y =的焦点,过点F 的直线交抛物线于,A B 两点,抛物线在,A B 两点处的切线相交于点M . (1)求证:点M 在抛物线的准线上;(2)过抛物线上的点C 作拋物线的切线,分别交直线,AM BM 于点P ,Q ,求FPQ 面积的最小值.【分析】(1)弦AB 过点F ,可得4,1A B A B x x y y =-=,于是利用(1A x ,)()122,,y B x y 两点求出切线方程,解出交点M 的坐标.(2)将FPQ 面积表示为关于12,x x 的函数,12124,1x x y y =-=,求面积的最小值. 【解析】(1)方法1设点()()1122,,,A x y B x y ,则由2xy '=可知直线AM 的方程:21124x x y x =-.同理可得BM 的方程:22224x x y x =-.联立直线AM 与BM 的方程,解得点1212,24x x x x M +⎛⎫⎪⎝⎭.又2121214AB y y x x k x x -+==-,所以直线1212:44x x x x AB y x +=-过点()0,1F ,可知1214x x=-, 因此点M 在抛物线的准线上.方法2设点()11,A x y ,直线AM 的方程:()2114x y k x x -=-.()222112114,44044,x y x kx kx x y x k x x ⎧=⎪⇒-+-=⎨-=-⎪⎩, 所以()()222111Δ1644020k kx x k x =--=⇒-=,解得12x k =. 代人直线AM 的方程可得21124x x y x =-.设点()22,B x y ,同理可得直线BM 的方程:22224x x y x =-.可得点1212,24x x x x M +⎛⎫⎪⎝⎭.又设直线AB 的方程:221,1.4404,y k x y k x x k x x y =+⎧=+⇒--=⎨='''⎩. 因为12,x x 是上述方程的两个根,所以124x x =-, 可知1214x x =-,即点12,12x x M +⎛⎫- ⎪⎝⎭. 因此点M 在抛物线的准线上.(2)设点()33,C x y ,则直线PQ 的方程:23324x x y x =-,则点F 到直线PQ的距离231x d +==,同(1)中的解法可得点13132323,,,2424x x x x x x x x P Q ++⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.所以PQ ==, 所以212123112444FPQx x x x x Sd PQ --⎛⎫==+ ⎪⎝⎭,当1232,2,0x x x =-==时取得等号.【点睛】本题的基本结构是“一点两线”所围成的阿基米德三角形,常用方法是选择两个切点坐标或切线斜率作为同构变量,从而将面积表示为坐标或斜率的函数关系,其关键是紧扣,A B 的坐标关系.【例8】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在抛物线C 上. (1)设AB 的中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB 面积的取值范围.【分析】(1)先设点()21002,,,4y P x y A y ⎛⎫⎪⎝⎭,将,PA PB 的中点代入抛物线的方程,得到12,x x 的同构方程,探寻M P y y =.(2)由(1)知,将PAB 面积以PM 为水平线进行分割,即将面积表示为()02112M S x x y y =-⋅-,进而以0x 限制PAB 面积的取值范围.【解析】(1)设点()22120012,,,,,44y y P x y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则AP 的中点为20011,282x y y y ⎛⎫++ ⎪⎝⎭. 由AP 的中点在抛物线上,可得2201014228y y x y ⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,化简得2210100280y y y x y -+-=.显然21y y ≠,且对2y 也有2220200280y y y x y -+-=. 所以12,y y 是二次方程22000280y y y x y -+-=的两个不等实根, 所以1212002,2M P y y y y y y y y ++====,即PM 垂直于x 轴. (2)()()()120121122PABM P M M M Sx x y y y y x x y y =--+-=--, 由(1)可得212012002,8y y y y y x y +==-,()()()()2220000012Δ248840y x y y x y y =--=->≠,此时点()00,P x y 在半椭圆221(0)4y x x +=<上,所以()()()222000000Δ848414321y x x x x x ⎡⎤=-=--=--⎣⎦, 因为010x -<,所以Δ0>,所以12y y a-===,()()()()22222000121212000220042828886443318M P y x y y y y y y y x x x x x xxx x --+-+-=-=-=--=-=--所以()2301200112PABM Sx x y y x x =--=--=,因为t ⎡=⎢⎣⎦,所以3S ⎡=∈⎢⎣⎦,即PAB 面积的取值范围是⎡⎢⎣⎦.【点睛】本题从代数的视角,利用割线段的中点在拋物线上,得到以12,y y 为变量的同构方程.这是同构问题的常用处理方式;通过同构方程建立多点之间的坐标关系,在面积函数的整体消元中起到关键作用,因此,同构法是本题的破题核心.。

高三数学总复习《解析几何》

高三数学总复习《解析几何》

考向精测
1.已知圆C的方程为x2+y2-2x-3=0,直线l经过点(2, 3 )和圆C的
圆心,则直线l的倾斜角等于( )
A.30°
B.60°
C.120° D.150°
答案:B
变 式 3 :已 知 点 A 1 ,0 ,直 线 l:y 2 x 4 ,点 R 是 直 线 l
上 的 一 点 ,若 R A A P ,则 点 P 的 轨 迹 方 程 为 ( )
A.y=-2x
B.y=2x
C.y=2x-8
D.y=2x+4
答案:B
解析 : 本题是一道平面解析几何问题.
RA AP, R , A, P三点共线, 且A为RP的中点,
(2)直线的斜率:我们将直线倾斜角α的正切值tanα叫做直线的 斜率. 直线的斜率可以用来刻画不与x轴垂直的直线的倾斜程度. 当倾斜角0°≤α<90°时,斜率是非负的,倾斜角越大,直线的斜 率就越大;当倾斜角90°<α<180°时,斜率是负的,倾斜角越 大,直线的斜率就越大.
(3)过两点的直线斜率的计算公式:
3
2设直线方程为y 2x b,
令x 0,得y b,令y 0,得x b , 2
S 1 b b b2 4, 解 得 b 4. 2 24
直 线 方 程 为 y 2x 4或 y 2x 4.
点评:求直线方程要注意灵活选用直线方程的形式,注意题目 中的隐含条件.求直线方程的基本方法包括利用条件直接求直 线的基本量和利用待定系数法求直线的基本量.
ab
(6)一般式:Ax+By+C=0(A、B不同时为0).
考点训练 1.如图所示,若直线l1,l2,l3的斜率分别是k1,k2,k3,则( ) A.k1<k2<k3 B.k2<k1<k3 C.k3<k1<k2 D.k1<k3<k2

二轮专题复习第7讲解析几何(学生版)

二轮专题复习第7讲解析几何(学生版)

2023年高考数学二轮复习专题解析几何1.直线的倾斜角与斜率的关系(1)倾斜角α的取值范围: .倾斜角为α(α≠90°)的直线的斜率k = ,当倾斜角为=α90°的直线斜率 .当∈α 时,k >0且k 随倾斜角α的增大而增大.当∈α 时时,k <0且k 随倾斜角α的增大而增大.(1)两点P 1(x 1,y 1),P (x 2,y 2)间的距离:|P 1P 2|= . (2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d = . (3)两条平行线间的距离:两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d = . 二.圆的方程 1.圆的方程形式:(1)标准方程: ,圆心坐标为 ,半径为 .(2)一般方程: ( ),圆心坐标为 ,半径r = . 2.点与圆的位置关系(1)几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.(2)代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r2(或0)时,点在圆外;等于r2(或0)时,点在圆上;小于r2(或0)时,点在圆内.3.直线与圆的位置关系直线l :Ax+By +C=0(A2+B2≠0)与圆:(x-a)2+(y-b)2=r2(r>0)的位置关系如下表.位置关系几何法:根据d=与r的大小关系代数法:联立消元得一元二次方程,根据判别式Δ的符号相交d<r Δ>0相切d=r Δ=0相离d>r Δ<0 4.圆与圆的位置关系表现形式位置关系几何表现:圆心距d与r1、r2的关系代数表现:两圆方程联立组成的方程组的解的情况相离d>无解外切d=一组实数解相交<d<两组不同实数解内切d=(r1≠r2)一组实数解内含≤d<(r1≠r2)无解三.椭圆、双曲线、抛物线的定义及几何性质椭圆双曲线抛物线定义在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫.||P F1|+|P F2|=2a(2a>|F1F2|=2c)在平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a(0<2a<2c),则点P的轨迹叫.||P F1|-|PF2||=2a(2a<|F1F2|)在平面内定点F和定直线l,(点F直线l上),P到l距离为d,|PF|=d标准方程焦点在x轴上焦点在x轴上焦点在x轴正半轴上图象几何性质范围|x|≤,|y|≤|x|≥,y∈R x≥,y∈R 顶点,对称性关于、和对称关于对称例1:(1)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =(2)直线x sin α-y +1=0的倾斜角的变化范围是 (3)经过点P (3,2)且在两坐标轴上的截距相等;(4)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍.【变式训练1】(1)若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________.(2)直线l 过点M (-1,2)且与以点P (-2,-3)、Q (4,0)为端点的线段恒相交,则l 的斜率范围是(3)△ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求: ①BC 所在直线的方程;②BC 边上中线AD 所在直线的方程;③BC 边的垂直平分线DE 所在直线的方程.考向2:两条直线的位置关系及距离公式例2:(1)若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0互相平行,则实数m 的值为(2)已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a = (3)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.(4)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【变式训练2】 (1)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的 条件。

解析几何专题复习的八个切入点

解析几何专题复习的八个切入点

y1-y2·y1+y2 x1-x2 x1+x2
=- 1 , 2
1 即 2·2y =- 1 , x+4y=0. 联立 x2+2y2=1, 解得 x= ± 2 姨 2 .
2x 2
x+4y=0,
3
故斜率为 2 的平行弦中点的轨迹方程是 x+4y=0(- 2 姨 2 3
<x<
2
姨 3
2
).
3. 考查分类讨论
客观题往往处于靠后的位置. 由于解析几何问题涉及面广、 运
算量大、 综合性强, 专题复习中关注以下八个切入点, 能有
效掌握解析几何的核心知识与方法, 并与相关知圆、 双曲线和抛物线的定义反映了三种圆锥曲线的本
质特征. 对于高考或模考中某些圆锥曲线客观题, 若从定义入
点和定直线 (定点不在定直线上) 的距离相等的点, 是以定
点为焦点、 定直线为准线的抛物线. 活用这两个结论解抛物线
题, 往往事半功倍. 椭圆和双曲线也完全类似.
训练题 1: 如图 1, F1, F2
是椭圆 C1 ∶
x2 + y2 =1 与双曲线 92
C2 公共的焦点, A, B 分别是
C1, C2, 在第二、 四象限的公 共点. 若四边形 AF1BF2 为矩形,
手, 往往能快速实现解题目标.
例 1. 过抛物线 C ∶ x2=2y 的焦点 F 的直线交抛物线 C 于
M, N 两点, 若 |MN|=8, 则线段 MN 的中点到 x 轴的距离是
()
A. 3
B. 7
2
C. 4
D. 15
2
解析: 分别过 M、 N 作抛物线 C 的准线的垂线, 垂足分

《解析几何》知识点复习1

《解析几何》知识点复习1解析几何是数学中的一个重要分支,它通过代数方法来研究几何图形的性质。

下面我们来系统地复习一下解析几何的一些关键知识点。

一、坐标系坐标系是解析几何的基础,它为我们描述点的位置提供了一种精确的方式。

1、直角坐标系直角坐标系也称为笛卡尔坐标系,由两条互相垂直的数轴组成,分别称为 x 轴和 y 轴。

坐标轴的交点称为原点,坐标用有序数对(x, y) 来表示。

2、极坐标系在极坐标系中,一个点的位置由极径和极角来确定。

极径表示点到极点的距离,极角表示极轴与线段的夹角。

二、直线直线是解析几何中最简单也是最基本的图形之一。

1、直线的方程(1)点斜式:已知直线上一点(x₁, y₁) 且直线的斜率为 k,则直线方程为 y y₁= k(x x₁) 。

(2)斜截式:如果直线斜率为 k 且在 y 轴上的截距为 b,则直线方程为 y = kx + b 。

(3)两点式:已知直线上两点(x₁, y₁) 和(x₂, y₂),则直线方程为(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁) 。

(4)截距式:如果直线在 x 轴和 y 轴上的截距分别为 a 和 b,则直线方程为 x/a + y/b = 1 。

2、直线的位置关系(1)平行:两条直线斜率相等。

(2)垂直:两条直线斜率的乘积为-1 。

3、点到直线的距离公式点(x₀, y₀) 到直线 Ax + By + C = 0 的距离为:d =|Ax₀+By₀+ C| /√(A²+ B²) 。

三、圆圆是一种常见的几何图形。

1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b) 为圆心坐标,r 为半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0 ,其中 D²+ E² 4F> 0 时表示圆。

2、圆与直线的位置关系通过判断圆心到直线的距离 d 与半径 r 的大小关系来确定:(1)d > r ,相离。

培优提能课(五) 解析几何 2023高考数学二轮复习课件

联立yx=2+k2xy+2=y04-kx0,消元可得(1+2k2)x2+4k(y0-kx0)x+2(y0-kx0)2-4 =0,
由题意,Δ=0,即[4k(y0-kx0)]2-4(1+2k2)[2(y0-kx0)2-4]=0 且 x02+2y20
=4, 整理得(x20-4)k2-2x0y0k+y20-2=0.
3.
因为点 B,B′关于 x 轴对称,所以 B′-38+34kk2,4
3k2-3 3+4k2
3,
所以直线 PB′的方程为 y=
3-4
3k2-3 3+4k2
8 3k
3 x+
3=43kx+
3,
3+4k2

y=0,得
x=-4
33k,所以
M-4
33k,0.
令 y=kx+
3=0,得
x=-
k3,所以
N-
k3,0.
目录
02
提能2 隐圆问题
目录
隐圆问题在近几年各地模考和高考的填空题和解答题中都出现过,难 度为中、高档题.在题设中没有明确给出圆的相关信息,而是隐含在题目 中,要通过分析、转化,发现圆(或圆的方程),从而最终利用圆的知识来 求解,我们称这类问题为“隐圆”问题.
目录
角度一 利用圆的定义(垂直)确定隐圆
所以|BM|=
1+2xy002x0(x204+-42yy2020)+x0
= x20+8 4y20,
目录
|AM|=
1+-2xy002x0(x204+-42yy2002)-x0
= 2x|02x+0y40|y20,
即 S△ABM=12|AM||BM|=x820|+x0y40y|02≤2, 当且仅当xx0202= +42yy2200, =4,即 x02=38,y02=23时取等号. 故△ABM面积的最大值为2.

解析几何问题中常见的技巧专题课件高三数学一轮复习


高中总复习·数学(提升版)
破解解析几何问题常见的技巧 技巧1 回归定义,化繁为简
回归定义的实质是重新审视概念,并用相应的概念解决问题,是 一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲 线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线 中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到 化难为易、化繁为简、事半功倍的效果.
(1)当直线 AM 的斜率为1时,求点 M 的坐标;
高中总复习·数学(提升版)
(2)当直线 AM 的斜率变化时,直线 MN 是否过 x 轴上的一定 点?若过定点,请给出证明,并求出该定点;若不过定点, 请说明理由.
高中总复习·数学(提升版)
高中总复习·数学(提升版)
高中总复习·数学(提升版)
点弦所在直线的方程或弦的中点的轨迹方程等问题时,常用“点 差法”求解.
高中总复习·数学(提升版)
A. =1 C. =1
B. =1 D. =1
高中总复习·数学(提升版)
高中总复习·数学(提升版)
反思感悟 本题设出 A , B 两点的坐标,却不求出 A , B 两点的坐标,巧妙
地表达出直线 AB 的斜率,通过将直线 AB 的斜率“算两次”建立几何 量之间的关系,从而快速解决问题.
高中总复习·数学(提升版)
技巧3 巧用“根与系数的关系”化繁为简 某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离
公式计算长度的方法来解;也可以利用一元二次方程,使相关的点的 同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线 段长度间的关系.后者往往计算量小,解题过程简捷.
高中总复习·数学(提升版)
(1)求椭圆 E 的标准方程;

专题《解析几何》的一轮复习分析与指导

专题:《解析几何》的一轮复习分析与指导学校:人大附中主讲人:吴中才一、专题内容分析(一)本专题知识体系的梳理本专题内容在高中数学中衔接几何与代数,充分体现了数形结合,重点研究如何用代数方法解决几何问题,如何在代数与几何之间实现问题与解答的转化.从学习者的角度来看,解析几何的学习需要培养数形结合的思想、较强的运算能力和一定的几何与代数的转化能力;从教学者的角度来看,解析几何的教学除了遵循学习者的要求外,还需要重视常规与规范的训练.本专题的知识体系结构为:(二)本专题中研究的核心问题本专题研究的核心问题是如何用代数语言表示几何元素,进而用解析方法(坐标法)解决几何问题.因而,首先要复习直线、圆、圆锥曲线的方程,然后要用方程研究直线与圆、直线与圆锥曲线的位置关系,能够在数和形之间相互转化,综合运用几何方法与解析方法解决几何问题.解析法是借助代数方法解决几何问题的一种方法,解决几何就是利用坐标方法解决几何问题过程中形成的一门学科,它对贯穿代数与几何起着十分重要的作用.(三)本专题蕴含的核心观点、思想和方法解析几何是几何学的一个分支,是通过坐标法运用代数工具研究几何问题的一门学科,它把形与数有机地结合起来.一方面,将几何问题代数化------用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;另一方面,将代数问题几何化------分析代数语言的几何含义,使代数语言更直观、更形象地表达出来.解析几何的核心观点就是用恰当运用代数的方法解决几何问题,基本思想是数形结合思想,核心方法是坐标法.数形结合思想和坐标法是统领全局的,解析几何就是在坐标系的基础上,用代数的方法研究几何问题一门学科.用解析法研究几何图形的性质,须先将几何图形置于坐标系下,让“形”与“数”对应起来,将“形”进行翻译转化:把点转化为坐标、把曲线转化为方程,把题目中明显的或隐含的解题所需要的一切几何特征,用数式和数量关系表示出来.用图可以简略表示为:例如,直角三角形ABC 中,CB >CA ,点D 、E 分别在边CA 、CB 上,且满足BE =CA ,AD =CE ,AE 与BD 交于点F ,求∠AFD 的度数.D CB二、典型考题解构虽然解析法可以少想多算,甚至以算代想,但是如果能够合理适当运用几何关系,则可以减少运算量.例1. 【2013高考北京理第19题】已知A ,B ,C 是椭圆W :2214x y +=上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.这道题实质上是研究四边形OABC 的形状有没有可能是菱形,如果是,它的面积是多少?由于只有当B 为椭圆W 的顶点时,四边形才可能成为菱形,其它情况均不可能成为菱形,因而设计出两个问题:一是特殊情况(B 为右顶点)求菱形面积,一是一般情况(B 不是顶点)探究四边形OABC 是否可能为菱形.其中渗透了分类思想,考查了反证法,几何特征的代数化,运算能力等.点 坐标 曲线 方程几何特征数式和数量关系从备考者的角度看,本题的解答需要我们具备以下储备:菱形的几何特征的选择及其代数化,反证法,代数运算能力.特别是第(2)题究竟选择菱形的什么几何特征入手对后续的代数运算有较大的影响.因此,在复习教学中,我们应当做好以下几个环节:(1)落实解析几何的基础知识:包括直线方程与斜率,圆与圆锥曲线的方程和性质,点、直线、圆和圆锥曲线之间的位置关系,等等.(2)适当复习几何图形的几何特征:包括角分线的性质、直线垂直、线段平分、点共线、线共点、线段相等、面积相等、特殊四边形的性质与判定等等.(3)总结几种题型的研究方法:包括弦长与面积等度量问题、探究问题、存在性问题、最值问题、定点问题、定值问题、共点问题、共线问题等等.(4)适当渗透数学思想方法:包括数形结合思想、解析思想、方程思想、函数思想、不等式方法等等.附1:【2014海淀一模19】已知,A B是椭圆22+=上两点,点M的坐标为(1,0).:239C x y∆为等边三角形时,求AB的长;(Ⅰ)当,A B两点关于x轴对称,且MAB∆不可能为等边三角形.(Ⅱ)当,A B两点不关于x轴对称时,证明:MAB附2:【2015朝阳一模理19】(题见“教学资源”)例2. 【2015海淀一模第19题】(题见“教学资源”)第(Ⅱ)题的解答思路对学生来说不太自然.如果要证“不存在”这样的菱形,学生可能会想到按答案思路去找矛盾.但问是否存在,对学生而言,很可能会想到用t和m表示出C点坐标,再利用AC⊥BD将t消去,最终得到m的一元二次方程.再看看m在范围内是否有解.三、教学目标的分析与定位通过平面解析几何的学习,体会用代数方法处理几何问题的思想、进一步体会数形结合的思想方法,是本章最根本的思想教学目标.结合课标要求与北京市考纲要求,本专题的重点内容有:直线平行与垂直的条件,直线的几种方程形式,距离公式,圆的标准方程,直线与圆的位置关系,椭圆与抛物线的定义、标准方程与性质,直线与圆锥曲线的位置关系(主要是直线与椭圆的位置关系).在平面直角坐标系中建立直线、圆与圆锥曲线的方程,运用代数方法研究它们的几何性质及其相互间的位置关系,这是本章学习的核心内容和重点知识目标.解析几何把数学的两个基本对象——形和数有机地联系起来,这就使得坐标法的作用更加明显,这对于人们发现新结论也具有重大意义.我们在用坐标法解决几何的过程中,除了将“形”翻译为“数”和将“数”翻译为“形”这两个环节外,还有一个关键环节就是代数运算,这也是很多学生的弱点.因此,通过具体问题的解答示范与训练,培养学生数形结合的思维习惯,形成用代数方法解决几何问题的能力和一定的代数运算能力,是本章最突出的能力教学目标.以下是具体内容的课标要求和北京市高考考试说明的要求:(一)课标要求1. 直线和圆的方程(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.③能根据斜率判定两条直线平行或垂直.④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.(3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想.(4)空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式.2. 圆锥曲线与方程(1)圆锥曲线①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质.③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题.⑤通过圆锥曲线的学习,进一步体会数形结合的思想.(2)曲线与方程结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.四、教学实施建议解析几何的教学要立足引导学生数形结合,将几何关系与代数运算有机结合,学习解决问题的通法,避免单纯地进行题型归类和将解答过程模式化.既要培养学生的转化能力和运算能力,又要引导学生理解其中的方程思想与函数思想.针对具体的教学,有如下几点建议:1、切实掌握基础知识按课标要求与高考考试说明的要求,落实基础知识的复习. 2、切实形成基本运算能力解析几何题一般都涉及到直线与圆锥曲线的综合问题,因而联立直线与圆锥曲线的方程,消元得一元二次方程,根据韦达定理写出根与系数的关系,计算判别式,这些都是基本的运算量,也是研究解析几何问题的一般基础.教学时,要学生通过训练形成基本运算能力.3、掌握一些常见的几何关系与几何特征的代数化 ①线段的中点:坐标公式 ②线段的长:弦长公式③三角形面积: 21底×高,正弦定理面积公式④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征4、重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.例3.【2015高考新课标2,理20】已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; 本题涉及到弦的中点,可以用“点差法”证明,也可以用韦达定理进行证明.例4.【2014北京理19】已知椭圆22:24C x y +=. (1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.第(2)题考查直线与圆的位置关系,虽然A 、B 两点都在运动变化,但本题的解答思路属于常规思路,只需研究圆心到直线的距离与半径的关系.例5.【2012北京理19】已知曲线C: 22(5)(2)8()m x m y m R -+-=∈ (1)若曲线C 是焦点在x 轴的椭圆,求m 的范围;(2)设4m =,曲线C 与y 轴的交点为A,B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M,N,直线1y =与直线BM 交于点G 求证:A,G,N 三点共线.第(1)题考查曲线方程的分类,第(2)题考查三点共线.三点共线常转化为向量,欲证A G N ,,三点共线,只需证AG u u u r ,AN u u u r共线,再结合韦达定理即可证,或证0AG AN k k -=.例6.【2015北京理19】已知椭圆2222:1(0)x y C a b a b+=>>,点(0,1)P 和点(,)A m n (0)m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用,m n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.第(Ⅱ)题属于存在性探究问题,将OQM ONQ ∠=∠利用三角形相似转化为||||||||OM OQ OQ ON =进行求解,或直接用三角形表示两个角的正切.例7.【2016北京理19】已知椭圆C :22221+=x y a b (0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1. (1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.第(2)题考查了定值问题,基本方法就是将|AN|与|BM|分别表示出来,计算其积为定值.用什么量来表示呢?这就涉及到选择参数的问题,可以设()00,P x y ,也可以设()2cos ,sin P θθ.当然,本题还有一个整体求解问题也是一个小难点.例8.【2016全国I 卷】)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 第(Ⅱ)题考查取值范围问题,将四边形的面积转化为某一个变量的函数(设直线的斜率为k ),通过求函数的值域求得范围.5、要重视解题过程中思想方法的提炼与运用 ①坐标法:坐标法是解析几何的基本方法,要能够在具体问题中写出相关点的坐标、直线的方程、圆的方程、圆锥曲线的方程,并用坐标与方程研究几何问题.②方程思想:解析几何的求解问题基本都转化为求解方程问题,一般地,未知数的个数和方程(或题中独立条件)的个数一样.另外,有些探究性问题也常常转化为对方程解的讨论.③函数思想:对于圆锥曲线上一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线段的长度及a 、b 、c 、e 之间构成函数关系,函数思想在处理这类问题时就很有效.从另一视角看,当题中独立条件的个数少于未知数的个数时,所研究的问题就会转化为某一个或几个未知数的函数问题.④分类讨论:解析几何问题常常需要分类讨论,例如涉及到直线的斜率是否存在,涉及到最值问题中某个参数是否为0,以及几何背景中某一位置关系是否具有多种可能,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何单元易错题练习一.考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 掌握双曲线的定义、标准方程和双曲线的简单几何性质. 掌握抛物线的定义、标准方程和抛物线的简单几何性质. 了解圆锥曲线的初步应用.【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: 椭圆及其标准方程椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准方程:12222=+b y a x (a >b >0),12222=+b x a y (a >b >0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 椭圆的简单几何性质椭圆的几何性质:设椭圆方程为12222=+b y a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里. ⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷ 离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数a ce =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即c a y 2±=. 3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+b y a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为exa MF +=1,exa MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、a ce =两个关系,因此确定椭圆的标准方程只需两个独立条件.4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数). 说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan a b=;⑵ 椭圆的参数方程可以由方程12222=+b y a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>.6. 椭圆的切线方程椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A a B b c +=双曲线及其标准方程双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹. 若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:12222=-b y a x 和12222=-b x a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.双曲线的简单几何性质双曲线12222=-b y a x 的实轴长为2a ,虚轴长为2b ,离心率a c e =>1,离心率e 越大,双曲线的开口越大. 双曲线12222=-b y a x 的渐近线方程为x a b y ±=或表示为02222=-b y a x .若已知双曲线的渐近线方程是x n my ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是c a x 2-=和c a x 2=.双曲线22221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,22|()|a PF e x c =-.双曲线的内外部点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. 点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a b y ±=. 若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y轴上).双曲线的切线方程双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b -=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.抛物线的标准方程和几何性质1.抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

这个定点F 叫抛物线的焦点,这条定直线l 叫抛物线的准线。

需强调的是,点F 不在直线l 上,否则轨迹是过点F 且与l 垂直的直线,而不是抛物线。

2.抛物线的方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x 轴或y 轴的正方向;一次项前面是负号则曲线的开口方向向x 轴或y 轴的负方向。

3.抛物线的几何性质,以标准方程y2=2px 为例 (1)范围:x ≥0;(2)对称轴:对称轴为y=0,由方程和图像均可以看出; (3)顶点:O (0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);(4)离心率:e=1,由于e 是常数,所以抛物线的形状变化是由方程中的p 决定的;(5)准线方程2p x =-;(6)焦半径公式:抛物线上一点P (x1,y1),F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):221122112:;2:222:;2:22pp y px PF x y px PF x ppx py PF y x py PF y ==+=-=-+==+=-=-+(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。

设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A (x1,y1),B (x2,y2),AB 的倾斜角为α,则有①|AB|=x 1+x 2+p以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。

(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当a ≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。

相关文档
最新文档