数学建模插值方法共77页文档

合集下载

第3讲 数学建模的插值法

第3讲 数学建模的插值法
返回
8
分段线性插值
y o
Ln ( x ) y j l j ( x )
j 0 n


xj-1 xj xj+1 xn x
x0
x x j 1 , x j 1 x x j n越大,误差越小. x j x j 1 x x j 1 l j ( x) , x j x x j 1 lim Ln ( x) g ( x), x0 x x j x j 1 n 0, 其它 9
f (x, y) (ax b)(cy d)
其中有四个待定系数,利用该函数在矩形的四个顶 点(插值节点)的函数值,得到四个代数方程,正 好确定四个系数。 返回
23
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
计算量与n无关;
xn

1 g ( x) , 6 x 6 2 1 x
用分段线性插值法求插值,并观察插值误差.
1.在[-6,6]中平均选取5个点作插值(xch11)
2.在[-6,6]中平均选取11个点作插值(xch12)
3.在[-6,6]中平均选取21个点作插值(xch13)
4.在[-6,6]中平均选取41个点作插值(xch14) To MATLAB xch11,xch12, xch13,xch14
被插值点
插值方法
要求x0,y0单调; x,y可取为矩阵, 或x取行向量,y取 为列向量,x,y的值 分别不能超出x0,y0 的范围。
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 缺省时, 双线性插值

数学建模插值及拟合详解Word版

数学建模插值及拟合详解Word版

数学建模插值及拟合详解Word版插值和拟合实验⽬的:了解数值分析建模的⽅法,掌握⽤Matlab进⾏曲线拟合的⽅法,理解⽤插值法建模的思想,运⽤Matlab⼀些命令及编程实现插值建模。

实验要求:理解曲线拟合和插值⽅法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。

实验内容:⼀、插值1.插值的基本思想·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数 y= f(x)产⽣;·构造⼀个相对简单的函数 y=P(x);·使P通过全部节点,即 P (xk) = yk,k=0,1,…, n ;·⽤P (x)作为函数f ( x )的近似。

2.⽤MATLAB作⼀维插值计算yi=interp1(x,y,xi,'method')注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值⽅法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:⽴⽅插值;缺省时:线性插值)。

注意:所有的插值⽅法都要求x是单调的,并且xi不能够超过x的范围。

练习1:机床加⼯问题x035791112131415y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6⽤程控铣床加⼯机翼断⾯的下轮廓线时每⼀⼑只能沿x⽅向和y⽅向⾛⾮常⼩的⼀步。

表3-1给出了下轮廓线上的部分数据但⼯艺要求铣床沿x⽅向每次只能移动0.1单位.这时需求出当x坐标每改变0.1单位时的y坐标。

试完成加⼯所需的数据,画出曲线.步骤1:⽤x0,y0两向量表⽰插值节点;步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline');步骤3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on0510150.511.522.53.⽤MATLAB 作⽹格节点数据的插值(⼆维) z=inte rp2(x0,y0,z0,x,y,’method’) 注:z —被插点值的函数值;x0,y0,z0—插值节点;x ,y —被插值点;method —插值⽅法(‘nearest’ :最邻近插值;‘linear’ :双线性插值; ‘cubic’ :双三次插值;缺省时:双线性插值)。

数学建模实验报告(3)插值

数学建模实验报告(3)插值

数学模型实验报告——插值专业:姓名:李学号:姓名:刘学号:姓名:汪学号:数学模型实验报告(插值)一、 实验目的:1、了解插值的基本内容。

2、掌握用数学软件包求解插值问题。

二、实验内容:(一)一维插值一、插值的定义 已知n+1个节点,,1,0(),(n j y x j j =其中 j x 互不相同,不妨设),10b x x x a n =<<<= 求任一插值点 )(*j x x ≠处的插值.*y构造一个(相对简单的)函数),(x f y =通过全部节点, 即 ),1,0()(n j y x f j j ==再用)(x f 计算插值,即).(**x f y =二、插值的方法拉格朗日(Lagrange)插值已知函数f (x )在n +1个点x 0,x 1,…,xn 处的函数值为 y 0,y 1,…,yn 。

求一n 次多项式函数Pn (x ),使其满足:Pn (xi )=yi ,i =0,1,…,n .解决此问题的拉格朗日插值多项式公式如下∑=⋅=ni i i n y x L x P 0)()(其中Li (x ) 为n 次多项式:)())(())(()())(())(()(11101110n i i i i i i i n i i i x x x x x x x x x x x x x x x x x x x x x L ----------=+-+-称为拉格朗日插值基函数。

特别地:两点一次(线性)插值多项式:()101001011y x x x x y x x x x x L --+--=三点二次(抛物)插值多项式:()()()()()()()()()()()()()2120210121012002010212y x x x x x x x x y x x x x x x x x y x x x x x x x x x L -⋅--⋅-+-⋅--⋅-+-⋅--⋅-=().,满足插值条件直接验证可知x L n例55,11)(2≤≤-+=x xx g 采用拉格朗日多项式插值:选取不同插值节点个数n +1,其中n 为插值多项式的次数,当n 分别取2,4,6,8,10时,绘出插值结果图形.拉格朗日多项式插值的这种振荡现象叫 Runge 现象 解:编写M 文件程序如下: m=101;x=-5:10/(m-1):5; y=1./(1+x.^2);z=0*x;plot(x,z,'r',x,y,'LineWidth',1.5), gtext('y=1/(1+x^2)'),pause n=3; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y1=lagr1(x0,y0,x); hold on ,plot(x,y1,'b'),gtext('n=2'),pause,hold off n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=lagr1(x0,y0,x); hold on ,plot(x,y2,'b:'),gtext('n=4'),pause,hold offn=7;x0=-5:10/(n-1):5; y0=1./(1+x0.^2);y3=lagr1(x0,y0,x);hold on , plot(x,y3,'r'),gtext('n=6'), pause,hold off n=9; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y4=lagr1(x0,y0,x);hold on ,plot(x,y4,'r:'),gtext('n=8'),pause,hold off n=11; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y5=lagr1(x0,y0,x);hold on , plot(x,y5,'m'),gtext('n=10')分段线性插值计算量与n 无关; n 越大,误差越小.n n n x x x x g x L ≤≤=∞→0),()(lim例66,11)(2≤≤-+=x xx g 用分段线性插值法求插值,并观察插值误差. 1. 在[-6,6]中平均选取5个点作插值 2. 在[-6,6]中平均选取11个点作插值 3. 在[-6,6]中平均选取21个点作插值 4. 在[-6,6]中平均选取41个点作插值 解:编写M 文件程序如下:x=linspace(-6,6,100); y=1./(x.^2+1);x1=linspace(-6,6,5);%第三个参数表示插值点的个数,可分别改为11,21,41 y1=1./(x1.^2+1);plot(x,y,x1,y1,x1,y1,'o','LineWidth',1.5), gtext('n=4'),运行结果如下图:结果分析:插值点越多越接近原函数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤--≤≤--==+++---=∑其它,0,,)()()(111111j j j j j jj j jj j nj j j n x x x x x x x x x x x x x x x l x l y x L三次样条插值比分段线性插值更光滑。

数学建模插值方法PPT

数学建模插值方法PPT
yi(s)=0; for i=1:n
w(i)=1; dw(i)=1; for j=1:n
if (j~=i) w(i)=(xi(s)-x(j))*w(i); dw(i)=(x(i)-x(j))*dw(i);
end end yi(s)=y(i)*w(i)/dw(i)+yi(s); end end
6
5
4
Rn (x) f (x) Nn (x) f [x, x0, x1, xn ](x x0) (x xn )
差商表
xk
f
(xk )
一阶 差商
二阶差商
三阶差商 四阶差商
x0 f (x0 )
x1 f (x1) f [x0 , x1]
x2 f (x2 ) f [x1, x2 ] f [x0 , x1, x2 ]
for j=i:n nt(j,i)=(nt(j,i-1)-nt(j-1,i-1))/(x(j)-x(j-(i-1))); end End for i=1:n nt(i,i) End for i=1:m yi(i)=nt(1,1); for j=2:n t=1; for s=1:j-1
t=t*(xi(i)-x(s)); end yi(i)=yi(i)+t*nt(j,j); end end
插值与拟合
前言
函数是多种多样的,在科研与工程实际中有的 函数表达式过于复杂而不便于计算,但又需要计算 多点的函数值;有的函数甚至给不出数学式子,只 能通过实验和测量得到一些离散数据(如某些点的 函数值和导数值)。面对这种情况,很自然的一个 想法就是构造某个简单的函数作为要考察的函数的 近似 。
如果要求近似函数满足给定的离散数据,则称之 为插值函数。实用上,我们常取结构相对比较简单 的代数多项式作为插值函数,这就是所谓的代数插值 。

数学建模之Newton 插值法

数学建模之Newton 插值法
15h0称为步长此时可以使用差分来简化newton插值公式教材上简称为差分定义为一阶向前差分16高阶差分二阶向前差分规定17定义不变算子阶差分的具体表达式1822差分表matlab相关函数
计算方法
第二章
插值法
—— Newton 插值法
1
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。
13
插值举例
可以看出,当增加一个节点时,牛顿插值公式只 需在原来的基础上增加一项,前面的计算结果仍 然可以使用。与拉格朗日插值相比,牛顿插值具 有灵活增加节点的优点!
注:增加插值节点时,须加在已有插值节点的后面!
14
向前差分
在实际应用中,通常采用等距节点: xi = x0 + i h ,i = 1, 2, …, n h>0,称为步长
Nn(x)
f [ x, x0 , ... , xn ]( x x0 )...(x xn1 )( x xn )
Rn(x)
10
Newton 插值公式
f (x) = Nn(x) + Rn(x)
N n ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xi )
f ( k ) ( ) f [ x0 , x1 , , xk ] k!
差商的等价定义:(教材上的所采用的定义) f [ x0 , , xk 2 , xk ] f [ x0 , , xk 1 ] f [ x0 , x1 , , xk ] xk xk 2 若 h(x) = c f(x),则 h[ x0 , x1 ,, xk ] c f [ x0 , x1 ,, xk ] 若 h(x) = f(x) + g(x),则 h[ x0 , x1 ,, xk ] f [ x0 , x1 ,, xk ] g[ x0 , x1 ,, xk ]

数学建模插值法

数学建模插值法

x1 x2 … xn y1 y2 … yn
怎样计算其它点的函数值?
2021/8/14
4
二、问题的解决
两种方法: (1)函数插值; (2)曲线拟合.
2021/8/14
5
三、插值法
定义:当精确函数 y = f(x) 非常复杂或未知时,在一系 列节点 x0 … xn 处测得函数值
y0 = f(x0), … ,yn = f(xn), 由此构造一个简单易算的近似函数 p(x) f(x),满足条件
p(xi) = f(xi) (i = 0, … n)------ 插值条件 这里的 p(x) 称为f(x) 的插值函数;
构造插值函数的方法为插值法。
当 p(x)为多项式时,我们称p(x)为插值多项式;构 造插值多项式的方法称为多项式插值法.
2021/8/14
6
多项式插值法包含:
拉格朗日插值 牛顿插值 三次埃尔米特插值法 分段线性插值 分段三次埃尔米特插值法 三次样条插值
2021/8/14
19
四、插值法的matlab实现
命令:interp1(x0,y0,x,’method’) 其中:x0:插值节点;
y0:插值节点处的函数值; x:要计算函数值的点;
method:
l i n e a r :分段线性插值; c u b i c :分段三次埃尔米特插值; s p l i n e :三次样条插值。
试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。
X 1200 1600 2000 2400 2800 3200 3600 4000 Y 1200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 3600 1480 1500 1550 1510 1430 1300 1200 980

插值法(拉格朗日插值)

插值法(拉格朗日插值)

数解).:因为11.75更接近12,故应取11,12,13三点作二次
插值.先作插值基函数.
已知x0=11,y0=2.397 9,x1=12,y0=2.484 9 ,x2=13,y2=2.564 9
l0
(x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
(x
12)(x 2
13)
l1 ( x)
)
CN插i 次jn值i拉(x多格项x朗j )式日
li (xi ) 1
Ci
ji
( xi
1 xj)
j0
li ( x)
n ji
(x xj) (xi x j )
j0
n
Ln ( x) li ( x) yi i0
➢ 插值余项 /* Remainder */
用简单的插值函数L n(x)代替原复杂函数f(x),其 精度取决于截断误差,即插值余项.
(n 1)!
(
x
x0
)(
x
x1
)(
x
x2
)(
x
xn
)
其中 [a,b]
——拉格朗日余项定理
注: 通常不能确定 , 而是估计 f (n1)( x) Mn,1x(a,b)

M n1 (n 1)!
n
| x xi
i0
|
作为误差估计上限。
当 f(x) 为任一个次数 n 的多项式时, f (n1)( x) 0,
cos x
3 2
0.00044
R2
5
18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值

数学建模插值与拟合概要

数学建模插值与拟合概要
插值函数griddata格式为:
cz =griddata〔x,y,z,cx,cy,‘method’〕
被插值点 的函数值插值 节点被插值点插值方法
‘nearest’最邻近插值
‘linear’ 双线性插值 ‘cubic’ 双三次插值 'v4'- MATLAB提供的插值方法
缺省时, 双线性插值
要求cx取行向量,cy取为列向量.
▪ %给出〔xi,yj〕点的高程 zij:
▪>>[X,Y]=meshgrid(0:1:20,0:1:20); ▪ % 给出加密的插值坐标网格
第二十五页,共66页。
>>Z=interp2(x,y,z,X,Y,’spline’); %在坐标上进行样条插值
画图: >>clf;%清空图形坐标系中的内容
>>mesh(X,Y,Z) %在网格上画出插值的结果
h=1:0.1:12;
t=interp1(hours,temps,h,'spline'); plot(hours,temps,'+',h,t,hours,temps,'r:')
%作图
xlabel('Hour'),ylabel('Degrees Celsius’)
第十三页,共66页。
第十四页,共66页。
返回
第三十一页,共66页。
%程序一:插值并作海底曲面图
x =[129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5 ];
y =[ 7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5 ];
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
谢谢!
36、自己的鞋子,自己知是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
数学建模插值方法
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
相关文档
最新文档