高等数学常用概念及公式
高等数学概念定理推论公式

高等数学概念、定理、推论、公式※ 函数及图形·和的绝对值不大于各项绝对值的和; ·差的绝对值不小于各项绝对值的差; ·乘积的绝对值等于各项绝对值的乘积;·商的绝对值等于被除数及除数的绝对值的商。
·假设自变量x 在定义域X 内每获得一确定值时,函数只有一个确定值与之对应,这种函数叫单值函数;否那么就是多值函数。
·假设函数y=f(x)当x 改变符号时函数值也只改变符号,即F(-x)=-f(x),此函数叫奇函数,奇函数对称于原点;假设x 改变符号,函数值不变,即f(-x)=f(x),即为偶函数,偶函数对称于y 轴。
·反函数的图形与直接函数(原函数)的图形对称于直线y=x※ 数列的极限及函数的极限·假如数列收敛,必然是有界的; ·有界的数列不必然都是收敛的; ·无界数列必然是发散的。
·假如0lim ()x x f x A →=,而且A >0(或A <0),那么就存在着点x 0的某一邻域,当x 在该领域内,但x ≠x 0时,f(x)>0(或f(x )<0)。
·假如f(x)≥0(或f(x)≥0),而且0lim ()x x f x A →=,那么A ≥0(或A ≤0)。
·函数f(x)当x →x0时极限存在的充分必要前提是左右极限都存在且相等。
·假如函数()f x 为无穷大,那么1()f x 为无穷小;反之亦然(()f x ≠0)。
·具有极限的函数可表示为等于其极限的一个常数及无穷小的和;反之,假如函数可表示为常数及无穷小,那么该常数就是函数的极限。
·有限个无穷小的和(代数和)也是窥小。
·有界函数与无穷小的乘积是无穷小,(常数乘以无穷小为无穷小,有限个无穷小的积是无穷小)。
·以极限不为零的函数除无穷小所得的商是无穷小。
(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高数公式大全

高等数学公式总结第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:s i n s i n 2s i n c o s22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
大学高等数学考试必记公式知识讲解

大学高等数学考试必记公式知识讲解【大学高等数学考试必记公式知识讲解】大学高等数学课程是理工科学生的必修课程之一,其中包含了许多重要的数学公式。
掌握这些公式对于考试表现和解题能力都非常关键。
本文将为大家讲解一些大学高等数学考试中必须记住的公式知识。
1.导数与微分在微积分中,导数与微分是重要的概念,掌握相关公式能够帮助我们求解函数的变化率、最值等问题。
1.1 导数公式:(1) 基本导数公式:- 常数函数导数:$(c)'=0$;- 幂函数导数:$(x^n)'=nx^{(n-1)}$;- 指数函数导数:$(a^x)'=a^x\ln a$;- 对数函数导数:$(\log_ax)'=\frac{1}{x\ln a}$;- 三角函数导数:$(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tanx)'=\sec^2 x$等。
(2) 导数运算法则:- 和、差的导数:$(f(x) \pm g(x))'=f'(x) \pm g'(x)$;- 积的导数:$(f(x) \cdot g(x))'=f'(x)g(x)+f(x)g'(x)$;- 商的导数:$(\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$。
1.2 微分公式:微分公式是导数的一种应用形式,常见的微分公式有:- $(a^x)'=a^x\ln a \Rightarrow dy=a^x\ln a \cdot dx$,- $(\log_ax)'=\frac{1}{x\ln a} \Rightarrow dy=\frac{1}{x\ln a} \cdotdx$,- $(\sin x)'=\cos x \Rightarrow dy=\cos x \cdot dx$等。
高等数学概念、定理、公式大全-瀚海网

( f o g )=f[g(x)].
1.3.4 函数的运算 设函数 f(x),g(x)的定义域依次为 D1,D2,D=D1ÇD2¹Æ,则我们可以定义这两个函数 的下列运算:
(1)和(差) f±g:(f±g)(x)=f(x)±g(x),xÎD; (2)积 f×g:(f×g)(x)=f(x)×g(x),xÎD;
tan
-tanα cotα -cotα -tanα tanα cotα -cotα -tanα tanα
cot
-cotα tanα -tanα -cotα cotα tanα -tanα -cotα cotα
转载请不要清除作者及发布网站的信息,违者将侵犯作者著作权
瀚海网化繁为简考研精品 邹群老师倾情奉献
映射称为映射 g 和 f 构成的复合映射.
1.3 函数 1.3.1 函数 设数集 DÌ ¡ ,则称映射 f:D® ¡ 为定义在 D 上的函数,记为 y=f(x),xÎD, 其中 x 称为自变量,y 称为因变量,D 称为定义域,记作 Df,即 Df=D. 1.3.2 函数的几种特性 (1)函数的有界性 设函数 f(x)的定义域为 D,数集 X Ì D. 如果存在正数 M,使对任 一 xÎX,有|f(x)|£M,则称函数 f(x)在 X 上有界;如果这样的 M 不存在,则称函数 f(x)在 X 上无界.即对任何 M,总存在 x1ÎX,使|f(x)|>M. (2)函数的单调性 设函数 y=f(x)的定义域为 D,区间 IÌD.如果对于区间 I 上任意两点 x1 及 x2,当 x1<x2 时,恒有 f(x1)<f(x2),则称函数 f(x)在区间 I 上是单调增加的. 如果对于区间 I 上任意两点 x1 及 x2,当 x1<x2 时,恒有 f(x1)>f(x2),则称函数 f(x)在区间 I 上是单调减少的. 单调增加和单调减少的函数统称为单调函数. (3)函数的奇偶性 设函数 f(x)的定义域 D 关于原点对称.如果对于任一 xÎD,有 f(-x)=f(x) 恒成立,则称 f(x)为偶函数;如果对于任一 xÎD,有 f(-x)=-f(x)恒成立,则称 f(x)为奇函数. 偶函数的图形关于 y 轴对称,奇函数的图形关于原点对称. (4)函数的周期性 设函数 f(x)的定义域为 D.如果存在一个正数 l,使得对于任一 xÎD 有 (x±l)ÎD,且 f(x+l)=f(x),则称 f(x)为周期函数,l 称为 f(x)的周期. 1.3.3 反函数与复合函数
高等数学公式、定理最全版

高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学常用公式大全

高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。
高等数学常用公式总结

(2) 在点 x0 的某去心邻域内,f'(x) 及 g'(x) 都存在且 g'(x) ≠ 0;
(3) lim f'(x) = A(A 可为实数,也可为 士o 或o), x→x0 g'(x)
则 lim f(x) = lim f'(x) = A. x→x0 g(x) x→x0 g'(x)
若将洛必达法则中 x →x0 换 →x0 → x0 →士 →o,只要相应地修正(2)
y = f(x) 的反函数 也可记为 dy
x
=
9(y )
的导数为
9'(y )
=
1
f'(x)
8. 常用高阶导数公 式:
, =1.
dx dx dy
更多升本资讯
升本资料
模拟真题
.5 .
(1)(ex )(n) = ex;
(2)(sinx)(n) = sin(x +2 n . r );
(3)(cosx )(n)cos(x +n . r );
x→x0
x→x0
x→x0
(2) lim[f(x) .g(x)] = lim f(x) .lim g(x ) = A .B;
x→x0
x→x0
x→x0
(3)
当 x→Bx≠ 0 0
时 ,有 lim
f(x )
lim f(x)
=
=
A;
x→x0 g(x)
(4) lim f(g(x )) = f(B ). x → x0
1
dx;
(14)d(arccotx) = 一 1
1 +x2
dx. 1 +x2
15. 微分在近似计算中的应用
△y = f(x0 + △x ) 一 f(x0 ) ≈ f'(x0 )△x ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学常用概念及公式● 极限的概念当x 无限增大(x →∞)或x 无限的趋近于x 0(x →x 0)时,函数f(x)无限的趋近于常数A ,则称函数f(x)当x →∞或x →x 0时,以常数A 为极限,记作:lim ∞→x f(x)=A 或 lim 0x x →f(x)=A● 导数的概念设函数y=f(x)在点x 0某邻域内有定义,对自变量的增量Δx =x- x 0,函数有增量Δy=f(x)-f(x 0),如果增量比xy∆∆当Δx →0时有极限,则称函数f(x)在点x 0可导,并把该极限值叫函数y=f(x)在点x 0的导数,记为f ’(x 0),即 f ’(x0)=lim→∆x x y ∆∆=lim 0x x →00)()(x x x f x f -- 也可以记为y ’=|x=x0,dx dy |x=x0或dxx df )(|x=x0 ● 函数的微分概念设函数y=f (x )在某区间内有定义,x 及x+Δx 都在此区间内,如果函数的增量Δy=f (x+Δx )-f(x)可表示成 Δy=A Δx+αΔx其中A 是常数或只是x 的函数,而与Δx 无关,α当Δx →0时是无穷小量( 即αΔx 这一项是个比Δx 更高阶的无穷小),那么称函数y=f (x )在点x 可微,而A Δx 叫函数y=f (x )在点x 的微分。
记作dy ,即:dy=A Δx=f ’(x)dx● 不定积分的概念原函数:设f(x)是定义在某个区间上的已知函数,如果存在一个函数F(x),对于该区间上每一点都满足 F ’(x)= f(x) 或 d F(x)= f(x)dx则称函数F(x)是已知函数f(x)在该区间上的一个原函数。
不定积分:设F(x)是函数f(x)的任意一个原函数,则所有原函数F(x)+c (c 为任意常数)叫做函数f(x)的不定积分,记作⎰dx x f )(求已知函数的原函数的方法,叫不定积分法,简称积分法。
其中“⎰”是不定积分的记号;f(x)称为被积函数;f(x)dx 称为被积表达式;x 称为积分变量;c 为任意实数,称为积分常数。
● 定积分的概念设函数f(x)在闭区间[a ,b]上连续,用分点a=x 0<x 1<x 2<…<x i-1<x i <…<x n-1<x n =b ,把区间[a ,b]任意分成n 个小区间[x i-1,x i ](i=1,2, …,n )每个小区间的长度为Δx i = x i - x i-1(i=1,2, …,n ),在每个小区间[x i-1,x i ]上任取一点ξi ,作和式 I n =∑=∆ni i i x f 1)(ξ当分点无限增加(n →∞)且所有小区间长度中的最大值λ=max{Δx i }→0时,和式I n 的极限,叫做函数f(x)在区间[a ,b]上的定积分,记作⎰ba dx x f )(,即⎰badx x f )(=∑=→∞→∆ni iin x f 1)0()(lim ξλ其中f(x)称为被积函数,b 和a 分别称为定积分的上限和下限,区间[a ,b]叫积分区间,x 为积分变量。
极限的性质及运算法则无穷小的概念:若函数f(x)当x →x 0(或x →∞)时的极限为零,则称f(x)当x →x 0(或x →∞)时为无穷小量,简称无穷小。
须要注意的是,无穷小是变量,不能与一个很小的数混为一谈。
无穷小的性质:性质1:有限个无穷小的代数和也是无穷小。
性质2:有界函数与无穷小的乘积也是无穷小。
推论1:常数与无穷小的乘积也是无穷小。
推论2:有限个无穷小的乘积也是无穷小。
无穷大的概念:若当x →x 0(或x →∞)时,函数f(x)的绝对值无限增大,则称函数f(x)当x →x 0(或x →∞)时为无穷大量,简称无穷大。
注意无穷大是变量,不能与一个绝对值很大的数混为一谈;另外,一个变量是无穷大,也不能脱离开自变量的变化过程。
无穷大与无穷小的关系:定理:在同一变化过程中,若f(x)为无穷大,则)(1x f 为无穷小;反之,若f(x)为无穷小,且f(x)≠0,则)(1x f 就为无穷大。
极限运算法则:法则1:lim[f(x)±g(x)]=lim f(x)±lim g(x)=A+B 法则2:lim[f(x)·g(x)]= lim f(x)·lim g(x)=A ·B 特别的:lim cf(x)=c ·lim f(x)=c ·A (c 为常数)法则3:lim )()(x g x f =)(lim )(lim x g x f =BA (其中B ≠0)注意用法则3求极限时:如果分子、分母均为无穷大,可先将其变成无穷小;如果均为无穷小,就用约分及分子分母有理化来解;以上情况均可用导数的应用中的罗必塔法则求解。
两个重要极限:重要极限1:xxx sin lim→=1 ==》 ()sin()lim()→=1 重要极限2:lim∞→x (1+x1)x =e =》lim()∞→(1+()1)()=e 或lim 0()→()+()1)1(=e等价无穷小(x →0):在求极限过程中经常使用等价无穷小互相代替sin ~x x ;tan ~x x ;arcsin ~x x ;arctan ~x x ;ln(1)~x +x ;1~x e -x ;1cos ~x -212x1~12x ;1~x a -ln x a . 导数的性质、求导法则及常用求导公式连续的概念:若函数f(x)在x 0的某邻域内有定义,当x →x 0时,函数的极限存在,且极限值等于函数在x 0处的函数值f(x 0)即lim 0x →x f(x)=f(x 0)则称函数在x 0处是连续的。
连续与可导的关系:定理:若函数f(x)在点x 0处可导,则函数在点x 0处连续。
(连续是可导的必要条件,其逆命题不成立,即函数在某一点连续,但在该点不一定可导) 导数的计算步骤(按定义计算):第一步 求增量,在x 处给自变量增量Δx ,计算函数增量Δy ,即 Δy=f(x+Δx)-f(x);第二步 算比值,写出并化简比式:x y ΔΔ=xx x f ΔΔ)(f -)x (+;(化简比式的关键是使分式中仅分母或分子中含有Δx 项,避免出现00或∞∞)第三步 取极限,计算极限lim→∆x xyΔΔ=f ’(x) 常用基本初等函数的导数公式:()/x μ=1x μμ-; ()/x a =ln x a a ; ()/x e =x e ;()/log a x =1ln x a ; ()/ln x =1x; ()/sin x =cos x ; ()/cos x =sin x -; ()/tan x =2sec x ; ()/cot x =2csc x -;()/sec x =sec tan x x ; ()/csc x =csc cot x x -; ()/arcsin x =;()/arccos x =; ()/arctan x =211x +; ()/arccot x =211x -+ 导数的四则运算法则:设u=u(x),v=v(x),则 (u ±v )’= u ’ ±v ’; (cu )’=cu ’;(uv )’=u ’v+uv ’; (v u )’=2''v uv v u -.反函数的导数:y=f(x)是x=φ(y)的反函数,则 y ’='1x ,即f ’(x)=)(1y ‘φ 复合函数求导法则:设y=f(u),u=φ(x),则复合函数y=f[φ(x)]的导数为dx dy =du dy dxdu 或y ’x =f ’u ·φ’x 隐函数求导方法:隐函数的概念 针对因变量y 写成自变量x 的明显表达式的函数y=f(x),这种函数叫显函数;而两个变量x 和y 的对应关系是由一个方程F(x,y)=0所确定,函数关系隐含在这个方程中,这种函数称为由方程所确定的隐函数。
求隐函数的导数,并不需要先化为显函数(事实上也很难都显化),只需把y 看成中间变量y=y(x),利用复合函数求导法则,即可求出隐函数y 对x 的导数。
例:求方程x 2+y 2=1所确定的函数的导数。
解 在方程的两端对x 求导,并将y 2看作x 的复合函数,则(x 2+y 2)’=(1)’ 即2x+2yy ’=0,y y ’=-x 得y ’= -yx参数方程所表示函数的导数:如下方程组,其中t 为参数x=φ(t)y=ψ(t)设函数φ(t)和ψ(t)都可导,且函数φ(t)存在连续反函数t=φ-1(t),当φ-1(t)≠0时,这个反函数也可导;这时y 是x 的复合函数 y=ψ[φ-1(t)]=f(x) 它可导,由复合函数求导法则知y ’x =dx dy =dt dy dx dt =dtdx dt dy=)(')('x x φψ罗必塔法则:当x →x 0(或x →∞)时,函数f(x),g(x)同时趋向于零或同时趋向于无穷大,这时分式)()(x g x f 的极限可能存在,也可能不存在。
我们称其为未定式,并记作00型或∞∞,这类极限将无法用“商的极限等于极限的商”这一极限法则求出。
未定式00(罗必塔法则一):limx x →)()(x g x f =lim 0x x →)(')('x g x f =A(或无穷大)。
若其中x →∞时,结论仍然成立。
使用罗必塔法则时,分子分母分别求导之后,应该整理化简,如果化简后的分式还是未定式,可以继续使用这个法则。
未定式∞∞(罗必塔法则二):limx x →)()(x g x f =lim 0x x →)(')('x g x f =A(或无穷大)。
若其中x →∞时,结论也成立。
未定式0·∞型及∞-∞型:这两类未定式可转化为00型或∞∞型。
未定式00,∞0,1∞型:该类未定式可以通过对数转化为前面的未定式。
● 微分的运算及法则由微分的的概念dy=f ’(x)dx 可知,求一个函数的微分,只要求出导数f ’(x)再乘以dx 就得到微分dy ,因此不难由导数公式做出相应的微分公式。
例,对于y=sinx ,有y ’=cosx ,从而dy=cosxdx 。
微分的法则:设u=u(x),v=v(x),则d(cu)=cdu ; d(u ±v)=du ±dv ; d(uv)=udv+vdu ; d(vu)=2vudvvdu - ● 不定积分的性质、基本公式及计算方法由不定积分定义及微分知识,可直接推出不定积分的性质: 性质一:[⎰dx x f )(]’=f(x)或d[⎰dx x f )(]=f(x)dx ; 性质二:⎰dx x F )('=F(x)+c ;性质三:⎰dx x kf )(=k ⎰dx x f )((k 是不为0的常数); 性质四:⎰±dx x g x f )]()([=⎰dx x f )(±⎰dx x g )(。