数字信号处理教程程佩青笔记

合集下载

程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)

程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)
偶对称或奇对称,因而可简化结构。 由题中所给条件可知

6 / 40
圣才电子书

十万种考研考证电子书、题库视频学习平 台
即 h(n)是偶对称,对称中心在 5-5 所示。
处,N 为奇数(N=5)。线性相位结构如图
图 5-5
5-6 设滤波器差分方程为
(1)试用直接工型、典范型及一阶节的级联型、一阶节的并联型结构实现此差分方 程;
8 / 40
圣才电子书

并联结构见图 5-6(d)。
十万种考研考证电子书、题库视频学习平 台
(2)由题意可知
图 5-6(d)
可推出
幅度为
相位为
(3)输入正弦波为 x(t)=5sin(2πt·103)
由 ΩT1=2π×103T1=2π,可得周期
又抽样频率为 10kHz,即抽样周期为
(1)根据 H(z)的表达式,可画出卷积型(直接型)结构如图 5-1(a)所示。
(2)可将 H(z)改写为
图 5-1(a)
相应的级联型结构如图 5-1(b)所示。 (3)将图 5-1(b)中两个延时链子系统的次序交换,并将有相同输出的中间两延时
链加以合并,可得出如图 5-1(c)所示直接Ⅱ型结构图。
图 5-3(1)
图 5-3(2) 5-4 用频率抽样结构实现以下系统函数:
4 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平


抽样点数 N=6,修正半径 r=0.9。
解:FIR 滤波器修正后的频率抽样结构(当 N 为偶数时)有以下关系
其中 θ(k)=arg[H(k)]。因而有 因为 N=6,所以根据公式可得
(2)根据图 5-7(b)可通过对各结点的求解来获得:即将输入结点和输出结点分别 用中间结点 x1 表示,然后将中间结点消去,即可得到输入结点与输出结点之间的关系,从 而求得系统函数。所设结点可得

程佩青《数字信号处理教程》(第4版)(课后习题详解 无限长单位冲激响应(IIR))

程佩青《数字信号处理教程》(第4版)(课后习题详解 无限长单位冲激响应(IIR))

7.2 课后习题详解7-1 用冲激响应不变法将以下Ha (s )变换为H (z ),抽样周期为T 。

(1)H a (s )=(s +a )/[(s +a )2+b 2];(2)H a (s )=A/(s -s 0)n0,n 0为任意正整数。

解:(1)冲激响应不变法满足h (n )=h a (t )|t =nT =h a (nT ),T 为抽样间隔。

这种变换法必须让H a (s )先用部分分式展开。

由推出由冲激响应不变法可得(2)先引用拉氏变换的结论,可得按且可得可以递推求得7-2 设计一个模拟低通滤波器,要求其通带截止频率f p=20Hz,其通带最大衰减为R p=2dB,阻带截止频率为f st=40Hz,阻带最小衰减为A s=20dB,采用巴特沃思滤波器,画出滤波器的幅度响应。

解:巴特沃思模拟低通滤波器设计流程为:①利用教程(7-5-24)式求解滤波器阶次N;②利用教程(7-5-27a)式求解3dB截止频率Ωc;③查教程表7-2或表7-4获得归一化巴特沃思低通滤波器的系统函数H an(s);④将H an(s)根据Ωc的值去归一化求得所需的系统函数H a(s)。

已知Ωp=2π×20rad/s,Ωst=2π×40rad/s,R p=2dB,A s=20dB。

(1)按给定的参数由教程(7-5-24)式可求得取N=4。

(2)按教程(7-5-27a)式可求得巴特沃思滤波器3dB处的通带截止频率Ωc为(3)查教程表7-2可得N=4时归一化巴特沃思低通滤波器H an(s)(4)去归一化,求得所需的H a(s)为滤波器的幅度响应如图7-1所示。

图7-17-3 设计一个模拟高通滤波器,要求其阻带截止频率f st=30Hz,阻带最小衰减为A s=25dB,通带截止频率为f p=50Hz,通带最大衰减为R p=1dB。

(1)采用巴特沃思滤波器;(2)采用切比雪夫滤波器;(3)利用MATLAB工具箱函数设计椭圆函数滤波器。

(NEW)程佩青《数字信号处理教程》(第4版)笔记和课后习题(含考研真题)详解

(NEW)程佩青《数字信号处理教程》(第4版)笔记和课后习题(含考研真题)详解

目 录第1章 离散时间信号与系统1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 Z变换与离散时间傅里叶变换(DTFT)2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 离散傅里叶变换(DFT)3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 快速傅里叶变换(FFT)4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 数字滤波器的基本结构5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 几种特殊滤波器及简单一、二阶数字滤波器设计6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 无限长单位冲激响应(IIR)7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 有限长单位冲激响应(FIR)数字滤波器设计方法8.1复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 序列的抽取与插值——多抽样率数字信号处理基础9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 数字信号处理中的有限字长效应10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第1章 离散时间信号与系统1.1 复习笔记一、离散时间信号——序列1.序列序列可以有三种表示法。

(1)函数表示法。

例如x(n)=a n u(n)。

(2)数列的表示法。

例如x(n)={...,-5,-3,-l,0,2,7,9,…)本书中,凡用数列表示序列时,都将n=0时x(o)的值用下划线(_)标注,这个例子中有z(-1)=-3,x(0)=-l,x(1)=0,…(3)用图形表示,如图l-1所示。

图1-1 离散时间信号的图形表示2.序列的运算(1)基于对序列幅度x(n)的运算序列的简单运算有①加法;②乘法;③累加;④序列绝对和;⑤序列的能量;⑥平均功率。

(2)基于对n的运算①移位,某序列为x(n)则x(n-m)就是x(n)的移位序列,当m=正数时,表示序列x(n)逐项依次右移(延时)m位;当m=负数时,表示序列 x(n)逐项依次左移(超前)m位;②翻褶,若序列为x(n),则x(-n)是以n=0为对称轴将x(n)序列加以翻褶;③时间尺度变换。

数字信号处理教程程佩青笔记

数字信号处理教程程佩青笔记

数字信号处理教程程佩青笔记
【原创实用版】
目录
1.教程简介
2.教程内容
3.作者简介
4.教程的价值
正文
数字信号处理教程是由程佩青编写的一本关于数字信号处理的教程。

数字信号处理是信号处理领域的一个重要分支,它主要研究如何对数字信号进行各种变换、处理和分析。

教程内容涵盖了数字信号处理的基本概念、基本原理和常用算法。

其中包括数字信号的基本操作、数字滤波、数字信号的变换和分析、数字信号处理在通信和控制领域的应用等。

教程内容深入浅出,既有理论讲解,也有实例分析,非常适合初学者学习。

作者程佩青是我国信号处理领域的知名专家,他在数字信号处理领域有着丰富的研究经验和教学经验。

他的这本教程是他多年研究和教学经验的总结,具有很高的学术价值和实用价值。

数字信号处理教程对于学习数字信号处理的读者来说,是一本非常有价值的参考书。

第1页共1页。

数字信号处理教程 (第三版)程佩青 清华大学出版社dsp-ch5-1

数字信号处理教程 (第三版)程佩青  清华大学出版社dsp-ch5-1
3)存在输出到输入的反馈,递归型结构
X

二、有限阶IIR的表达式:
(其中至少有一个 ak≠0)
Y ( z) 系统函数: H ( z ) X ( z)
N
10 页
bk z k 1 ak z k
k 1
M
M
k 0 N
差分方程: y ( n ) ak y ( n k ) bk x (n k )
2、直接Ⅱ型(典范型)
13 页
只需实现N阶滤波器所需的最少的N个延时单元, 故称典范型。( N M )
X

14 页
直接Ⅰ型与直接Ⅱ型结构比较
1)直接Ⅰ型需要一个相加器,而直接Ⅱ型 需要两个相加器; 2)直接Ⅱ型需要的延迟器比直接Ⅰ型少, 因此所需的存储单元少;
3)从节约存储单元的角度来看,直接Ⅱ型

18 页
X

19 页
N 1 当M=N时,二阶因子配对方式有 ! 种 2 N 1 各二阶基本节的排列次序有 ! 种 2
X

级联型的特点:
20 页
• 调整系数 1k, 2k能单独调整滤波器的第k对零点, 而不影响其它零极点 调整系数1k , 2k 能单独调整滤波器的第k对极点, 而不影响其它零极点
方框图
流图
z
1
z
1
a
a
X
第 5 页
x(n)
z
-1
x(n-1)
x(n)
z -1
x(n-1)
支路増益
x(n)
x(n)
ax(n)
a x1(n)
a
网络 节点
ax(n)
源节点

程佩青数字信号处理第三版笔记

程佩青数字信号处理第三版笔记

程佩青41页,两个余弦信号采样,采样值一样% P41, sin samplingclc; clear;fs = 100;N = 512;n = 0:N-1;x1 = cos(2*pi*20*n/fs);x2 = cos(2*pi*120*n/fs);figure(1);subplot(2,1,1);stem(x1)subplot(2,1,2);stem(x2)F1 = fft(x1,N);F2 = fft(x2,N);figure(2);subplot(2,1,1);plot(abs(F1));subplot(2,1,2);plot(abs(F2));原因,两个信号频率关于fs对称,高频混叠到低频处与低频正好重合所以,10,110;30,130;40,140等等,都会有这个问题。

01002003004005006000100200300400500600% p43, exercise14clc; clear;fs = 3000;N = 512;n = 0:N-1;x = ( 1+cos(2*pi*100*n/fs) ).*cos(2*pi*600*n/fs);F = fft(x,N);plot(abs(F)); ylabel('|X(k)|'); xlabel('k');010*******400500600020406080100120140160180200|X (k )|k三个峰值分别对应500,600,700Hz ,对应k 值分别为86103120计算方法:采样间隔:Ts = 1/fs;信号持续时间:T = Ts*N频域分辨率为:F = 1/T; 每个k 代表的频率值,K1 = f1/F=K2 = f2/F=K3 = f3/F=Ps :在使用data cursor 时候,我们会发现,每次只能显示一个点的数据,当需要显示多个点的时候就会觉得很不方便。

告诉大家一个小窍门,当你选择data cursor 工具时,按住alt 键,点左键选择曲线上的点。

数字信号处理(程佩青)课后习题解答(4)

数字信号处理(程佩青)课后习题解答(4)

数字信号处理(程佩青)课后习题解答(4)第四章快速傅立叶变换运算需要多少时间。

计算需要多少时间,用,问直拉点的,用它来计算每次复加速度为平均每次复乘需如果一台通用计算机的FFT DFT[x (n)]512s 5 s 50.1μμ 解: 解: ⑴ 直接计算: 复乘所需时间:复加所需时间: ⑵用FFT 计算:复乘所需时间: 复加所需时间:运算一次完成。

点试用一个为了提高运算效率值求今需要从值的点实序列是两个已知IFFT N n y n x k Y k X DFT n y n x N k Y k X ,,)(),()(),(,)(),()(),(.2s N T N 01152.0 512log 105 log 105 2251262261==??=--s T T T sN N T 013824.0 002304.0 512log 512105.0 log 105.0 2126262=+=∴===--sT T T sN N T 441536.1 130816.0 )1512(512105.0 )1(105.0 21662=+=∴=-=-=--s N T 31072.1 512105 105 262 61=??=??=--值的过程。

)(),(完成计算点)可用一次()()(综上所述,构造序列)()()()(可得:)()()(再根据都是实序列,)(),(由原题可知:)()()()(()()(性质:又根据可得序列点作对取序列依据题意解 ]Im[ ]Re[ ][][ ][ ).()( )()()( )()();()( ::n y n x IFFT N k jY k X k Z n z n y n z n x n jy n x n z n y n x n jy n x k Y jIDFT k X IDFT k jY k X IDFT DFT n z IFFT N k Z k jY k Xk Z k Y n y k X n x +===+=+=+=++=??。

数字信号处理教程-程佩青-课后题答案

数字信号处理教程-程佩青-课后题答案

分析: 长除法:对右边序列(包括因果序列)H (z )的分子、分母都要按 z 的降幂排列,对左边序列(包括反因果序列)H (z )的分子、分 母都要按z 的升幂排列。 部分分式法:若X (z )用z 的正幂表示,则按X(z)/z 写成部分分 式,然后求各极点的留数,最后利用已知变换关系求z 反变换可得 x (n )。 留数定理法: 。 号(负号)”数时要取“用围线外极点留,号(负号)”必取“用围线内极点留数时不)(。 现的错误这是常出,相抵消)(来和不能用,消的形式才能相抵的表达式中也要化成因而注意留数表示是)( 2 )1/(1 )/(1 )( )() () )(( Re 1111 1-----=-==----k k k n k nkk nzzzzzzzzXzzzzXzzzzzzXs (1)(i )长除法: 1 21 2 111411211)(---+= -=z z z zX ,2/1||,2/1>-=z z 而收敛域为:极点为 按降幂排列 分母要为因果序列,所以分子因而知)(n x ? ??-+---214 12 11z z 1 1 2 1112 11--++ zz 2 11
a az az ---= ---= -+-=-) (21)()2(n u n x n ?? ? ??=) (21)() 2(n u n x n ?? ? ??=) 1(21)() 3(--?? ? ??-=n u n x n )1(,1 )() 4(≥=n n n x 为常数) 00(0,) sin()()5(ωω≥=n n n n x 1 0,) ()cos()() 6(0<<+=r n u n Ar n x n Φω)1||()() 1(<=a a n x n ∑∞ =-= 0)2 1(n n n z 12 111 --= z2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理教程程佩青笔记
(原创版)
目录
1.教程概述
2.信号处理基本概念
3.数字信号处理的基本步骤
4.常用数字信号处理方法
5.应用案例与实践
正文
1.教程概述
《数字信号处理教程程佩青笔记》是一本针对数字信号处理(Digital Signal Processing,简称 DSP)的教程,适用于电子工程、通信工程、计算机科学等相关专业的学生以及从事信号处理领域的研究人员和工程师。

教程以程佩青教授的课堂笔记为基础,结合实际案例和实践,系统地讲解了数字信号处理的基本概念、原理和方法。

2.信号处理基本概念
信号处理是对信号进行操作、变换和处理的过程,其目的是提取有用信息、去除噪声干扰,或者将信号转换为更适合分析、传输或存储的格式。

信号可以分为模拟信号和数字信号,其中模拟信号是连续的,而数字信号是离散的。

数字信号处理就是在数字域中对信号进行操作和处理。

3.数字信号处理的基本步骤
数字信号处理的基本步骤包括信号采样、量化、零阶保持、编码等。

首先,通过对连续信号进行采样,将其转换为离散信号;然后,对离散信号进行量化,即将信号的幅度转换为数字表示;接着,对量化后的信号进行零阶保持,以保持信号的连续性;最后,对信号进行编码,以便存储或
传输。

4.常用数字信号处理方法
常用的数字信号处理方法包括滤波、傅里叶变换、快速傅里叶变换、离散余弦变换、小波变换等。

滤波是信号处理中最基本的方法之一,可以用来去除噪声、衰减脉冲响应等;傅里叶变换和快速傅里叶变换是信号的频域分析方法,可以用来分析信号的频率成分;离散余弦变换和小波变换则是信号的时频分析方法,可以用来同时分析信号的时间和频率信息。

5.应用案例与实践
数字信号处理在许多领域都有广泛的应用,如通信、音频处理、图像处理、生物医学工程等。

例如,在音频处理中,可以通过数字信号处理方法对音频信号进行降噪、均衡、混响消除等处理,以提高音质;在图像处理中,可以通过数字信号处理方法对图像信号进行滤波、边缘检测、图像增强等处理,以提高图像质量。

相关文档
最新文档