多边形外角和等于360度讲解

合集下载

多边形的外角和

多边形的外角和

多边形的外角和例题讲解(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n边形外角和=n×180°-(n-2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.解技巧多边形的内角与相邻外角的关系的运用同顶点的每一个内角和外角互为邻补角是解决含内、外角问题的关键,是内、外角转换的纽带.【例1】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.解析:(1)因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);(2)多边形边数每增加一条,它的内角和会增加180°,但外角和不变.多边形外角、外角和公式的应用多边形外角和是360°,它是一个恒值,不论多边形是几边形,它的外角和都是360°,与边数无关,所以对于普通多边形,根据多边形外角和无法判断多边形的边数,因此多边形外角很少单独考查,它一般应用于正多边形中或各角都相等时的情况,因为正多边形的每一个内角都相等,所以正多边形的每一个外角也都相等,因此只要知道正多边形中任一个外角的度数就能求出边数,或知道外角的个数也能求出每一个外角的度数,进而能求出内角度数和内角和的度数.同顶点的外角和内角互为邻补角,所以多边形外角和内角又是相互联系的,知道内角能求外角,知道外角也能求内角,它们之间能相互转换.破疑点多边形外角和与外角的关系多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处各取一个外角的和,是360°,而多边形所有外角的和是360°的2倍,是720°,这点要注意.【例2】如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.解析:方法一:根据同顶点的外角和内角互为邻补角,求出已知角的邻补角.根据四边形内角和为360°,求出∠A;方法二:根据四边形外角和为360°,求出与∠A同顶点的邻补角(A点处的外角),再求出∠A.答案:125°【例3】如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于().A.140°B.40°C.260°D.不能确定解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB=220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.答案:A【例4】一个多边形的每一个内角都等于144°,求这个多边形的边数.分析:方法一:可设这个多边形的边数为n,那么内角和就是(n-2)×180°,因为每一个内角都是144°,所以内角和为144°×n,根据“表示同一个量的两个式子相等”列方程解出;方法二:因为每一个内角都等于144°,所以每一个外角都是36°.根据多边形外角和为360°,用360°÷36°=10,也可以得出这个多边形为十边形.解:设这个多边形的边数为n,则(n-2)×180°=n×144°,解得n=10.答:这个多边形的边数为10.。

正多边形的内角和外角

正多边形的内角和外角

正多边形的内角和外角正多边形是指边数相等的多边形。

在本文中,我们将探讨正多边形的内角和外角的性质与计算方法。

一、正多边形的内角和外角的定义正多边形是一种特殊的多边形,它的边长度和内角都相等。

我们以正n边形为例来说明内角和外角的定义。

内角:正n边形的内角是指在多边形内部的两相邻边所构成的角。

每个内角的度数都是固定的,可以通过数学公式进行计算。

外角:正n边形的外角是指在多边形外部的两相邻边所构成的角。

与内角类似,每个外角的度数也是固定的。

二、正多边形的内角和外角计算公式1. 内角计算公式:正n边形的每个内角的度数可以通过以下公式计算:内角度数 = (n - 2) × 180 / n。

其中,n代表正多边形的边数。

例如,一个正五边形(五边形的边数n=5)的内角度数 = (5 - 2) ×180 / 5 = 540 / 5 = 108度。

2. 外角计算公式:正n边形的每个外角的度数可以通过以下公式计算:外角度数 = 360 / n。

例如,一个正五边形(五边形的边数n=5)的外角度数 = 360 / 5 = 72度。

三、正多边形内角和外角的性质1. 内角和定理:正多边形的内角和等于 (n - 2) × 180 度。

这意味着,无论正多边形的边数是多少,其内角和始终等于固定值。

例如,一个正五边形(五边形的边数n=5)的内角和 = (5 - 2) × 180 = 540度。

2. 外角和定理:正多边形的外角和等于 360 度。

这意味着,无论正多边形的边数是多少,其外角和始终等于固定值。

例如,一个正五边形(五边形的边数n=5)的外角和 = 360度。

四、正多边形内角和外角性质的实际应用正多边形的内角和外角的性质在几何学和实际问题中有着广泛的应用。

1. 几何学应用:a. 在绘制和测量正多边形时,可以利用内角和定理和外角和定理来验证多边形的正确性。

b. 内角和外角的性质可以用于计算正多边形的面积和周长。

11.3.2多边形的外角和教案

11.3.2多边形的外角和教案
3.重点难点解析:在讲授过程中,我会特别强调多边形外角和的计算方法和性质。对于难点部分,如外角和与内角和的关系,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与多边形外角和相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量不同多边形的外角和,让学生直观地感受这一性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“多边形的外角和”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多边形外角和的情况?”比如,在设计风筝或是建筑物的立面图时,我们可能需要知道多边形外角和。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索多边形外角和的奥秘。
另一个让我关注的是,在小组讨论环节,有些小组的讨论并没有达到预期的效果。我反思这可能是因为我没有给出足够清晰的讨论指导,或者是学生在小组合作中还没有形成有效的沟通和分工。在未来的教学中,我需要更加明确地指导学生如何进行小组讨论,并鼓励他们积极表达自己的观点。
我还发现,在实践活动环节,学生们对于将理论知识应用到实际问题的解决中感到兴奋,但同时也存在一些操作上的困难。我认识到,我应该提供更多样的实践机会,让学生在不同的情境中运用多边形外角和的知识,从而提高他们的应用能力。
-实际应用:运用多边形外角和解决实际问题,如测量不规则多边形的角度总和。
举例解释:重点在于让学生掌握多边形外角和的基本概念,例如通过具体的多边形图形,演示外角和等于360度,强调这一性质是解决相关问题的关键。
2.教学难点
-难点理解:理解多边形外角和为360度的原因,以及这一性质在多边形不同边数中的应用。

多边形的外角和

多边形的外角和

3:2
延伸拓展 ☞

2、如图, 360° ∠M1+∠M2+∠M3……+∠M6=_________
M3 M2 M1
M4
M6 M5
若多边形的各个内角都相等, 。 且每个内角比其外角大100 , 求多边形的边数?
一个多边形的内角都相等, 且每个外角与内角差的绝对 。 值都为60 求这个多边形的 边数?
探究
学习
探究多边形的外角和
n边形的外角和=n个平角-内角和 =n×180°-(n-2) × 180° =360°
结论:多边形的外角和等于360°
练一练:
如果一个多边形的每一个外角 都等于30。,那么这个多边形 的边数 12 。
一个多边形的内角和等于外角和的一 半,那么这个多边形是 3 。
五边形的内角和与外角和的 比 。
n边形的每一个内角都相等, 它的一个外角与一个内角 的比是2:3,求这个n边形 的边数? 一个五边形的外角比是1:2: 3:4:5,求这个五边形五 个内角的度数分别是多少?
已知多边形的一个外角与 和它不相邻的其余内角的和 。 恰好为500 ,求这个多边 形的边形。
延伸拓展 ☞ 1、如图 求∠A+∠B+∠C+∠D +∠E+∠F的度数。
BA D1 NhomakorabeaF C
2
O
E
/ 冲牙器
咯壹下/王爷那里发话别让她前去探望/但是他可没什么发话说别许去探望其它の姐妹们/考虑到那各问题の严重性/排字琦丝毫别敢怠慢/赶快让红莲传她の吩咐/去太医院将顾太医请进府来为女眷们诊治/否则真若是诸人们齐唰唰地生 咯啥啊病/或是被啥啊人暗地算计/误咯爷の子嗣/那可是天大の事情/到时候她那各嫡福晋可是难逃罪责/红莲领命下去传她の吩咐/

中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)

中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)

中考数学复习考点知识与题型专题讲解专题14 多边形【知识要点】多边形的相关知识:➢ 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

➢ 连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

➢ 一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为2)3( n n凸多边形 :画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形 :各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹ 多边形的内角和➢ n 边形的内角和定理:n 边形的内角和为(n −2)∙180°➢ n 边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

【考查题型】考查题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.典例1.(2018·云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(2021·宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考查题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(2021·隆化县模拟)下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(2017·海南中考模拟)如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )A.12B.15C.16D.18【答案】B【解析】如图,分别作直线AB、BC、HG的延长线和反向延长线使它们交于点B、Q、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APH、△BEF、△DHG、△CQG都是等边三角形.∴EF=BE=BF=1,DG=HG=HD=2.∴FC=5-1=4,AH=5-2= 3,CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考查题型三计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(2021·辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A、B、C、D均为格点,则四边形的面积为()A .7B .10C .152D .8 【答案】A 【提示】利用分割法即可解决问题.【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(2021·山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是()A .12B .14C .38D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯=5, 所以落在△ABC 内部的概率是516, 故选D .变式3-2.(2021·江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系.【详解】观察图形可得12342.5,3,3,6,S S S S ====∴23234,6S S S S S =+==,故选:B .考查题型四 计算多边形对角线条数【解题思路】熟记n 边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(2017·山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【答案】C【解析】解:根据题意,得:(n ﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14,故选C . 变式4-1.(2018·山东济南市·中考模拟)若凸n 边形的每个外角都是36°,则从一个顶点出发引的对角线条数是( )A .6B .7C .8D .9【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.故选:B.变式4-2.(2021·莆田市二模)从n边形的一个顶点出发可以连接8条对角线,则n ()A.8B.9C.10D.11【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n的值即可.【详解】解:由题意得:n-3=8,解得n=11,故选:D.变式4-3.(2021·湖南长沙市模拟)已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(2021·广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(2021·河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D.考查题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(2018·山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .变式5-1.(2021·甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(2021·湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.考查题型六正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(2021·湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(2021·湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(2021·河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n=_________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.∠变式6-3.(2021·福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC 等于_______度.【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC,BC=AF,∴CD=CF,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.考查题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(2021·五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( )A .360°B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°,故选D .变式7-1.(2021·河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A .17B .16C .15D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据()21802520,n -⋅︒=解得:n=16,则多边形的边数是15,16,17.故选D .变式7-2.(2021·贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为()A .6或7或8B .6或7C .7或8D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7,如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A .考查题型八 正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度.典例8.(2021·江苏无锡市·中考真题)正十边形的每一个外角的度数为()A.36︒B.30C.144︒D.150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(2021·江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(2021·湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5B.6C.7D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考查题型九多边形外角和的实际应用【解题思路】典例9.(2021·湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7B.8C.9D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(2021·山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考查题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(2021·西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8B.9C.10D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(2021·陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(2021·中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(2021·西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°+180°, n=7.故选C.考查题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.变式11-1小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n 取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

多边形的内角和与外角和的关系

多边形的内角和与外角和的关系

多边形的内角和与外角和的关系在我们的日常生活中,很少有形状是一个简单的正方形或长方形的东西。

相反,我们更经常遇到的是有许多条边和角的形状,这些形状被称为多边形。

了解多边形的内角和与外角和的关系非常重要,因为这可以帮助我们更好地理解和处理这些形状。

内角和和外角和的概念首先,我们需要了解一些术语。

一个多边形是一个由三条或更多边组成的形状。

顶点是相邻的两条边的端点。

内角是多边形中的一个角,内角和是多边形内所有角的度数和。

外角是多边形内与内角相邻的角之一和外侧相邻直线的夹角,即外角等于与之相对的内角。

内角和公式多边形的内角和可以通过几种方式计算。

对于一个n边形,内角和的公式为:sum = (n-2) * 180°这个公式的意思是,将n边形划分成n-2个三角形,每个三角形的内角和为180度,所以n边形的内角和就等于(n-2)乘以180度。

对于一个三角形,它只有三个内角,所以它的内角和是固定的,为180度。

外角和公式现在我们来看看如何计算多边形的外角和。

对于一个n边形,外角和的公式为:sum = 360°也就是说,多边形的外角和总是恒定的,为360度。

这是因为每一个内角都有一个相对的外角,而所有外角相加的结果等于一个完整的圆的角度,即360度。

例如,一个四边形的内角和是360度,而外角和也是360度。

任何非直线多边形的外角和也都是360度。

内角和和外角和的关系既然我们已经知道了如何计算多边形的内角和和外角和,那么它们之间的关系是什么呢?事实上,多边形的内角和和外角和之间存在一个重要的关系。

对于任何一个n边形,它的内角和和外角和之间满足以下公式:内角和 + 外角和 = (n * 180°)换句话说,多边形的内角和和外角和的和总是等于n乘以180度。

例如,一个四边形的内角和为360度,其外角和也为360度。

因此,它们的总和为720度,也就是4乘以180度。

理解多边形的内角和与外角和的关系可以帮助我们更好地理解和计算多边形的角度,特别是当涉及到更复杂的多边形时。

五边形的外角和与内角和的关系

五边形的外角和与内角和的关系

五边形的外角和与内角和的关系五边形是一个具有五个边的多边形,每个角为五边形的内角。

内角和是指五边形所有内角的总和。

而外角是指从五边形的每个顶点向外延伸的角度,我们来研究一下五边形的外角和与内角和的关系。

首先,我们需要知道五边形的内角和的计算公式。

对于任意一个 n边形(其中包括五边形),它的内角和可以通过以下公式来计算:(n-2) × 180度。

将 n 替换为 5,我们得到五边形内角和的公式为:(5-2) × 180度 = 540度。

接下来,我们来探究五边形的外角和与内角和的关系。

对于任意一个多边形,它的外角和等于360度。

这意味着五边形的外角和也是360度。

那么,五边形的外角和与内角和之间是否存在某种关系呢?答案是肯定的。

我们可以通过以下的方法来推导出五边形的外角和与内角和的关系。

考虑一个五边形,我们可以从一个顶点开始,逆时针标记为A、B、C、D 和 E。

我们以顺时针方向测量外角。

首先,我们可以测量顶点 A 处的外角。

这个外角等于从边 AB 到边AC 的转角,我们将它记为α1。

同样地,我们可以测量顶点 B、C、D和 E 处的外角,分别记为α2、α3、α4 和α5。

根据定义,顶点处的内角等于360度减去顶点处的外角。

因此,我们可以得到以下等式:内角 A = 360度 - α1内角 B = 360度 - α2内角 C = 360度 - α3内角 D = 360度 - α4内角 E = 360度 - α5现在,我们来计算五边形的内角和。

将所有内角相加,我们有:内角和 = 内角 A + 内角 B + 内角 C + 内角 D + 内角 E= (360度 - α1) + (360度 - α2) + (360度 - α3) + (360度 - α4) + (360度 - α5)= 5 × 360度 - (α1 + α2 + α3 + α4 + α5)我们注意到α1 + α2 + α3 + α4 + α5 正好是五边形的外角和。

多边形的外角和

多边形的外角和

多边形的边数
7
17
20
内角和
5x 180°
15x 180°
18x 180°
外角和
360°
360°
360°
例题讲解
1. 一个多边形的内角和是它的外角和的3倍,它 是几边形?
解: 设这个多边形为 边形
(n - 2)•180°= 3×360˚ 解得 n=8
答 : 这个多边形的边数为8.
课堂练习
1. 一个多边形的内角和与外角和相等,它是几边形? 解: 设这个多边形为 n边形 ,则 (n - 2)•180°= 360˚ 解得 n=4
10
3 9 C
8
B
2
知新
解:外角和:∠1+∠2+∠3+ ∠4 + ∠5 + ∠6
内角和:∠7+∠8+∠9+∠10+∠11+∠12 外角和+内角和= 6×180° 外角和=6×180°—内角和 外角和=6×180°—(6—2) ×180° 外角和= 360°
六边形的外角和为360°
知新
n边形外角和是多少? 外角和+内角和= 180°n
多边形的外角和
温故
多边形的一边与相邻一边的延长 线组成的角叫做多边形的外角.
(n-2)•180° 1.n(n≥3)边形的内角和等于多少? 2.多边形的外角是怎样定义的?
A
1
如图:∠1是多边形的一 个外角
注意:一个顶点处的内角 和外角是互补的
B
E
C D
知新
2. 多边形的外角和定义: 在多边形的每一个顶点取一个外角,这些外 角的和叫做这个多边形的外角和。 1 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形外角和等于360度讲解多边形是几何学中最基本的图形之一,它是由直线段相连而形成的封闭图形。

在多边形中,每个角可以分为内角和外角,而这两个角的和有一个很特殊的性质:无论多边形有多少边,所有外角的和始终等于360度。

要理解多边形外角和等于360度的原因,我们需要先了解一些基础概念。

多边形由直线段连接而成,而每条直线段都可以看作是形成多边形的一条边。

当我们沿着多边形的每一条边走过时,我们可以观察到一个外角形成。

接下来,让我们以一个具体的例子来讲解这个概念。

我们来看一个三角形,它是由三条边相连而成的多边形。

在三角形中,我们可以观察到三个不同的外角。

假设这三个外角的度数分别为A、B、C。

根据性质,我们知道这三个外角的和等于360度。

为了证明这一点,我们可以通过以下步骤进行计算:首先,我们将三角形平移到一个平面上,并将其中一个角放到原点,然后我们用一条直线将剩余的两条边延长,形成两个角。

通过测量这两个角的度数,我们可以得出它们的和,假设为α和β。

接下来,我们观察到三角形的每个角与外角的度数之和等于180度(即补角定理)。

因此,假设另外两个角的度数分别为γ和δ,则我们可以得出以下等式:α+γ=180度,β+δ=180度。

再根据我们的假设,三个外角的度数之和为A+B+C=360度。

我们可以得到两个等式:α+β+A=360度,γ+δ+B=360度。

接着,我们将这两个等式合并,并利用前面的等式α+γ=180度和β+δ=180度,可以得到以下结果:(α+γ)+(β+δ)+A+B=360度+360度。

最后,根据等式α+γ=180度和β+δ=180度,我们可以继续简化等式,得到以下结果:180度+180度+A+B=360度+360度。

通过合并项,我们可以得到最后的结果:360度+A+B=360度×2。

进一步化简,我们可以得到:360度+A+B=720度。

最后,通过转换,我们得到了A+B=360度。

通过上述步骤的分析,我们可以看到,即使在三角形中,所有外角的和也等于360度。

这个性质不仅适用于三角形,还适用于任意多边形。

这个性质对我们在几何学中解决问题非常有帮助。

当我们需要计算多边形的外角时,我们只需要记住这个特殊的性质,即所有外角的和等于360度。

通过这个性质,我们可以更加便捷地解决各种与多边形外角相关的问题。

总结起来,多边形外角和等于360度这个性质对于几何学的学习非常重要。

它不仅帮助我们更好地理解多边形的结构,还为我们解决各种问题提供了指导。

同时,通过上述的讲解,我们也可以看到这个性质的确切证明过程,更进一步理解了几何学中的概念和定理。

相关文档
最新文档