多边形的内角和与外角和练习题及其答案
多边形的内角和及角的计算(人教版)(含答案)

多边形的内角和及角的计算(人教版)一、单选题(共14道,每道7分)1.如果一个多边形的内角和是其外角和的2倍,那么这个多边形是( )A.四边形B.五边形C.六边形D.八边形答案:C解题思路:∵多边形的外角和都等于360°,∴这个多边形的内角和为720°,∴(n-2)×180°=720°,∴n=6,故选C.试题难度:三颗星知识点:多边形的内角和与外角和2.一个正多边形的每个外角都等于36°,那么它是( )A.正六边形B.正八边形C.正十边形D.正十二边形答案:C解题思路:∵多边形的外角和都等于360°,正多边形的每个外角都相等,∴n=10,故选C.试题难度:三颗星知识点:多边形的内角和与外角和3.若一个n边形的每一个内角为135°,则边数n的值是( )A.6B.7C.8D.10答案:C解题思路:多边形每个外角都相等,均为180°-135°=45°,由多边形外角和为360°,知n=360°÷45°=8,故选C.试题难度:三颗星知识点:多边形的内角和与外角和4.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转.某一指令规定:机器人先向前行走1米,然后左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了( )米.A.8B.9C.10D.12答案:A解题思路:每走1米,左转45°,则机器人走过的轨迹为边长为1的正多边形.题目所求的是正多边形的周长,故只需求边数n即可.∵正多边形的每个外角都相等,∴n=360°÷45°=8,∴机器人共走了:8×1=8(米).故选A.试题难度:三颗星知识点:多边形的外角和定理5.已知:如图,在△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数( ).A.50°B.60°C.70°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形内角和定理6.一个正方形和两个等边三角形的位置如图所示,若∠2=70°,则∠1+∠3=( )A.70°B.80°C.90°D.100°答案:B解题思路:试题难度:三颗星知识点:三角形内角和定理7.如图,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,则∠EDC的度数为( )A.42°B.60°C.78°D.80°答案:A解题思路:试题难度:三颗星知识点:三角形内角和定理8.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为( )A.65°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为( )A.30°B.25°C.20°D.15°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,且BD,CE交于点O.若∠A=50°,∠ACB=60°,则∠1的度数为( )A.130°B.120°C.110°D.100°答案:A解题思路:试题难度:三颗星知识点:三角形外角定理11.如图,点C在AB的延长线上,CE⊥AF于点E,交BF于点D.若∠F=40°,∠C=20°,则∠FBC的度数为( )A.100°B.110°C.120°D.130°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理12.如图,在△ABC中,∠C=30°,∠E=45°.若AE∥BC,则∠AFD的度数是( )A.45°B.60°C.75°D.80°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理13.已知:如图,在△ABC中,∠EFB+∠ADC=180°,∠1=∠2.求证:AB∥DG.证明:如图,∵∠EFB+∠ADC=180°(已知)∠ADB+∠ADC=180°(平角的定义)∴∠EFB=∠ADB(____________________)∴__________(同位角相等,两直线平行)∴∠1=______(两直线平行,同位角相等)∵∠1=∠2(已知)∴∠2=∠BAD(等量代换)∴__________(内错角相等,两直线平行)①同角或等角的余角相等;②同角或等角的补角相等;③等量代换;④AB∥DG;⑤EF∥AD;⑥∠BAD;⑦∠2.以上空缺处依次所填正确的是( )A.②⑤⑥④B.①⑤⑦④C.②④⑥⑤D.③⑤⑦④答案:A解题思路:试题难度:三颗星知识点:平行线的性质与判定14.已知:如图,在△ABC中,∠ACB=90°,E是BC边上的一点,过C作CF⊥AE于点F,过B 作BD⊥BC于点B,交CF的延长线于点D.若∠EAC=25°,求∠D的度数.解:如图,∵CF⊥AE(已知)∴∠EAC+∠2=90°(直角三角形两锐角互余)∵∠ACB=90°即∠1+∠2=90°(已知)___________________∴∠1=25°(等量代换)∵BD⊥BC(已知)∴∠DBC=90°(垂直的性质)∴∠D+∠1=90°(直角三角形两锐角互余)∴∠D=90°-∠1=90°-25°=65°(等式性质)横线处应填写的过程最恰当的是( )A.∴∠1=∠EAC(同角或等角的补角相等)∵∠EAC=25°(已知)B.∴∠1=∠EAC(等量代换)∵∠2=65°(已知)C.∴∠1+∠EAC=90°(直角三角形两锐角互余)∵∠EAC=25°(已知)D.∴∠1=∠EAC(同角或等角的余角相等)∵∠EAC=25°(已知)答案:D解题思路:本题主要利用直角三角形两锐角互余和同角或等角的余角相等进行角的计算.故选D.试题难度:三颗星知识点:同角或等角的余角相等。
多边形的内角和与外角和习题

1.如果一个多边形的内角和与它的外角和相等,那么这个多边形是____边形。
2.如果一个多边形的内角和等于它的外角和5倍,那么这个多边形是____边形。
3.若n 边形的每个内角都是150°,则n=____。
4.一个多边形的每个外角都是36°,这个多边形是______边形。
5.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是_____度,其内角和等于______度。
6.若一个多边形的内角和是1800°,则这个多边形的边数是_______。
7.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是( )A.180°B.540°C.1900°D.1080°8.n 边形的内角和等于______度。
任意多边形的外角和等于______度。
9.一个多边形的外角和是它的内角和的41,这个多边形是______边形。
10.如果十边形的每个内角都相等,那么它的每个内角都等于______度,每个外角都等于______度。
11.若多边形的内角和是1080°,则这个多边形是______边形。
12.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是( ) A.6 B.9 C.14 D.2013.如果一个多边形的内角和是它的外角和的n 倍,则这个多边形的边数是( ) A.n B.2n-2 C.2n D.2n+214.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是( )A.13 B.14 C.15 D.13或1515.若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。
16.一个多边形的内角和是它的外角和的4倍,这个多边形是 ( )A.四边形 B.六边形 C.八边形 D.十边形17.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是( ) A.60° B.80° C.100° D.120°18.如果一个多边形的内角和等于1800°,则这个多边形是______边形;如果一个n边形每一个内角都是135°,则n______;19如果一个n边形每一个外角都是36°,则n____。
多边形的内角和与外角和练习题

解
设一个外角为x°,则内角为(x+36)° 因为多边形的内角与相邻的外角互补;
所以 x+x+36=180
解得
x=72
360÷72=5
答 这个多边形的五边形.
10.∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.
A
G
B
E
D
O
F C
11. 如图在 ABC中,D是ACB 与 ABC的角平分 线的交点,BD的延长线交AC于E,且 EDC 50, 则 A的度数为多少?
12.如图,在六边形ABCDEF中,AF // CD, AB// DE, 且 A 120,∠B 80 ,则 ∠C 的度数是多少,D 的度 数是多少?
13.如图,在ABC中,BD是ABC的角平分线,DE//BC, 交AB于E,∠A= 45 , ∠BDC= 60 ,求ΔBDE各内
角的度数.
A
E
DBCຫໍສະໝຸດ 14.如图,已知DC是△ABC中∠ACB的外角平分线, 说明为什么∠BAC>∠B.
(第 13 题)
360°
C
7.当一个多边形的边数增加时,其外角和 ( )
A 8.某.增学加生在计算B四.减个少多边形C的.内不角变和时,得D到.不下能列确四定
个答案,其中错误的是( C )
A.180° D.1080°
B.540°
C.1900°
9. 一个正多边形的一个内角比相邻外角大36°,求这 个正多边形的边数.
多边形内角和与外 角和的练习题
复习
n边形内角和公式、外角和公式?
1. n边形的内角和等于(n-2)·180. 2. n边形的外角和都等于360°.
1、一个多边形的每个外角都是 30,这个多边形 2、的正边十数二是边_形__的1_2。每个内角的度数是_1_5_.0
八年级数学多边形及其内角和(含解析答案)

多边形和内角和练习题温故而知新:1.多边形多边形的内角和:n边形内角和等于_(n-2)·180°__多边形的外角和:任意多边形外角和等于__360°_多边形的对角线:凸n边形共有_1(3)2n n-_条对角线。
2.平面镶嵌定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)问题.说明:正三角形、正方形和正六边形可以镶嵌平面图案,正五边形不能镶嵌平面图案.多边形的对角线例 1 今年暑假,佳一学校安排全校师生的假期社会实践活动,将每班分成三个组,每组派1名教师作为指导教师,为了加强同学间的联系,学校要求该班每两人之间(包括指导教师)每周至少通一次电话,现知该校七(1)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通话次数s之间的关系用下列模型表示,如图。
解析:师生53人看作是53边形的53个顶点,n边形的对角线条数公式为:1(3)2n n-。
答案:解:将七(1)班师生53人看作是53边形的53个顶点,由多边形对角线条数公式1(3)2n n-得1⨯⨯-=53(533)13252所以1325+53=1378次。
答:该班每周师生之间至少要通1378次电话小结:(1)建立数学模型是解决实际问题的基本方法;(2)n边形的对角线的条数公式是1(3)n n-2多边形的内角和与外角和例2 已知一个多边形的外角和等于内角和的1/3,求这个多边形的边数。
解析:多边形的外角和为360°,根据多边形的内角和及外角和列方程.答案:解:设这个多边形的边数为n,根据题意,得1n-⨯=(2)1803603解得 n=8答:这个多边形的边数是8.小结:利用方程求解是解决此类问题的一般方法。
例3 如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,……这样一直走下去,他第一次回到出发点O时一共走了()A.60米B.100米C.90米D.120米解析:根据多边形的外角和求出这个多边形的边数。
鲁教版八年级数学5.4多边形的内角和与外角和能力提升练习题(附答案)

鲁教版八年级数学5.4多边形的内角和与外角和能力提升练习题(附答案)一.选择题(共10小题)1.如图,若∠1+∠2+∠3+∠4+∠5+∠6+∠7=n•90°,则n为()A.4B.5C.6D.72.内角和与外角和恰好相等的多边形是()A.四边形B.五边形C.六边形D.十二边形3.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°4.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于225°,则∠BOD的度数为()A.35°B.40°C.45°D.50°5.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°6.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°8.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.99.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°10.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.12二.填空题(共10小题)11.从一个9边形的某个顶点出发,分别连接这个点与其他顶点可以把这个9边形分割成三角形的个数是个.12.七边形一共有条对角线.13.若从一个n边形的一个顶点出发,最多可以引出12条对角线,则n=.14.八边形的对角线共有条.15.若一个多边形的对角线条数为9,则这个多边形的边数为.16.如图,∠1是五边形ABCDE的一个外角.若∠1=60°,则∠A+∠B+∠C+∠D的度数为.17.某多边形内角和与外角和共1080°,则这个多边形的边数是.18.如果多边形的每个外角都是45°,那么这个多边形的边数是.19.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为.20.若一个多边形的内角和等于它的外角和,则这个多边形的边数为.三.解答题(共8小题)21.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.22.一个多边形有9条对角线,求这个多边形的边数?23.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.24.观察下面图形,并回答问题.①四边形、五边形、六边形分别有多少条对角线?你从中得到了什么规律?(用n表示)②根据规律求十边形的对角线的数量.25.一个多边形中,每个内角都相等,并且每个外角都等于它的相邻内角的,求这个多边形的边数及内角和?26.如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?27.一个多边形的内角和比外角和的3倍多180°,则它是几边形?28.若一个凸n边形A1A2A3……A n的每个内角的度数都是30°的整数倍,且∠A1=∠A2=∠A3=90°,写出n的所有可能取值.参考答案与试题解析一.选择题(共10小题)1.如图,若∠1+∠2+∠3+∠4+∠5+∠6+∠7=n•90°,则n为()A.4B.5C.6D.7【解答】解:设AG与DE交于点M,与DC交于点N,则∠5+∠6+∠7=360°﹣∠ANC,∠2+∠3+∠4=360°﹣∠EMG,则∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+(360°﹣∠ANC)+(360°﹣∠EMG)=720°+∠1﹣∠ANC﹣∠EMG=720°+∠1﹣(180°﹣∠DMN)﹣(180°﹣∠DNM)=360°+(∠1+∠DMN+∠DNM)=360°+180°=540°.又因∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°=n•90°,所以n=6.故选:C.2.内角和与外角和恰好相等的多边形是()A.四边形B.五边形C.六边形D.十二边形【解答】解;设这个多边形是n边形,由题意,得(n﹣2)×180°=360°,解得n=4,故选:A.3.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣510°=30°,故选:A.4.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于225°,则∠BOD的度数为()A.35°B.40°C.45°D.50°【解答】解:∵五边形AOEFG的外角和为360°,且∠1、∠2、∠3、∠4对应的邻补角和等于225°,∴∠AOE的邻补角为360°﹣225°=135°,∴∠BOD=180°﹣135°=45°,故选:C.5.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【解答】解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠P AB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠P AB+∠ABP)=15°.故选:B.6.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C.7.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【解答】解:(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°.故选:B.8.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.9.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故选:D.10.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.12【解答】解:360°×2÷180°+2=720°÷180°+2=4+2=6∴该正多边形的边数是6.故选:C.二.填空题(共10小题)11.从一个9边形的某个顶点出发,分别连接这个点与其他顶点可以把这个9边形分割成三角形的个数是7个.【解答】解:从一个9边形的某个顶点出发,分别连接这个点与其他顶点可以把这个9边形分割成三角形的个数是7个,故答案为:7.12.七边形一共有14条对角线.【解答】解:七边形的对角线总共有:=14条.故答案为:14.13.若从一个n边形的一个顶点出发,最多可以引出12条对角线,则n=15.【解答】解:根据题意得n﹣3=12,所以n=15.故答案为15.14.八边形的对角线共有20条.【解答】解:八边形的对角线条数应该是:=20,故答案为:20.15.若一个多边形的对角线条数为9,则这个多边形的边数为6.【解答】解:设多边形的边数为n,则=9,整理得n2﹣3n﹣18=0,解得n1=6,n2=﹣3(舍去).所以这个多边形的边数是6.故答案为:6.16.如图,∠1是五边形ABCDE的一个外角.若∠1=60°,则∠A+∠B+∠C+∠D的度数为420°.【解答】解:∵∠1=60°,∴∠AED=120°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=420°.故答案为:420°.17.某多边形内角和与外角和共1080°,则这个多边形的边数是6.【解答】解:∵多边形内角和与外角和共1080°,∴多边形内角和=1080°﹣360°=720°,设多边形的边数是n,∴(n﹣2)×180°=720°,解得n=6.故答案为:6.18.如果多边形的每个外角都是45°,那么这个多边形的边数是8.【解答】解:多边形的边数是:=8,故答案为:8.19.一个多边形的内角和是它的外角和的3倍,则这个多边形的边数为八.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.20.若一个多边形的内角和等于它的外角和,则这个多边形的边数为4.【解答】解:设多边形的边数为n,则(n﹣2)×180°=360°,解得:n=4,故答案为:4.三.解答题(共8小题)21.已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.【解答】解:设多边形为n边形,由题意,得n﹣2=,整理得:n2﹣5n+4=0,即(n﹣1)(n﹣4)=0,解得:n1=4,n2=1(不合题意舍去),所以内角和为(4﹣2)×180°=360°.22.一个多边形有9条对角线,求这个多边形的边数?【解答】解:设多边形有n条边,则=9,解得n1=6,n2=﹣3(舍去).答:这个多边形有6条边.23.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.【解答】解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n﹣3)条;∵n边形共有n个顶点,∴能引n(n﹣3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是:=20.24.观察下面图形,并回答问题.①四边形、五边形、六边形分别有多少条对角线?你从中得到了什么规律?(用n表示)②根据规律求十边形的对角线的数量.【解答】解:①四边形有2条对角线,五边形有5条对角线,六边形有9条对角线,从中得到的规律是:n边形每增加一条边,对角线增加(n﹣2)条;②由①得:从多边形的一个顶点出发,可以引(n﹣3)条对角线,n个顶点共有n(n﹣3)条对角线,但一半是重复的,所以n边形对角线数目为,故十边形的对角线的数量为:=35.25.一个多边形中,每个内角都相等,并且每个外角都等于它的相邻内角的,求这个多边形的边数及内角和?【解答】解:设这个多边形的一个外角的度数为x,由x=(180°﹣x)解得:x=36°,360÷36=10,(10﹣2)×180°=1440°,此多边形为十边形,内角和为1440°.26.如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.27.一个多边形的内角和比外角和的3倍多180°,则它是几边形?【解答】解:设多边形的边数为n,根据题意得:(n﹣2)×180°﹣360°×3=180°,解得:n=9.答:它是九边形.28.若一个凸n边形A1A2A3……A n的每个内角的度数都是30°的整数倍,且∠A1=∠A2=∠A3=90°,写出n的所有可能取值.【解答】解:设这个n边形的一个内角为α,与它相邻的外角为β……(2分)则β=180°﹣α,∵α是30°的整数倍数,∴β也是30°的整数倍数,从而这个多边形的每个内角的度数都是30°的整数倍数……(4分)又∵∠A1=∠A2=∠A3=90°,∴其余n﹣3个外角的度数和为:360°﹣3×90°=90°,……(6分)又每个外角都是30°的整数倍,故(n﹣3)×30°≤90°解得:n≤6,……(8分)∵n为正整数且n>3,∴n的所有可能取值为4,5,6……(10分)。
第9章《多边形》常考题集(12):9.2-多边形的内角和与外角和

第9章《多边形》常考题集〔12〕:9.2多边形的内角和与外角和第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和选择题31.若一个多边形的边数增加2倍,它的外角和〔〕A.扩大2倍B.缩小2倍C.保持不变D.无法确定32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔〕A.正十边形B.正九边形C.正八边形D.正七边形33.下面说法正确的是〔〕A.一个三角形中,至多只能有一个锐角B.一个四边形中,至少有一个锐角C.一个四边形中,四个内角可能全是锐角D.一个四边形中,不能全是钝角34.一个多边形的每一个内角都是135°,则这个多边形是〔〕A.七边形B.八边形C.九边形D.十边形35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔〕条.A.7B.8C.9D.1036.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔〕A.90°B.105°C.103°D.120°37.若一个n边形n个内角与某一个外角的总和为1350°,则n等于〔〕A.6B.7C.8D.938.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔〕A.17 B.16 C.15 D.16或15或17填空题39.〔2003•##〕如图,∠1+∠2+∠3+∠4=_________度.40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n边形"扩展〞而来的多边形的边数为_________.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成_________个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_________.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=_________.45.〔2009•##〕八边形的内角和等于_________度.46.〔2008•永春县〕四边形的内角和等于_________度.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是_________.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是_________边形.49.〔2008•##〕六边形的内角和等于_________度.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于_________度.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了_________m.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是_________.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= _________ 度. 54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α= _________ 度. 55.〔2006•##〕如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A 点时,一共走了 _________ 米. 56.〔2006•##〕正五边形的一个内角的度数是 _________ 度. 57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是 _________ 边形. 58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是 _________ . 59.〔2004•##〕正n 边形的内角和等于1080°,那么这个正n 边形的边数n= _________ . 60.一个多边形的每个内角都等于150°,则这个多边形是 _________ 边形.第9章《多边形》常考题集〔12〕:9.2 多边形的内角和与外角和参考答案与试题解析选择题31.若一个多边形的边数增加2倍,它的外角和〔 〕 A . 扩大2倍 B .缩小2倍 C . 保持不变 D .无法确定考点:多边形内角与外角. 分析:所有凸多边形的外角和是360度,这个数值与边数的大小无关. 解答: 解:若一个多边形的边数增加2倍,它的外角和是360°,保持不变. 故选C .点评: 本题主要考查了多边形的外角和定理,对这个定理的正确理解是关键. 32.〔2001•##〕如果正多边形的一个内角是144°,则这个多边形是〔 〕 A . 正十边形 B .正九边形 C . 正八边形 D .正七边形考点:多边形内角与外角. 分析: 正多边形的每个角都相等,同样每个外角也相等,一个内角是144°,则外角是180﹣144=36°.又已知多边形的外角和是360度,由此即可求出答案.解答: 解:360÷〔180﹣144〕=10,则这个多边形是正十边形. 故选A .点评:本题主要利用了多边形的外角和是360°这一定理. 33.下面说法正确的是〔 〕A . 一个三角形中,至多只能有一个锐角B . 一个四边形中,至少有一个锐角C . 一个四边形中,四个内角可能全是锐角D . 一个四边形中,不能全是钝角考点: 多边形内角与外角;三角形内角和定理.专题: 计算题.分析: 根据多边形的内角和定理分别可以判定那个正确. 解答: 解:A 、不对,例如:90,45,45;B 、不对,例如:90,90,90,90;C 、不对,四个角都是锐角那么不能满足内角和360°;D 、正确. 故本题选D .点评: 此题考查了三角形,四边形内角与外角的性质.34.一个多边形的每一个内角都是135°,则这个多边形是〔 〕 A . 七边形 B .八边形 C . 九边形 D .十边形考点:多边形内角与外角. 分析: 已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.解答: 解:多边形的边数是:n=360°÷〔180°﹣135°〕=8. 故选B .点评:通过本题要理解已知内角或外角求边数的方法. 35.多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有〔 〕条. A . 7 B . 8 C . 9 D . 10 考点:多边形内角与外角;多边形的对角线. 专题:计算题. 分析: 多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有n ﹣3条,即可求得对角线的条数. 解答: 解:∵多边形的每一个内角都等于150°, ∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条. 故选C .点评: 本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有n ﹣3条.36.一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于〔 〕A . 90°B . 105°C . 103°D .120° 考点:多边形内角与外角. 分析: 设这个多边形是n 边形,则内角和是〔n ﹣2〕•180°,这个度数与257°的差一定小于180°并且大于0,则可以解方程:〔n ﹣2〕•180°=257°,多边形的边数n 一定是大于x 的最小的整数,这样就可以求出多边形的边数,从而求出内角和,得到这一内角的度数. 解答: 解:根据题意,得 〔n ﹣2〕•180°=257,得n=,则多边形的边数是4,因为四边形的内角和是360度,所以这一内角等于360°﹣257°=103°.故选C .点评:本题解决的关键是正确求出多边形的边数. 37.若一个n 边形n 个内角与某一个外角的总和为1350°,则n 等于〔 〕 A . 6 B . 7 C . 8 D . 9 考点: 多边形内角与外角. 分析:根据n 边形的内角和定理可知:n 边形内角和为〔n ﹣2〕×180.设这个外角度数为x 度,利用方程即可求出答案. 解答:解:设这个外角度数为x °,根据题意,得 〔n ﹣2〕×180+x=1350, 180n ﹣360+x=1350,x=1350+360﹣180n,即x=1710﹣180n, 由于0<x <180,即0<1710﹣180n <180,可变为:解得8.5<n <9.5, 所以n=9. 故选D . 点评:主要考查了多边形的内角和定理. n 边形的内角和为:180°•〔n ﹣2〕.38.一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是〔 〕 A . 17 B . 16 C . 15 D . 16或15或17考点:多边形内角与外角. 分析: 因为一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据多边形的内角和即可解决问题.解答: 解:多边形的内角和可以表示成〔n ﹣2〕•180°〔n ≥3且n 是整数〕,一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据〔n ﹣2〕•180°=2520°解得:n=16, 则多边形的边数是15,16,17. 故选D .点评: 本题主要考查多边形的内角和定理的计算方法. 填空题 39.〔2003•##〕如图,∠1+∠2+∠3+∠4= 280 度. 考点: 三角形内角和定理;多边形内角与外角. 分析: 运用了三角形的内角和定理计算.解答: 解:∵∠1+∠2=180°﹣40°=140°,∠3+∠4=180°﹣40°=140°,∴∠1+∠2+∠3+∠4=280°. 故答案为:280°.点评: 此题主要是运用了三角形的内角和定理. 40.〔2008•##〕如图所示,①中多边形〔边数为12〕是由正三角形"扩展〞而来的,②中多边形是由正方形"扩展〞而来的,…,依此类推,则由正n 边形"扩展〞而来的多边形的边数为 n 〔n+1〕 . 考点: 多边形.专题:规律型.分析:①边数是12=3×4,②边数是20=4×5,依此类推,则由正n边形"扩展〞而来的多边形的边数为n〔n+1〕.解答:解:∵①正三边形"扩展〞而来的多边形的边数是12=3×4,②正四边形"扩展〞而来的多边形的边数是20=4×5,③正五边形"扩展〞而来的多边形的边数为30=5×6,④正六边形"扩展〞而来的多边形的边数为42=6×7,∴正n边形"扩展〞而来的多边形的边数为n〔n+1〕.点评:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形"扩展〞而来的多边形的边数为n 〔n+1〕.41.从七边形的某个顶点出发,分别连接这个顶点与其余各顶点,可以把七边形分成5个三角形.考点:多边形的对角线.分析:根据七边形的概念和特性即可解.从简单图形说起:从四边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成〔4﹣2〕=2个三角形.解答:解:根据以上规律,从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〔7﹣2〕=5个三角形.故答案为5.点评:本题考查的知识点为:过n边形一个顶点作对角线,最多可把n边形分成〔n﹣2〕个三角形.43.〔2010•##〕如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=6.考点:多边形内角与外角.分析:任何多边形的外角和是360度,内角和等于外角和的2倍则内角和是720度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=720,解得:n=6.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.44.〔2009•##〕一个n边形的内角和等于720°,那么这个多边形的边数n=6.考点:多边形内角与外角.专题:计算题.分析:n边形的内角和可以表示成〔n﹣2〕•180°,设这个多边形的边数是n,就得到方程,从而求出边数.解答:解:由题意可得:〔n﹣2〕•180°=720°,解得:n=6.所以,多边形的边数为6.点评:此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解.45.〔2009•##〕八边形的内角和等于1080度.考点:多边形内角与外角.分析:n边形的内角和可以表示成〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔8﹣2〕•180°=1080°.点评:本题主要考查了多边形的内角和公式,是需要熟记的内容.46.〔2008•永春县〕四边形的内角和等于360度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔4﹣2〕•180°=360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容.47.〔2008•宿迁〕若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.考点:多边形内角与外角.分析:任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得〔n﹣2〕•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.48.〔2008•##〕一个凸多边形的内角和与外角和相等,它是四边形.考点:多边形内角与外角.分析:任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=360,解得n=4,则它是四边形.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.49.〔2008•##〕六边形的内角和等于720度.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:〔6﹣2〕•180=720度,则六边形的内角和等于720度.点评:解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.50.〔2007•##〕若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于1800度.考点:多边形内角与外角.专题:计算题.分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是〔n﹣2〕•180°,把多边形的边数代入公式,就得到多边形的内角和.解答:解:多边形的边数:360°÷30°=12,正多边形的内角和:〔12﹣2〕•180°=1800°.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.51.〔2007•##〕如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和定理即可求出答案.解答:解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为360÷15=24,则一共走了24×10=240米.故答案为:240.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360度除以一个外角度数即可.52.〔2006•##〕若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.53.〔2006•临安市〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC=36度.考点:多边形内角与外角.分析:利用多边形的内角和定理和等腰三角形的性质即可解决问题.解答:解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.点评:本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°〔n﹣2〕.54.〔2006•##〕把一副三角板按如图方式放置,则两条斜边所形成的钝角α=165度.考点:多边形内角与外角;三角形内角和定理;三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和或者根据四边形的内角和等于360°得出.解答:解:本题有多种解法.解法一:∠α为下边小三角形外角,∠α=30°+135°=165°;解法二:利用四边形内角和,∠α等于它的对顶角,故∠α=360°﹣90°﹣60°﹣45°=165°.点评:本题通过三角板拼装来求角的度数,考查学生灵活运用知识能力.55.〔2006•##〕如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.56.〔2006•##〕正五边形的一个内角的度数是108度.考点:多边形内角与外角.分析:因为n边形的内角和是〔n﹣2〕•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.解答:解:〔5﹣2〕•180=540°,540÷5=108°,所以正五边形的一个内角的度数是108度.点评:本题考查正多边形的基本性质,解题时应先算出正n边形的内角和再除以n即可得到答案.57.〔2005•##〕有一个多边形的内角和是它外角和的5倍,则这个多边形是12边形.考点:多边形内角与外角.分析:一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是〔n﹣2〕•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得〔n﹣2〕•180=5×360,解得:n=12.所以此多边形的边数为12.点评:已知多边形的内角和求边数,可以转化为解方程的问题解决.58.〔2005•##〕一个多边形的内角和为1080°,则这个多边形的边数是8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据题意,得〔n﹣2〕•180=1080,解得n=8.所以这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.59.〔2004•##〕正n边形的内角和等于1080°,那么这个正n边形的边数n=8.考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:设这个多边形是n边形,由题意知,〔n﹣2〕×180°=1080°,∴n=8.故该多边形的边数为8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决.60.一个多边形的每个内角都等于150°,则这个多边形是12边形.考点:多边形内角与外角.专题:计算题.分析:根据多边形的内角和定理:180°•〔n﹣2〕求解即可.解答:解:由题意可得:180°•〔n﹣2〕=150°•n,解得n=12.故多边形是12边形.点评:主要考查了多边形的内角和定理.n边形的内角和为:180°•〔n﹣2〕.此类题型直接根据内角和公式计算可得.参与本试卷答题和审题的老师有:hnaylzhyk;zhjh;feng;lanchong;开心;心若在;zzz;蓝月梦;HJJ;kuaile;HLing;CJX〔排名不分先后〕菁优网20##6月1日。
正多边形内角和与外角和练习题

正多边形内角和与外角和练习题本练题旨在帮助学生巩固和深入理解正多边形的内角和与外角和的概念和计算方法。
问题一求一个正五边形的内角和与外角和。
答:正五边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。
正五边形的内角和 = (5 - 2) × 180° = 540°正五边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正五边形的外角和 = 360° - 540° = -180°问题二求一个正六边形的内角和与外角和。
答:正六边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。
正六边形的内角和 = (6 - 2) × 180° = 720°正六边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正六边形的外角和 = 360° - 720° = -360°问题三求一个正十边形的内角和与外角和。
答:正十边形的内角和可以通过以下公式计算得出:内角和 = (n - 2) × 180°其中,n 表示正多边形的边数。
正十边形的内角和 = (10 - 2) × 180° = 1440°正十边形的外角和可以通过以下公式计算得出:外角和 = 360°外角和 = 内角和的补角正十边形的外角和 = 360° - 1440° = -1080°通过以上练习题,我们可以看出正多边形的内角和与外角和是有固定规律的。
鲁教版八年级数学5.4多边形的内角和与外角和课后练习题2(附答案)

鲁教版八年级数学5.4多边形的内角和与外角和课后练习题2(附答案)一.选择题(共10小题)1.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°2.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于225°,则∠BOD的度数为()A.35°B.40°C.45°D.50°3.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°4.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°5.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°6.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.97.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°8.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.129.如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α10.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A.1620°B.1800°C.1980°D.2160°二.填空题(共10小题)11.从一个多边形的某个顶点出发,分别连结这个点与其余各顶点,把这个多边形分割成10个三角形,这是边形.12.过九边形的一个顶点有条对角线.13.p n表示多边形对角线的交点个数(指落在多边形内部的交点)如果这些交点都不重合(任意三条对角线不交于一点),如图,四边形对角线交点个数P4=1,五边形对角线交点个数P5=5.则六边形对角线交点个数P6=;发现P n=n(其中a,b是常数n≥4),则P12=.14.过多边形的某一个顶点的所有对角线可以把多边形分成5个三角形,则这个多边形是边形.15.一个n边形过一个顶点有5条对角线,则n=.16.若n边形的每个内角都等于150°,则n=.17.一个多边形的每个外角都是1°,那么这个多边形的边数是.18.一个多边形的内角和是它的外角和的4倍,这个多边形是边形.19.一个正多边形的内角和与外角和的比是4:1,则它的边数是.20.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD=.三.解答题(共8小题)21.探究归纳题:(1)试验分析:如图1,经过A点可以做条对角线;同样,经过B点可以做条;经过C 点可以做条;经过D点可以做条对角线.通过以上分析和总结,图1共有条对角线.(2)拓展延伸:运用(1)的分析方法,可得:图2共有条对角线;图3共有条对角线;(3)探索归纳:对于n边形(n>3),共有条对角线.(用含n的式子表示)(4)特例验证:十边形有对角线.22.【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2,探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为P4种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4+P4+P4=×P4=×P4=5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+P5+P5+P5═P5=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出P n与P n﹣1的关系式,不写解答过程).【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案?(应用上述结论,写出解答过程)23.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图1,AC、AD是五边形ABCDE的对角线,思考下列问题:①如图2,多边形A1A2A3A4A5…A n.中,过顶点A1可以画条对角线,过顶点A2可以画条对角线,过顶点A3可以画条对角线(用含n的代数式表示)②过顶点A1的对角线与过顶点A3的对角线中有重复吗?③在此基础上,你能发现n边形的对角线总条数的规律吗?(用含n的代数式表示)24.【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2.探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4++P4==5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出P n与P n﹣1的关系式,不写解答过程).【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案?(应用上述结论,写出解答过程)25.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.26.一个多边形的内角和是它的外角和的4倍,求:(1)这个多边形是几边形?(2)这个多边形共有多少条对角线?27.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.28.一个多边形的每一个外角都相等,且都为36°,求多边形的边数及内角和.参考答案与试题解析一.选择题(共10小题)1.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于210°,则∠BOD的度数为()A.30°B.35°C.40°D.45°【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为210°,∴∠1+∠2+∠3+∠4+210°=4×180°,∴∠1+∠2+∠3+∠4=510°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣510°=30°,故选:A.2.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若∠1、∠2、∠3、∠4对应的邻补角和等于225°,则∠BOD的度数为()A.35°B.40°C.45°D.50°【解答】解:∵五边形AOEFG的外角和为360°,且∠1、∠2、∠3、∠4对应的邻补角和等于225°,∴∠AOE的邻补角为360°﹣225°=135°,∴∠BOD=180°﹣135°=45°,故选:C.3.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A.10°B.15°C.30°D.40°【解答】解:如图,∵∠D+∠C=210°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=150°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠P AB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=165°,∴∠P=180°﹣(∠P AB+∠ABP)=15°.故选:B.4.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C.5.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【解答】解:(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°.故选:B.6.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形()A.6B.7C.8D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.7.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故选:D.8.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.12【解答】解:360°×2÷180°+2=720°÷180°+2=4+2=6∴该正多边形的边数是6.故选:C.9.如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为()A.αB.C.90﹣αD.90﹣α【解答】解:如图,过C作CE⊥AB于E,CF⊥BD于F,CG⊥AD于G,∵∠ABD=52°,∠ABC=116°,∴∠DBC=∠CBE=64°,∴BC平分∠DBE,∴CE=CF,又∵AC平分∠BAD,∴CE=CG,∴CF=CG,又∵CG⊥AD,CF⊥DB,∴CD平分∠BDG,∵∠CBE是△ABC的外角,∠DBE是△ABD的外角,∴∠ACB=∠CBE﹣∠CAB=(∠DBE﹣∠DAB)=∠ADB,∴∠ADB=2∠ACB=2α°,∴∠BDG=180°﹣2α°,∴∠BDC=∠BDG=90°﹣α°,故选:C.10.过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()A.1620°B.1800°C.1980°D.2160°【解答】解:∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴(12﹣2)•180°=1800°,∴这个多边形的内角和为1800°.故选:B.二.填空题(共10小题)11.从一个多边形的某个顶点出发,分别连结这个点与其余各顶点,把这个多边形分割成10个三角形,这是12边形.【解答】解:由题意可知,n﹣2=10,解得n=12.所以这个多边形的边数为12.故答案为:12.12.过九边形的一个顶点有6条对角线.【解答】解:从九边形的一个顶点出发,可以向与这个顶点不相邻的6个顶点引对角线,即能引出6条对角线,故答案为:613.p n表示多边形对角线的交点个数(指落在多边形内部的交点)如果这些交点都不重合(任意三条对角线不交于一点),如图,四边形对角线交点个数P4=1,五边形对角线交点个数P5=5.则六边形对角线交点个数P6=15;发现P n=n(其中a,b是常数n≥4),则P12=495.【解答】解:由画图,可得:当n=4时,P4=1;当n=5时,P5=5.将数值将P4=1,P5=5代入公式,得:,解得:,∴P n=n•••,∴六边形对角线交点个数P6=15,P12=495,故答案为:15,495.14.过多边形的某一个顶点的所有对角线可以把多边形分成5个三角形,则这个多边形是七边形.【解答】解:设多边形有n条边,则n﹣2=5,解得n=7.故这个多边形是七边形.故答案为:七.15.一个n边形过一个顶点有5条对角线,则n=8.【解答】解:∵一个n边形过一个顶点有5条对角线,∴n﹣3=5,解得n=8.故答案为:8.16.若n边形的每个内角都等于150°,则n=十二.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是十二边形.故答案为:十二.17.一个多边形的每个外角都是1°,那么这个多边形的边数是360.【解答】解:多边形的边数是:360°÷1°=360,故答案为:360.18.一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.19.一个正多边形的内角和与外角和的比是4:1,则它的边数是10.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.20.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=440°则∠BGD=80°.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC+∠C+∠CDG=720°﹣440°=280°,∴∠BGD=360°﹣(∠GBC+∠C+∠CDG)=80°.故答案为:80°.三.解答题(共8小题)21.探究归纳题:(1)试验分析:如图1,经过A点可以做1条对角线;同样,经过B点可以做1条;经过C点可以做1条;经过D点可以做1条对角线.通过以上分析和总结,图1共有2条对角线.(2)拓展延伸:运用(1)的分析方法,可得:图2共有5条对角线;图3共有9条对角线;(3)探索归纳:对于n边形(n>3),共有条对角线.(用含n的式子表示)(4)特例验证:十边形有35对角线.【解答】解:经过A点可以做1条对角线;同样,经过B点可以做1条;经过C点可以做1条;经过D点可以做1条对角线.通过以上分析和总结,图1共有2条对角线.(2)拓展延伸:运用(1)的分析方法,可得:图2共有5条对角线;图3共有9条对角线;(3)探索归纳:对于n边形(n>3),共有条对角线.(4)特例验证:十边形有=35对角线.故答案为:(1)1,1,1,1,2;5,9;;35.22.【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2,探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为P4种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4+P4+P4=×P4=×P4=5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+P5+P5+P5═P5=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有42种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出P n与P n﹣1的关系式,不写解答过程).【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案?(应用上述结论,写出解答过程)【解答】解:探究四:用七边形的对角线把七边形分割成5个三角形,如图所示:不妨把分制方案分成五类:第1类:如图1,用A,G与B连接,先把七边形分割转化成1个三角形和1个六边形,由探究三知,有P6种不同的分割方案,所以,此类共有P6种不同的分割方案.第2类:如图2,用A,G与C连接,先把七边形分割转化成2个三角形和1个五边形.由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.第3类:如图3,用A,G与D连接,先把七边形分割转化成1个三角形和2个四边形.由探究一知,有2P4种不同的分割方案.所以,此类共有2P4种分割方案.第4类:如图4,用A,G与E连接,先把七边形分割转化成2个三角形和1个五边形.由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.第5类:如图5,用A,G与F连接,先把七边形分割转化成1个三角形和1个六边形.由探究三知,有P6种不同的分割方案.所以,此类共有P6种分割方案.所以,P7=P6+P5+2P4+P5+P6=2P6+2×P6+2×P6=P6=3P6=42(种).故答案为:18,42;【结论】:由题意知:P5=×P4,P6=P5,P7=P6,…∴P n=P n﹣1;【应用】根据结论得:P8=×P7=×42=132.23.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图1,AC、AD是五边形ABCDE的对角线,思考下列问题:①如图2,多边形A1A2A3A4A5…A n.中,过顶点A1可以画(n﹣3)条对角线,过顶点A2可以画(n﹣3)条对角线,过顶点A3可以画(n﹣3)条对角线(用含n 的代数式表示)②过顶点A1的对角线与过顶点A3的对角线中有重复吗?有重复③在此基础上,你能发现n边形的对角线总条数的规律吗?(用含n的代数式表示)【解答】解:故答案:(1)(n﹣3);(n﹣3);(n﹣3)(2)有重复(3)24.【问题】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有P n种.探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以,P4=2.探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图③,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.第2类:如图④,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.第3类:如图⑤,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.所以,P5=P4++P4==5(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图⑥,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.第2类:如图⑦,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案第3类:如图⑧,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.第4类:如图⑨,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.所以,P6=P5+P4+P4+P5=P5+=14(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7=P6,共有42种不同的分割方案.……【结论】用n边形的对角线把n边形分割成(n﹣2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出P n与P n﹣1的关系式,不写解答过程).【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案?(应用上述结论,写出解答过程)【解答】解:探究四:用七边形的对角线把七边形分割成5个三角形,如图所示:不妨把分制方案分成五类:第1类:如图1,用A,G与B连接,先把七边形分割转化成1个三角形和1个六边形,由探究三知,有P6种不同的分割方案,所以,此类共有P6种不同的分割方案.第2类:如图2,用A,G与C连接,先把七边形分割转化成2个三角形和1个五边形.由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.第3类:如图3,用A,G与D连接,先把七边形分割转化成1个三角形和2个四边形.由探究一知,有2P4种不同的分割方案.所以,此类共有2P4种分割方案.第4类:如图4,用A,G与E连接,先把七边形分割转化成2个三角形和1个五边形.由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.第5类:如图5,用A,G与F连接,先把七边形分割转化成1个三角形和1个六边形.由探究三知,有P6种不同的分割方案.所以,此类共有P6种分割方案.所以,P7=P6+P5+2P4+P5+P6=2P6+2×P6+2×P6=P6=3P6=42(种).故答案为:18,42;【结论】:由题意知:P5=×P4,P6=P5,P7=P6,…∴P n=P n﹣1;【应用】根据结论得:P8=×P7=×42=132.所以共有132种分割方案.25.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是∠1=2∠A;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为28°.【解答】解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DF A+∠A,∠DF A=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.26.一个多边形的内角和是它的外角和的4倍,求:(1)这个多边形是几边形?(2)这个多边形共有多少条对角线?【解答】解:(1)设这个多边形是n边形,则(n﹣2)•180°=4×360°,∴n=10.(2)10×(10﹣3)÷2=35(条).27.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.28.一个多边形的每一个外角都相等,且都为36°,求多边形的边数及内角和.【解答】解:360°÷36°=10,(10﹣2)•180°=1440°.故多边形的边数为10,内角和为1440°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形的内角和与外角和
基础巩固题
一、填空题
1.若一凸多边形的内角和等于它的外角和,则它的边数是______.
2.五边形的内角和等于______度.
3.十边形的对角线有_____条.
4.正十五边形的每一个内角等于_______度.
5.内角和是1620°的多边形的边数是________.
6.用正n边形拼地板,则n的值可能是_______.
二、选择题
7.一个多边形的内角和是720°,则这个多边形是( )
A.四边形
B.五边形
C.六边形
D.七边形
8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )
A.5
B.6
C.7
D.8
9.若正n边形的一个外角为60°,则n的值是( )
A.4
B.5
C.6
D.8
10.下列角度中,不能成为多边形内角和的是( )
A.600°
B.720°
C.900°
D.1080°
11.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )
A.八边形
B.十边形
C.十二边形
D.十四边形
12.用下列两种正多边形能拼地板的是( )
A.正三角形和正八边形
B.正方形和正八边形
C.正六边形和正八边形
D.正十边形和正八边形
三、解答题
13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.
14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.
15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.
强化提高题
16.一个多边形中,每个内角都相等,并且每个外角等于它的相邻内角的
23, 求这个多边形
的边数及内角和. 17.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.
E
F
D
B C A
课外延伸题
19.若两个多边形的边数之比是1:2,内角和度数之比为1:3, 求这两个多边形的边数.
20.如果多边形恰有四个内角是钝角,那么多边形的边数共有几种可能? 其中最多是几边
形?最少是几边形?
中考模拟题
22.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.
23.一个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.
24.一个广场地面的一部分如图所示,地面的中央是一块正六边形的地砖, 周围用正三角
形和正方形的大理石地砖拼成,从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米, 则第12层的外边界所围成的多边形的周长是多少?。