滑动轴承的润滑
滑动轴承的修复方法

滑动轴承的修复方法滑动轴承是一种常见的机械零部件,主要用于支撑旋转轴的运动,并减少摩擦力。
然而,在长时间的使用过程中,滑动轴承可能会出现磨损、松动或损坏等问题,影响其正常工作。
为了保证滑动轴承的正常运转,及时进行修复非常重要。
本文将介绍几种常见的滑动轴承修复方法。
一、清洗和润滑滑动轴承在长时间工作后,往往会因为灰尘、油脂等杂质的积聚而导致摩擦力增大,甚至卡死。
因此,定期对滑动轴承进行清洗和润滑是非常必要的。
首先,将滑动轴承从机械设备中取出,用清洁剂或汽油浸泡,然后用刷子清洁轴承表面的油污和杂质。
清洗后,用干净的布擦干,并涂抹适量的润滑油,确保滑动轴承表面光滑。
二、轴承翻新如果滑动轴承的摩擦面出现磨损,可以考虑进行轴承翻新。
首先,将滑动轴承拆卸出来,然后用专用工具将摩擦面进行研磨,使其恢复平整。
如果磨损严重,可以考虑使用金属填料进行修补,填充磨损部位,然后进行研磨,最后再涂抹润滑油,确保轴承运转顺畅。
三、轴承更换如果滑动轴承严重损坏,无法修复,或者已经超过了使用寿命,就需要进行轴承更换。
首先,将滑动轴承从机械设备中取出,然后使用专用工具将轴承拆卸下来。
在安装新的轴承之前,要检查轴承座是否有损坏,如有损坏需要进行修复或更换。
然后,将新的轴承安装到轴承座上,并使用专用工具将其固定好。
最后,涂抹适量的润滑油,确保轴承顺畅运转。
四、调整轴承间隙滑动轴承在长时间使用后,由于磨损或松动等原因,轴承间隙可能会变大或变小。
过大的间隙会导致轴承摇晃,过小的间隙会导致轴承过热。
因此,定期调整轴承间隙是非常重要的。
首先,将滑动轴承拆卸下来,然后使用专用工具调整轴承座的位置,使轴承间隙恢复到正常范围内。
调整完成后,将轴承重新安装到机械设备上,并涂抹适量的润滑油。
总结起来,滑动轴承的修复方法包括清洗和润滑、轴承翻新、轴承更换和调整轴承间隙等。
在进行修复时,需要注意使用适当的工具和材料,遵循正确的操作步骤,确保修复效果达到预期。
滚动轴承与滑动轴承的润滑与密封 ppt课件

一、滚动轴承的润滑 二、滚动轴承的密封
滚动轴承与滑动轴承的润滑与密封
• 滚动轴承润滑的目的在于减少摩擦阻力、降 低磨损、缓冲吸振、冷却和防锈。
• 滚动轴承的润滑剂有液态的、固态的和半固 态的,液体的润滑剂称为润滑油,半固态的、 在常温下呈油膏状的称为润滑脂。
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封
• 固体润滑剂有石墨、二硫化钼(MoS2)等多种品种, 一般在重载或高温工作条件下使用。
滚动轴承与滑动轴承的润滑与密封
• 密封的目的是为了防止灰尘、水份、杂质等侵 入轴承和阻止润滑剂的流失。
• 良好的密封可保证机器正常工作,降低噪音并 延长轴承的使用寿命。
• 常用的密封方式有接触式密封和非接触式密封 两类 。
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封
滚动轴承与滑动轴承的润滑与密封 动画演示
滚动轴承与滑动轴承的润滑密封
• 滑动轴承的润滑的润滑方式很多,对用于低速、轻载的轴 承,可采用间歇式供油润滑,例如用油壶定期加油;对用 于高速、重载的轴承必须采取连续供油的润滑方式。
滚动轴承与滑动轴承的润滑与密封
动画演示
• 润滑脂是一种粘稠的凝胶状材料,润滑膜强度高, 能承受较大的载荷,而且不易流失,便于密封和维 护,一次充脂可以维持较长时间,无须经常补充或 更换。由于润滑脂不宜于在高速条件下工作,故适 用于轴颈圆周速度不大于5 m/s的滚动轴承润滑。
滚动轴承与滑动轴承的润滑与密封
• 与脂润滑相比较,油润滑用于轴颈圆周速度和工作温 度较高的场合。油润滑的关键是根据工作温度、载荷 大小、运动速度和结构特点选择合适的润滑油粘度。 原则上,温度高、载荷大的场合,润滑油粘度应选大 些,反之润滑油粘度可选得小些。油润滑的方式有浸 油润滑、滴油润滑和喷雾润滑等。
滑动轴承常用的4种润滑方式

滑动轴承常用的4种润滑方式滑动轴承是一种常见的机械装置,用于减少机械摩擦和磨损。
为了确保轴承的正常运转,润滑是非常重要的。
目前,常用的滑动轴承润滑方式主要有四种,分别是干摩擦、润滑脂润滑、润滑油润滑和固体润滑。
本文将对这四种润滑方式进行详细介绍。
一、干摩擦干摩擦是指在滑动轴承工作时没有使用任何润滑剂,直接由金属表面的接触来承载和传递载荷。
干摩擦的优点是简单、无需润滑剂,适用于一些特殊环境下,如高温、低温和真空环境。
然而,干摩擦也存在一些缺点,比如摩擦系数大、摩擦噪音大、易产生磨损和热量等。
因此,在一般情况下,干摩擦方式并不常见。
二、润滑脂润滑润滑脂润滑是指在滑动轴承工作时,将润滑脂涂抹在轴承表面以形成润滑膜,减少摩擦和磨损。
润滑脂具有黏度高、附着性强、耐高温、耐水洗等特点,适用于高速、高温和重载工况下的滑动轴承。
润滑脂润滑的优点是操作方便、润滑效果稳定、密封性好,但也存在润滑膜容易破坏、摩擦功耗大等缺点。
三、润滑油润滑润滑油润滑是指在滑动轴承工作时,使用润滑油进行润滑。
润滑油具有黏度低、流动性好、散热性好等特点,适用于高速、高温和低摩擦工况下的滑动轴承。
润滑油润滑的优点是润滑效果好、摩擦功耗低、寿命长,但也存在润滑膜容易破坏、易泄漏和对环境污染等缺点。
因此,在选择润滑油时,需要根据轴承的工作条件和要求进行合理选择。
四、固体润滑固体润滑是指在滑动轴承工作时,使用一层固体润滑剂来减少摩擦和磨损。
常用的固体润滑剂有固体润滑膜、固体颗粒和固体润滑添加剂等。
固体润滑的优点是摩擦系数低、润滑效果持久、适用于高温和真空环境,但也存在润滑剂易脱落、摩擦噪音大等缺点。
因此,在使用固体润滑剂时,需要注意选择合适的润滑剂和施加方法。
滑动轴承常用的四种润滑方式分别是干摩擦、润滑脂润滑、润滑油润滑和固体润滑。
每种润滑方式都有其适用的工作条件和优缺点,选择合适的润滑方式对于轴承的正常运转和寿命具有重要意义。
在实际应用中,需要根据轴承的工作条件和要求,综合考虑各种因素,选择最佳的润滑方式。
风电机组用滑动轴承关键技术及应用

风电机组用滑动轴承关键技术及应用
风电机组用滑动轴承关键技术和应用包括以下几个方面:
1. 润滑技术:滑动轴承需要充分的润滑来降低摩擦和磨损。
常见的润滑方式包括润滑脂和润滑油。
关键技术包括润滑剂的选择、润滑剂的添加量和周期、润滑系统的设计和维护等。
2. 轴承材料技术:滑动轴承的寿命和可靠性与轴承材料的选择和制造工艺密切相关。
常见的轴承材料包括铜合金、铸铁、钢等。
关键技术包括材料的硬度、疲劳性能和耐蚀性等。
3. 密封技术:滑动轴承需要有效的密封以防止灰尘、水分和其他污染物进入轴承内部,影响轴承的正常工作。
常见的密封方式包括橡胶密封圈和油封等。
关键技术包括密封材料的选择、密封结构的设计和密封性能的测试等。
4. 冷却技术:风电机组工作时会产生大量的热量,需要有效的冷却系统来降低轴承温度,提高轴承的工作效率和寿命。
常见的冷却方式包括风冷和液冷等。
关键技术包括冷却系统的设计和优化、冷却介质的选择和流动控制等。
5. 振动与噪声控制技术:风电机组在运行过程中会产生振动和噪声,会对轴承和整个系统的运行稳定性和可靠性造成影响。
关键技术包括振动和噪声的检测和分析、结构优化和减振措施的设计等。
风电机组用滑动轴承的应用广泛,主要用于风力发电机组的主轴承、齿轮箱轴承、发电机轴承等部位。
它们可以承受高速、高温、高负荷和长寿命等要求,确保机组的正常运行和安全性能。
滑动轴承与其他类型的轴承相比具有较低的摩擦、较高的自润滑性能和较好的耐磨损性能,适用于较恶劣的工作环境。
磁力泵滑动轴承润滑方式

磁力泵滑动轴承润滑方式
磁力泵滑动轴承润滑方式:
1. 密封油润滑:这种润滑方式是磁力泵滑动轴承多受采用的,它可确保轴承与零件之间充分润滑;
2. 高粘度油润滑:这种润滑方式不仅能提供充分的润滑,而且能够降低磁力泵滑动轴承的磨损程度;
3. 直接吮吸油液润滑:这种润滑方式使用的是机械力学原理,当轴启动时会产生一种向内吮吸的力,这种力会带动流体润滑油进入滑动轴承,从而达到润滑的效果;
4. 液体压力润滑:这种润滑方式包括液体混合润滑和注油润滑,液体混合润滑是使用混合润滑油将轴承封闭,而注油润滑是通过向磁力泵滑动轴承注入高粘度润滑油来达到润滑的效果;
5. 脂肪润滑:这种润滑方式以脂肪为主要的润滑剂,它的基本特点是极易扩散,能形成一个均匀的薄膜,并具有良好的抗剪切性能。
它可防止外部有害物质侵入,有效地对轴承表面进行保护;
6. 气体润滑:这是一种新型的润滑方式,利用低温、高压气体,将润
滑脂和润滑油混合液体打入轴承,形成良好的润滑状态。
气体润滑技
术有许多优点,它可以提高轴承的寿命,还具备维修保养方便的特点。
风机滑动轴承的主要润滑方式

风机滑动轴承的主要润滑方式
以风机滑动轴承的主要润滑方式为题,将介绍风机滑动轴承的润滑方式及其特点。
风机滑动轴承是风机运行中重要的部件之一,它的润滑方式直接影响到风机的寿命和运行效率。
风机滑动轴承主要有以下几种润滑方式:
1. 干摩擦润滑
干摩擦润滑是指在轴承和轴颈之间不加润滑剂的情况下进行摩擦,使用这种润滑方式的风机轴承一般都采用金属或合成材料制成。
干摩擦润滑的优点是摩擦力小,摩擦损失少,但是需要经常进行维护和更换。
2. 液体静压润滑
液体静压润滑是指在轴颈和轴承之间加入液体润滑剂,在轴承内部形成一层液体膜,形成静压力将轴承与轴颈分离,从而减小摩擦力和磨损。
使用液体静压润滑方式的风机轴承一般采用金属材料制成,优点是寿命长,但是成本较高。
3. 液体动压润滑
液体动压润滑是指在轴承和轴颈之间加入液体润滑剂,通过轴承的
旋转产生液体动压力,将轴承与轴颈分离,减小摩擦力和磨损。
使用液体动压润滑方式的风机轴承一般采用金属或合成材料制成,优点是寿命长,运行平稳,但是成本较高。
4. 固体润滑
固体润滑是指在轴承和轴颈之间加入固体润滑剂,形成一层润滑膜,减小摩擦力和磨损。
使用固体润滑方式的风机轴承一般采用金属或合成材料制成,优点是无需润滑剂,寿命长,但是不能承受较大负载。
风机滑动轴承的润滑方式有干摩擦润滑、液体静压润滑、液体动压润滑和固体润滑。
不同的润滑方式有各自的优点和特点,应根据具体情况选择合适的润滑方式,以保证风机的寿命和运行效率。
形成流体动压润滑的必要条件和向心滑动轴承形成动压润滑的过程。

形成流体动压润滑的必要条件和向心滑动轴承形成动压
润滑的过程。
形成流体动压润滑的必要条件:
1. 必须有一定的相对运动速度。
在流体动压润滑中,油膜的支撑力来源于两表面间的速度差所引起的动压力。
因此,润滑剂必须具有必要的流动性以形成一定的相对运动速度。
2. 必须具备一定的流体润滑剂。
润滑剂应具备一定的粘度,且能形成流体动力润滑油膜。
3. 两表面必须具备一定的平行度和平直度。
当两表面平行时,润滑剂可沿轴向顺利流动,并具有良好的润滑效果;而当两表面不平直时,润滑剂则难以在表面间保持一定的油膜厚度,从而影响润滑效果。
4. 必须具备一定的温度和压力。
适当的温度和压力有助于提高润滑剂的流动性,并促进润滑剂在摩擦表面上的均匀分布。
向心滑动轴承形成动压润滑的过程:
1. 当轴承在一定转速下工作时,轴颈与轴承之间的润滑油由于受到剪切作用而产生一定的粘性阻力。
2. 随着转速的增加,轴颈与轴承之间的相对运动速度也增加,导致润滑油被轴颈携带的旋转作用加强。
3. 随着转速和携带旋转作用的增加,润滑油被挤向轴承的两端边缘,从而产生压力升高。
4. 当轴承两端边缘的压力升高到一定程度时,会形成足够强度的油膜支撑力,将轴颈与轴承顶起,从而实现流体动压润滑。
5. 在流体动压润滑状态下,轴承与轴颈之间的摩擦阻力大幅度下降,减小了磨损,提高了轴承的使用寿命和工作稳定性。
以上内容仅供参考,建议查阅关于向心滑动轴承的书籍文献获取更全面和准确的信息。
滑动轴承工作原理

滑动轴承工作原理
滑动轴承是一种常见的机械部件,主要用于支撑和限制机械零件相对运动时的摩擦和磨损。
它的工作原理与滚动轴承有所不同。
滑动轴承通常由两个部分组成:外套和内衬。
外套通常由金属材料制成,内衬则是一种低摩擦材料,如聚合物或涂层。
工作时,外套和内衬之间形成一个润滑膜,使轴承能够在摩擦的作用下平稳工作。
当外套和内衬之间的摩擦力增加时,润滑膜会变厚,并且摩擦力也会减小。
这样可以降低轴承的磨损和能量消耗。
滑动轴承的工作流程如下:
1. 润滑膜形成:当轴承开始旋转时,外套和内衬之间会形成一个润滑膜。
润滑膜可以是液体还是固体,这取决于轴承的设计和材料选择。
2. 摩擦减小:润滑膜的存在可以降低外套和内衬之间的摩擦力。
这样,机械零件在运动时会受到更少的阻力。
3. 支撑和限制运动:滑动轴承的主要功能是支撑和限制机械零件的相对运动。
它可以承受垂直和水平方向的载荷,并确保机械零件在运动过程中的稳定性和准确性。
4. 磨损和热量分散:在工作过程中,轴承会受到重大的磨损和
产生热量,特别是在高速和重载条件下。
为了减轻磨损和热量的影响,轴承通常需要定期的维护和润滑。
总之,滑动轴承通过润滑膜的存在来降低摩擦力,并确保机械零件的平稳工作。
它在各种机械设备中都有广泛的应用,并起着关键作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
11.2、滑动轴承的典型结构
一、整体式径向滑动轴承
结构简单、磨损后无法调整轴承间隙,装拆不便。
用于:低速、轻载的间歇工作场合,无法用于曲轴
二、剖分式径向滑动轴承 特点于整体式相反。
三、自动调心轴承 B 1.5 (宽径比)时,采用。 d
机械设计 第11章 滑动轴承
9
剖
分
式
轴
整
瓦
体
式
轴
瓦
自动调心式
= ( Pa.s) / (kg/m3 ) m2 /s 常用斯St 1St = 1 cm2 /s = 100 cSt
恩氏粘度 Et ——相对粘度 t c = 0.0064 Et –0.0055 / Et
机械设计 第11章 滑动轴承
7
4、选择原则
高温时,粘度应高一些;低温时,粘度可低一些。
(2)滑动速度大
——粘度较低的润滑油
(3)粗糙或未经跑合的表面 ——粘度较高的润滑油
机械设计 第11章 滑动轴承
16
2、润滑脂 3、固体润滑剂
二、润滑方法 1、油润滑 间歇供油:
油壶或油枪
连续供油: 1) 滴油润滑
2) 绳芯润滑 3) 油环润滑 4) 飞溅润滑
5) 压力循环润滑
2、脂润滑 旋盖式油脂杯、黄油枪
机械设计 第11章 滑动轴承
1
11.1 概述
第11章 滑动轴承
11.2 滑动轴承的典型结构
11.3 滑动轴承材料和轴瓦结构
11.4 滑动轴承的润滑
11.5 不完全油膜轴承的设计计算
11.6 液体动压径向滑动轴承的设计计算
机械设计 第11章 滑动轴承
2
11.1、概述
一、分类 1、根据轴承工作的摩擦性质分
机械设计 第11章 滑动轴承
17
机械设计 第11章 滑动轴承
18
11.5、非完全液体润滑滑动轴承的计算
一、径向滑动轴承 1、限制平均比压P 目的:避免在载荷作用下润滑油被完全挤出
p F [ p] dB
2、限制轴承的p、v值
目的:限制pv是控制轴承温升,避免边界膜的破裂
p v F dn Fn [ p v]
接接触,当两者间有运动或有 运动趋势时,接触表面要产生 切向阻力(即摩擦力),这种 现象成为摩擦。
磨损:使摩擦表面物质不 断损失的现象称为磨损。
单位时间里的磨损量 称为磨损率。
对于要求低摩擦的摩擦副,液体摩擦是比较理想的 状态,维持边界摩擦或混合摩擦是最低要求;
对于要求高摩擦的摩擦副,则希望处于干摩擦状态 或边界摩擦状态。
机械设计 第11章 滑动轴承
5
四、润滑油主要特性
1、粘度:流体抵抗变形能力,衡量流体内:
F u
A y
η——动力粘度 Pa·s(泊P)
粘度↑—— 摩擦力↑——发热↑
工业上常用运动粘度:
m2 / s(斯St)
2、(润滑剂)油性
转速高、压力小时,油的粘度应低一些; 反之,粘度应高一些。
五、润滑脂
◆特
点:无流动性,可在滑动表面形成一层薄膜, 承载能力大,但性能不稳定,摩擦功耗大 。
◆ 适用场合 :要求不高、难以经常供油,或者低速重载、 温度变化不大 以及作摆动运动的 轴承中。
◆ 性能指标: 针入度和滴点。
机械设计 第11章 滑动轴承
油吸附于摩擦表面的性能,边界润滑取决于油
的吸附能力。
机械设计 第11章 滑动轴承
6
3、粘度的测定
3种方法——3种单位
动力粘度 (绝对粘度) 1 Pa.s = 1 N.s / m2——国际单位制 P(泊) ——物理单位 1 Pa.s = 10 P 1P= 100 cP 运动粘度 : 流体动力粘度与同温度下流体密度的比值。
14
二、滑动轴承材料
轴承材料——轴瓦和轴承衬材料 主要失效:磨损,其次强度不足引起的疲劳破坏等。
1、对材料的要求 1)、良好耐磨性、减摩性及磨合性(跑合性) 2)、足够的强度、塑性、嵌藏性、顺应性 3)、耐腐蚀性 4)、导热性好、线膨胀系数小 5)、工艺性好 6)、经济性
机械设计 第11章 滑动轴承
机械设计 第11章 滑动轴承
4
二、液体润滑滑动轴承按油膜形成原理 1、静压轴承 外部一定压力的流体进入摩擦面,建立压力油膜。
2、流体动压润滑轴承
无外部压力源,油膜靠摩擦面的相对运动而自动形成。
三、特点及应用场合
1、寿命长、宜于高速; 2、耐冲击、振动;油膜吸振作用; 3、结构简单,可用于曲轴; 4、承载能力高(重载) 缺点:起动阻力大,润滑、维护较滚动轴承复杂。
机械设计 第11章 滑动轴承
10
11.3、滑动轴承的材料和轴瓦结构
一、轴瓦结构
按构造 分类
整体式 对开式
按材料 分类
单金属 多金属
按加工 分类
铸造 轧制
减摩材料——轴承衬
机械设计 第11章 滑动轴承
11
整 体 式 轴 瓦
轴承衬
剖 分 式 轴 瓦
机械设计 第11章 滑动轴承
12
其余 25 6.3
15
2、常用材料
强度低,仅用作轴承衬
1)、金属材料——轴承合金(巴氏合金)、青铜等;
2)、粉末冶金材料——含油轴承,低速重载, (多孔结构) 具有自润滑性能。
3)、非金属材料——塑性、橡胶等。 11.4、滑动轴承的润滑
一、润滑剂的选择 工作载荷、相对滑动速度、工作温度和特殊工作环境
1、润滑油(1)压力大、温度高、载荷冲击变动大 ——粘度大的润滑油
3.2 6.3
D(H8)
6.3
3.2 3.2
3.2
D0 (K6)
轴瓦上开设油孔和油沟 油孔:供应润滑油; 油沟:输送和分布润滑油;
机械设计 第11章 滑动轴承
13
注意: 油沟、油孔:不能开在油膜承载区,否则,承载能力↓ 油沟长度≈0.8B(轴瓦宽度),即不能开通,否则漏油。
机械设计 第11章 滑动轴承
dB 601000 19100B
机械设计 第11章 滑动轴承
19
3、限制滑动速度v
目的:当p较小时,避免由于v过高而引起轴瓦加速磨损
v dn [v]
60 1000
二、推力滑动轴承
限制轴承平均比压p和pvm值
滑动(摩擦)轴承 滚动(摩擦)轴承
2、根据承载方向分 径向轴承 推力轴承
3、根据轴承摩擦状态分(p40,图3.1)
干摩擦:两表面直接接触; 边界摩擦:极限状态、边界膜作用; 液体摩擦:两表面完全隔开; 非液体摩擦(混合摩擦):部分固体凸峰接触;
机械设计 第11章 滑动轴承
3
干摩擦
边界摩擦
液体摩擦
摩擦:一物体与另一物体直