小学奥数 斐波那契数列典型例题
斐波那契数列题目[集锦]
![斐波那契数列题目[集锦]](https://img.taocdn.com/s3/m/0dd06736ae45b307e87101f69e3143323968f59e.png)
斐波那契数列问题。
(专业C++作业ch4-1)题目描述著名意大利数学家斐波那契(Fibonacci)1202年提出一个有趣的问题。
某人想知道一年内一对兔子可以生几对兔子。
他筑了一道围墙,把一对大兔关在其中。
已知每对大兔每个月可以生一对小兔,而每对小兔出生后第三个月即可成为“大兔”再生小兔。
问一对小兔一年能繁殖几对小兔?提示:由分析可以推出,每月新增兔子数Fn={1,1,2,3,5,8,13,21,34,…}(斐波那契数列),可归纳出F1=1,F2=1,……,Fn=Fn-2+Fn-1。
仿照课本P128页的“2.基本题(1)”进行编程。
注意,(1)课本上的程序显示出数列的前16项的所有数值,这里要求只显示第n项数值;(2)课本上的程序在每次循环时显示数列中的两个数值(i=3时,显示了数列的第3项和第4项)。
输入描述一个正整数n,表示求第n个月的新增的兔子数。
输出描述对输入的n,求第n个月的新增的兔子数。
输入样例16输出样例9872. (18分)求阶乘和。
(专业C++作业ch4-2)题目描述编程求出阶乘和1!+2!+3!+…+n!。
注意:13!=6 227 020 800已经超出unsigned long的范围,故程序中不宜采用整型数据类型,而应使用双精度类型存放结果。
输入描述一个正整数n,n的值不超过18。
输出描述对输入的n,求阶乘和1!+2!+3!+…+n!。
(输出结果时,可以用输出格式控制“cout<<setprecision(17)”来控制双精度类型的结果按17个有效数字的方式显示)输入样例10输出样例40379133. (18分)除法问题。
(专业C++作业ch4-3)题目描述编写一个函数原型为int f(int n);的函数,对于正整数n计算并返回不超过n 的能被3除余2,并且被5除余3,并且被7出余5的最大整数,若不存在则返回0。
应编写相应的主函数调用该函数,在主函数中接受用户输入的正整数n。
(完整版)小学奥数斐波那契数列典型例题

拓展目标:一:周期问题的解决方法(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。
例1:(1)1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.二:斐波那契数列斐波那契是的有关兔子的问题:假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对斐波那契数列(兔子数列)1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …你看出是什么规律:。
【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】【巩固】(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?【解析】120÷3=40 2004÷3=668【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数?例2:(10秒钟算出结果!)(1)1+1+2+3+5+8+13+21+34+55=(2)1+2+3+5+8+13+21+34+55+89=数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍!巩固:34+55+89+144+233+377+610+987+1597+2584==例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …(1)这列数中第2013个数的个位数字是几?分析:相加,只管个位,发现60个数一循环个位数F1 - F30:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 61 7 8 5 3 8 1 9 0F31-F60:9 9 8 7 5 2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 49 3 2 5 7 2 9 1 0F61-F81:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6 2013 = 60*33 + 33,第33个个位为8巩固:这列数中第2003个数的个位数字是几?(2)这列数中第2003个数除以5的余数是几?规律:发现20个数一循环、。
奥数兔子数列规律题目

奥数兔子数列规律题目奥数兔子数列规律:在奥数中,有一种有趣的兔子数列,也被称为斐波那契数列。
这个数列从 0 和 1 开始,后续的每一项都是前两项的和。
即:0、1、1、2、3、5、8、13、21、34、55、89……说起这兔子数列,就像是一场神奇的数字魔法秀!想象一下,兔子们在一个神秘的数字花园里快乐生活。
最开始有一对小兔子,一个月后它们长大了但还没生宝宝。
又过了一个月,这对大兔子生下了一对小兔子,此时花园里就有两对兔子了,一对大的,一对小的。
再一个月过去,原来的大兔子又生了一对小兔子,而之前的小兔子也长大变成了大兔子但还没生宝宝。
就这样,兔子的数量按照一定的规律不断增加。
兔子数列里的数字就像一群调皮又聪明的小精灵,它们手拉手排着队,每个数字都知道自己的位置和使命。
前面的数字像是勇敢的先锋队,为后面的数字开辟道路;后面的数字则像是充满活力的追随者,紧紧跟随着前面数字的脚步。
在生活中,兔子数列的应用可不少呢!比如植物的生长,有些花朵的花瓣数量就遵循着兔子数列的规律。
像百合花一般有 3 片花瓣,梅花有 5 片花瓣,而雏菊可能就有 8 片、13 片花瓣。
再看看艺术领域,一些著名的画作和建筑设计中也藏着兔子数列的身影。
比如一些螺旋形状的图案,其线条的比例和兔子数列有着微妙的联系。
还有更神奇的,科学家们发现,兔子数列在自然界的一些现象中也起着作用。
比如蜜蜂家族的繁衍,就有着类似的规律。
总之,兔子数列就像是一把神奇的钥匙,能打开许多未知世界的大门。
它让我们看到了数字背后隐藏的美妙秩序和规律。
了解了兔子数列,我们就能更加敏锐地发现生活中那些看似平常却又充满奇妙规律的现象。
如果你对这些神奇的规律充满好奇,不妨去阅读《从一到无穷大》这本书,或者登录果壳网,那里有更多有趣的科学知识等待着你去探索。
说不定,下一个发现神奇规律的人就是你哟!。
小升初有趣奥数题及答案

小升初有趣奥数题及答案小升初的奥数题目通常旨在培养学生的逻辑思维能力、数学兴趣以及解决问题的能力。
以下是一些有趣的奥数题目及它们的答案:1. 题目:有一个数字序列,每个数字是它前面两个数字的和,例如:1, 1, 2, 3, 5, 8, 13, ...。
如果这个序列的前7个数字分别是1, 1, 2, 3, 5, 8, 13,那么第8个数字是什么?答案:根据斐波那契数列的定义,每个数字是前两个数字的和,所以第8个数字是第6个和第7个数字的和,即 8 + 13 = 21。
2. 题目:一个数字钟表上,时针和分针在12点时重合。
问下一次它们重合是几点几分?答案:时针和分针每小时重合一次。
由于分针比时针快,它们会在每个小时的开始时重合。
所以,下一次它们重合是在1点整。
3. 题目:一个班级有50名学生,每个学生都至少参加一个兴趣小组。
如果班级中有一半的学生参加了数学小组,三分之一的学生参加了科学小组,五分之一的学生参加了音乐小组,那么至少有多少学生同时参加了这三个小组?答案:首先,我们计算参加各个小组的学生人数:数学小组25人,科学小组约16.67人(取整数为16人),音乐小组10人。
由于每个学生至少参加一个小组,所以参加小组的总人数至少为50人。
根据抽屉原理,至少有25 + 16 - 50 = 8人同时参加了数学和科学小组,至少有25 + 10 - 50 = 5人同时参加了数学和音乐小组,至少有16 +10 - 50 = 2人同时参加了科学和音乐小组。
因此,至少有8 + 5 + 2- 50 = -33人同时参加了这三个小组,但人数不能为负数,所以至少有0人同时参加了这三个小组。
4. 题目:一个数字游戏,玩家可以选择1到6的数字,每次掷骰子,掷出的数字是1的概率是多少?答案:一个标准的骰子有6个面,每个面上的数字从1到6。
由于每个数字出现的概率相等,所以掷出数字1的概率是1/6。
5. 题目:一个长方形的长是宽的两倍,如果长增加10米,宽增加5米,面积增加了65平方米。
小学五年级奥数题

小学五年级奥数题标题:小学五年级奥数题——找规律解难题在小学奥数的学习中,找规律题一直是一类重要的题目,它不仅可以锻炼我们的思维能力,还可以帮助我们发现数学中的趣味性和规律性。
今天,我们就来一起探讨一道小学五年级的奥数找规律题。
首先,我们来观察下面这一列数字:1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...你是否发现了一些有趣的现象?是的,这列数字中,每个数字都是前两个数字之和,这就是我们所说的“斐波那契数列”。
现在,我们来解一道关于斐波那契数列的找规律题。
题目是这样的:在前10个数字中,每个位置上的数字都是前两个位置上数字的和,那么第10个数字是多少呢?我们可以根据题目给出的规则,从第1个数字开始,逐步计算出第2个、第3个、第4个...直到第10个数字。
但是,这种方法既繁琐又容易出错。
因此,我们需要找到一种更高效的方法。
幸运的是,我们发现斐波那契数列有一个特点:每三个连续的数字中,第一个和第三个数字的和等于第二个数字的平方。
例如,第1、2、3个数字分别为1、2、3,而1+3=22;第2、3、4个数字分别为2、3、5,而2+5=33。
这个规律可以让我们直接计算出第10个数字。
根据题目要求,我们知道第10个数字是第8个和第9个数字之和。
根据上述规律,我们可以依次计算出第8个和第9个数字。
首先,我们计算出第7个和第8个数字:7两数之和为1111=121。
然后,我们再计算出第6个和第7个数字:5+8=13,6两数之和为1313=169。
最后,我们就可以得到第9个数字为:169-121=48。
因此,第10个数字就是:48+121=169。
通过这道小学五年级的奥数题,我们不仅锻炼了自己的思维能力,还学会了如何运用找规律的方法解决问题。
希望同学们在日后的学习中,能够多观察、多思考,发现更多的数学规律和乐趣。
小学五年级奥数举一反三小学五年级奥数举一反三小学五年级是数学学习的一个重要阶段,学生们开始接触一些较为复杂的数学问题。
斐波那契数列培优专项练习

斐波那契数列培优专项练习
介绍斐波那契数列
斐波那契数列是一个非常经典的数学问题,它是由Leonardo Fibonacci在13世纪提出的。
这个数列的特点是,每个数字都是前两个数字之和。
数列的开始通常为0和1,然后后续的数字就是前面两个数字之和。
主要目标
本次培优专项练的主要目标是帮助参与者更好地理解和运用斐波那契数列。
练内容
练1:计算斐波那契数列
请编写一个程序,能够计算出给定位置的斐波那契数列的值。
要求程序能够根据用户输入的位置,输出对应位置的斐波那契数。
练2:绘制斐波那契数列曲线
请编写一个程序,能够将前n个斐波那契数列的值绘制成曲线图。
要求程序能够根据用户输入的n值,输出对应的斐波那契数列
曲线图。
练3:斐波那契数列应用
请尝试解决下面的问题:
1. 在斐波那契数列中,每个数字除以它的前一个数字,得到的
结果趋向于哪个数?请编写一个程序,能够计算出这个数的近似值。
2. 斐波那契数列中,每个数字除以它前面两个数字之和,得到
的结果会趋向于哪个数?请编写一个程序,能够计算出这个数的近
似值。
3. 斐波那契数列的前n项之和为多少?请编写一个程序,能够
计算出这个和的值。
总结
通过这次培优专项练习,参与者将能够更好地理解和应用斐波那契数列。
编写计算斐波那契数列的程序、绘制斐波那契数列曲线以及解决斐波那契数列相关问题的能力将得到提高。
希望这次练习能够帮助大家更好地掌握斐波那契数列的知识。
综合算式专项练习数列的应用问题

综合算式专项练习数列的应用问题数列是数学中常见的概念,它是按照一定的规律排列的一组数。
在实际应用中,数列经常被用来描述和解决各种问题。
本文将重点介绍数列的应用问题,并提供一些综合算式的专项练习。
一、斐波那契数列斐波那契数列是一个神奇的数列,它的前两项为1,之后的每一项都是前两项的和。
斐波那契数列在自然界中有着广泛的应用,如描述兔子繁殖、植物生长等。
下面是一个斐波那契数列的应用问题:问题:兔子繁殖问题。
开始时,一对兔子(一公一母)放养在一个围栏里,请问第10个月共有多少对兔子?解析:根据题目描述,第1个月有1对兔子,第2个月也有1对兔子。
从第3个月开始,每个月的兔子对数都是前两个月兔子对数之和。
我们可以用数列来表示,设第n个月兔子对数为An。
则有如下递推关系:An = An-1 + An-2。
根据递推关系,我们可以计算出前几个月的兔子对数如下:1, 1, 2, 3, 5, 8, 13, 21, 34, 55。
所以第10个月共有55对兔子。
二、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
等差数列在日常生活中也有很多应用,如计算等差数列的和可用于预算和财务管理。
下面是一个等差数列的应用问题:问题:购物问题。
小明每天购物,他从第一天起每天花费10元,且每天的花费都比前一天多5元。
请问,到第30天,小明一共花费了多少元?解析:根据题目描述,小明每天的花费构成了一个等差数列。
设第n天的花费为An,第一天的花费为A1。
根据题目要求,可得递推关系:An = A1 + (n-1) * 5。
代入题目信息,第一天花费10元,即A1 = 10,共花费到第30天,即n = 30。
带入递推关系,可以计算出小明一共花费了10 + (30-1) * 5= 155元。
三、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
等比数列在生活中也有很多应用,如描述一种倍增或倍减的现象。
下面是一个等比数列的应用问题:问题:细菌繁殖问题。
奥数中的数码和页码题目

奥数中的数码和页码题目
数码和页码题目:
题目1:小明参加了一个奥数比赛,他打开试卷,发现每一页都有一个三位数的数码。
如果小明一共翻了100页试卷,每一页的数码都是顺序递增的,试问最后一页的数码是多少?
题目2:在一本奥数题集中,从第一页开始,每一页的页码都是一个四位数。
如果小红翻了20页,她发现每一页的页码的千位数字都是顺序递减的,百位数字都是顺序递增的,个位数字都是0,十位数字都是5,试问小红翻到的最后一页的页码是多少?
题目3:斐波那契数列是一个典型的数列,它的第一项和第二项均是1,之后的每一项是前两项的和。
小明翻开一本奥数题集,数码以斐波那契数列的方式排列在每一页的右下角,第一页的右下角是第三项,第二页是第四项,以此类推。
如果小明翻到第20页,试问右下角的数码是多少?
题目4:某本数学家的传记共有300页。
对于前100页,每一页的数码都是从1开始,顺序递增的。
对于接下来的100页,每一页的数码都是从101开始,顺序递增的。
对于最后100页,每一页的数码都是从201开始,顺序递增的。
试问第50页的数码是多少?
题目5:小华翻开一本奥数参考书,第一页的数码是1,第二页是2,以此类推。
当他翻开第N页时,所有页码的数码之和是675。
试问N是多少?
参考答案:
题目1:最后一页的数码是100。
题目2:小红翻到的最后一页的页码是6590。
题目3:右下角的数码是6765。
题目4:第50页的数码是150。
题目5:N是18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展目标:
一:周期问题的解决方法
(1)找出排列规律,确定排列周期。
(2)确定排列周期后,用总数除以周期。
①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个
②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。
例1:
(1)1,2,1,2,1,2,…那么第18个数是多少?
这个数列的周期是2,1829
÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
这个数列的周期是3,16351
÷=⋅⋅⋅,所以第16个数是1.二:斐波那契数列
斐波那契是
的有关兔子的问题:
假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。
一年内没有发生死亡。
那么,由一对刚出生的兔子开始,12个月后会有多少对
斐波那契数列(兔子数列)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
你看出是什么规律:。
【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】
【巩固】
(1)2,2,4,6,10,16,(),()
(2)34,21,13,8,5,(),2,()
例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)?
【解析】120÷3=40 2004÷3=668
【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数?
例2:(10秒钟算出结果!)
(1)1+1+2+3+5+8+13+21+34+55=
(2)1+2+3+5+8+13+21+34+55+89=
数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍!
巩固:34+55+89+144+233+377+610+987+1597+2584==
例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …
(1)这列数中第2013个数的个位数字是几?
分析:相加,只管个位,发现60个数一循环
个位数
F1 - F30:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6
1 7 8 5 3 8 1 9 0
F31-F60:9 9 8 7 5 2 7 9 6 5 1 6 7 3 0 3 3 6 9 5 4
9 3 2 5 7 2 9 1 0
F61-F81:1 1 2 3 5 8 3 1 4 5 9 4 3 7 0 7 7 4 1 5 6 2013 = 60*33 + 33,第33个个位为8
巩固:这列数中第2003个数的个位数字是几?
(2)这列数中第2003个数除以5的余数是几?。