2018年中考数学压轴题专题练习-----圆与动点问题

合集下载

2018年人教版中考数学经典复习题中考动点问题

2018年人教版中考数学经典复习题中考动点问题

中考动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意. ③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立. 三、应用求图形面积的方法建立函数关系式例4 如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

2018届中考数学专题3 动点问题 (共30张PPT)

2018届中考数学专题3 动点问题 (共30张PPT)
3 4 3 3 x=-2,
4
∴点 P 的坐标为 - 2 ,0 .
考点·梳理自清
考题·体验感悟
考点·梳理自清
考题·体验感悟
考法·互动研析
1
2
3
4
5
6
7
2
1.(2017· 山东枣庄)如图,直线y= 3 x+4与x轴,y轴分别交于点A和点B, 点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD最小 时,点P的坐标为( C )
A.(-3,0)
B.(-6,0)
C.
3 - ,0 2
BD= BC2 + CD2 = 5,
由折叠知△A1DE≌△ADE, 所以A1D=AD=1.
由 A1B+A1D≥BD,得 A1B≥BD-A1D= 5-1. 故 A1B 长的最小值是 5-1.
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
类型三
类型二 几何图形中的动点问题 例2(2017· 山东泰安)如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC向点C以1 cm/s的速度运动,同时点Q从点C沿CB 向点B以2 cm/s的速度运动(点Q运动到点B停止),在运动过程中,四 边形PABQ面积的最小值为( )
D.
5 - ,0 2
解析: 作点D关于x轴的对称点D',连接CD'交x轴于点P,此时PC+PD 值最小,如图所示.
令 令
2 y=3x+4 2 y=3x+4
中 x=0,则 y=4,∴点 B 的坐标为(0,4); 中 y=0,解得 x=-6,
考点·梳理自清
考题·体验感悟

2018年中考与圆有关的动点问题(答案)

2018年中考与圆有关的动点问题(答案)

1.【答案】D 【解析】如解图,点D 运动的路径是以AO 中点M 为圆心,AO 一半的长为半径的圆,∵AB 为⊙O 的直径,AB =8,∴AO =12AB =4,∴点D 运动的路径长为:π×4=4π.2.【答案】B 【解析】如解图,过A 作⊙O 的直径AE ,连接ED ,AD ,∴∠ADE =90°,∵∠E =∠B =30°,∴∠EAD =60°.在Rt △ADE 中,AD =12AE =6,∵AC 是⊙O 的切线,∴OA ⊥AC ,∴∠OAC =90°,∴∠CAD =90°-60°=30°,过点D 作AC 的垂线,垂足为C ',在Rt △DA C '中,∵∠DA C '=30°,∴DC '=12AD =3,∴当点C 在C '点时,CD 有最小值,最小值为3.3.【答案】D 【解析】如解图,连接OA ,OB ,∵∠ACB =30°,∴∠AOB =60°.∵OA =OB ,∴△AOB 是等边三角形,∴AB =6.当GH 为⊙O 的直径时,GE +FH 有最大值.∵当GH 为直径时,E 点与O 点重合,∴AC 也是直径,AC =12.∵∠ABC 是直径所对的圆周角,∴∠ABC =90°,∠C =30°,∴AB =12AC =6.∵点E 、F 分别为AC 、BC 的中点,∴EF =12AB =3.∴GE +FH =GH -EF =12-3=9. 4.【答案】D 【解析】∵AB =15,AC =9,BC =9,∴2AB =2AC +2BC ,∴△ABC 为直角三角形,∠ACB =90°,点C 在圆上,所以EF 为圆的直径,若求线段EF 的最值,即要使圆最小,圆与AB 的切点为D ,如解图,连接CD ,当CD 垂直于AB 时,即CD 是圆的直径时,EF 长度最小,即最小值是斜边AB 上的高CD ,利用三角形面积可得:12AB ·CD =12AC ·BC =12×15×CD =12×12×9,解得CD =365. 5.【答案】C 【解析】当点C 为劣弧AB 的中点时,△ABC 内切圆半径r 最大,如解图,连接OC 交AB 于D 点,⊙M 为△ABC 内切圆,作ME ⊥AC 于E 点,∵点C 为劣弧AB 的中点,∴OC ⊥AB ,AD =BD =12AB =3,AC =BC ,∴点M 在CD 上,∴ME 和MD 都为⊙M 的半径,设ME =MD =r ,∵∠ACB =120°,∴∠A =30°,∠ACD =60°,在Rt △ACD 中,CD在Rt △CEM 中,∠ECM =60°,∠CME =30°,CEEMr ,第1题解图B第2题解图第3题图D第4题解图AF E CB∴CM =2CE,CM +DM =CD+rr =6-6.【答案】C 【解析】由题可知=ABCACDABCD S SS+四边形,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F ,如解图,则1=2ABCD S AC BF ∙四边形+12AC DE ∙=12+12DE,当点D 为劣弧AC 的中点时,DE 取得最大值,此时∠DAC =∠ACD =∠ABD =12∠ABC =30°,在Rt △ADE 中,AE =12AC,DE =12AD ,由勾股定理可得DE =12,∴此时12ABCD S 四边形7.【答案】B 【解析】如解图,作直径BD ,连接CD ,OC ,BM ,CM ,OM ,则∠BCD =90°,则∠BAC =∠D ,∵BC =BD =2OB =4,∴CD2,∴CD =12BD ,∴∠DBC =30°,∴∠BAC =∠D =60°,∴∠BOC =2∠BAC =120°,∠ABC +∠ACB =120°,∵P 点是△ABC 的内心,∴∠PBC +∠PCB =12(∠ABC +∠ACB )=60°,∴∠BPC =120°=∠BOC ,∴点O 在⊙M 上,∴OM =CM ,∵BM =CM ,∴BM =CM ,∴∠BOM =∠COM =60°,∴△OCM 是等边三角形,∴CM =OC =2,即⊙M 的半径不变等于2.故选B .8.【答案】B 【解析】如解图,连接OA 、OB ,∵∠ACB =45°,∴∠AOB =90°,又∵OA =OB ,∴△AOB 是等腰直角三角形,∵AB =6,∴OA =OB =6M 、N 分别是AB 、BC 的中点,∴MN 是△ABC 的中位线,∴MN =12AC ,要使MN 最大,即AC 最大,而AC 是⊙O 的弦,故AC 是⊙O 的直径时,值最大,此时AC =2OA MN 长的最大值是12AC =12⨯第5题解图A第6题解图第7题解图第8题解图9.【答案】B 【解析】如解图,将⊙O 补全,延长BO 交⊙O 于点C ,连接AC 交MO 于点P ,连接BP ,∵CB ⊥MN ,OB =OC ,∴BP =CP ,∴PA +PB =PA +PC ,根据两点之间线段最短可知所作点P 即为所求,此时PA +PC =AC .∵CB 为⊙O 的直径,∴∠BAC =90°,在Rt △ABC 中,AB =4,BC =2OB =10,∴AC10.【答案】C 【解析】如解图,∵AC 为其直径,∠ACB =30°,∴∠A =60°,∵点A '在AC 上运动,∴∠A '=∠A =60°,∵C 'B ⊥A 'B ,∴∠C '=90°-60°=30°,∵∠C '是定值,∴点C '的运动路径是一个圆,当点C '运动到C ''时,C C ''=2BC ,∵⊙O 的半径为7,∴AC =14,AB =7 ,∴BC =C C ''=C '以在C C ''中点M 为圆心,BC '的最大值为11.【答案】A 【解析】连接AE ,如解图①,∵∠BAC =90°,AB =AC ,BC =AB =AC =4,∵AD 为直径,∴∠AED =90°,∴∠AEB =90°,∴点E 在以AB 为直径的⊙O 的上,∵⊙O 的半径为2,∴当点E 为线段OC 与⊙O 的交点时,CE 最小.如解图②,在Rt △AOC 中,∵OA =2,AC =4,∴OCCE =OC -OE=-2.即线段CE长度最小值为2.当点E 为射线CO 与⊙O 的交点时,CE 最大,最大值为+2,∴-2≤CE ≤+2.12.【答案】A 【解析】如解图,连接OQ ,∵MN =OP (矩形对角线相等),⊙O 的半径为2,OQ =12MN =12OP =1,可得点Q 的运动轨迹是以O 为圆心,1为半径的圆.当点P 沿着圆周转过45°时,点Q 也是转过45°.∴Q 运动过的长度为45360︒︒×2π=4π.故选A . 13.【答案】C 【解析】如解图,连接CE ,∵点E 是AD 的中点,A 'E =AE =12AD ,点F 为动点,则随着F 的运动,A '的运动轨迹是以点E 为圆心,AE 为半径在矩形ABCD 内的第9题解 图第10题解图②图B①图圆弧,则C A '、A 'E 和CE 围成三角形,根据三角形的三边关系,即A 'E + C A '>CE ,当E 、A '、C 在同一直线上时,则A 'E + C A '=CE ,此时C A '最小.在Rt △CDE 中,CD =3,DE =1,则CEC A '1.14.【答案】A 【解析】过点A 、B 作圆P ,且使OA 、OB 交⊙P 于A 、B 两点,如解图,连接AP ,BP ,∵OA =OB =AB =4,∴△OAB 是等边三角形,∴∠AOB =60°,∴∠ACB =12∠AOB =30°,∵BD ⊥BC ,∴∠D =60°,∵AB =4,是一个定值,∴点D 在圆P 上,要使△ABD 面积的最大,∴点D 到AB 的距离要最大时,此时D 为圆P 优弧AB 的中点,此时△ABD 为等边三角形,D 到AB 的距离为ABD S ∆=12△ABD 面积的最大值为15.【答案】B 【解析】当点C 运动到A 点处时,点D 在如解图D '的位置处,当点C 运动到B 点处时,点D 与点B 重合,∵△BCD 是等边三角形,∴∠CDB =60°,又∵CO =BO ,∴△CDO ≌△BDO ,∴∠ODB =30°,∴点C 在半圆AB 上运动时,点D 在以BD '为直径的圆上运动,当点O ,D 与BD '的中点M 共线时,线段OD 最长,为⊙M 的直径,∴OD 的长随点C 的运动而变化,最大值为16.【答案】B 【解析】如解图,连接OA 、OB ,∵∠AMB =45°,∴∠AOB =90°,∴△AOB 是等腰直角三角形,∵⊙O 的半径是2,∴AB==,∵A M BA NM A N B S S S ∆∆=+四边形,∴要使四边形MANB 面积最大,则需两个三角形的高的和最大,当MN 为直径时,NM 最大,∴由垂径定理可知MN ⊥AB 时,四边形MANB 面积有最大值,∴MANB S 四边形=12·AB ·MN =1217.【答案】C 【解析】如解图,取劣弧CB 的中点D ,连接AD ,BD ,∵∠BCA =90°,AB =第12题解图CF第13题解图第14题解图第15题解图2AC =4,∴CA =2,则∠ABC =30°,∴∠BAC =60°,∵D 为劣弧CB 的中点,∴BD =CD ,∴∠BAD =30°,∴BD =12AB =2,∠BPC =60°,∴∠BDC =120°,∵I 为△PBC 的内心,∴∠PBI =∠IBC ,∵BD =CD ,∴∠BPD =∠DBC ,∴∠PBI +∠BPD =∠IBC +∠DBC ,即∠BID =∠IBD ,∴ID =BD ,∵BD =CA =2,∴ID =2,∴动点I 到定点D 的距离为2,即点I 的轨迹是以点D 为圆心,2为半径的弧CIB (不含C 、B ),弧CIB 的长为1202180π⨯=43π,则l 的取值范围是:0<l <43π18.【答案】A 【解析】如解图,分别作∠A 与∠B 的角平分线,交点为P ,∵△ACD 和△BCE 都是等边三角形,∴AP 与BP 为CD 、CE 的垂直平分线.又∵圆心O 在CD 、CE 垂直平分线上,则交点P 与圆心O 重合,即圆心O 是一个定点,连接OC ,若半径OC 最短,则OC ⊥AB .又∵∠OAC =∠OBC =30°,AB =4,∴OA =OB =2OC ,∴AC =BC =2,∴在Rt △AOC 中,2OC =2AO -2AC ,即2OC =42OC -4,解得OC19.【答案】C 【解析】如解图,连接OP ,∵PM ⊥CD ,PN ⊥AB ,∴∠PMO =∠PNO =90°,∴点M 、N 在以OP 为直径的圆上,∴∠MPN =90°,MN 有最大值2.20.【答案】 B 【解析】如解图,连接DO 并延长,交⊙O 于点P ′,由圆的性质知,当点P 运动到点P ′时,DP 的值最大.∵△ABC 为等腰直角三角形,且AB=∴BC=根据勾股定理得8AC ==,∵点D 、O 分别为AB 、AC 的中点,∴DO为△ABC的中位线,∴12DO BC ==DP ′=DO +OP ′=4,故DP 的最大值为4.第16题解图第17题解图第18题解图B第19题解图第20题解图 第22题解图 第23题解图 21.C 【解析】如解图,点P 运动的路径是以G 为圆心的劣弧,在⊙G 上取一点H ,连接EH 、FH ,∵四边形AOCB 是正方形,∴∠AOC =90°,∵∠CEA =12∠COA =45°,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠AFP =45°,∵EF 是⊙O 的直径,∴∠EAF =90°,∴∠APF =∠AFP =45°,∴∠H =∠APF =45°,∴∠EGF =2∠H =90°,∵EF =4,GE =GF ,∴GE =GF=EF 的长为90222180π=22.A 【解析】作DH ⊥BC 于H ,如解图,∵四边形ABCD 中,AD ∥BC ,∠ABC =90°,∴AB ⊥AD ,AB ⊥BC ,∴四边形ABHD 为矩形,∴AB 为直径,∴AD 和BC 为⊙O 的切线,∵CD 和MN 为⊙O 切线,∴DE =DA ,CE =CB ,NE =NF ,MB =MF ,∵四边形ABHD 为矩形,∴BH =AD =2,DH =AB =6,设BC =x ,则CH =x -2,CD =x +2,在Rt △DCH 中,∵222CH DH DC += ,∴222(2)6(2)x x -+=+,解得x =92,∴CB =CE =92,∴△MCN 的周长=CN +CM +MN =CN +CM +NF +MF =CE +CB =923.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在以AO 为直径的圆上,当点D 运动到点C 处时,AE ′=12AC ;当点D 运动到点B 处时,AE ′′=12AB ,∴E ′E ′′为△ABC 的中位线,∴E ′E ′′=12BC =2,∵∠A =45°,∴E E ''' 所对的圆心角为90°,点E所在圆的半径r ∵点D 在优弧BAC上运动,∴点E运动的路径长为(3601802-=.24.A 【解析】如解图,当点D 在⊙O 上运动时,点E 在⊙M 上,点D 运动到D ′处时,D ′、O 、B 、M 共线,此时D ′B 为⊙O 的直径,∵BE =12BD ,∴BM =12BO ,在Rt △ABC 中,∵BC =AB =4,∴AC =BO=AO =BM D 与点A 重合时,点EC运动到E ′′处,∵△ABC 是等腰直角三角形,∴∠C =45°,∴∠BOA =90,∴∠E ′′MB =90°,∴当点D 从点A 运动至点B 时,点E的运动路径长为901802=.第24题解图 第25题解图25.C 【解析】如解图,过点P 作PF ⊥OM ,交直线l 同侧的⊙O 于点F ,连接OF ,记OF 的中点为G ,∵CM ⊥直线l ,∴∠MCO =∠OPF =90°,在Rt △CMO 和Rt △POF ,∴∠POF =∠CMO ,OF ⊥直线l ,∵点G 是OF 的中点,∴OG =GP =GF ,∴点P 在以点G 或G ′为圆心,OG 或OG ′长为半径的圆上,当点M 运动一周时,点P 的运动路程是⊙G 周长的2倍,∵OF =OM =10,∴点P 运动路程为2×10π=20π.。

2018春中考数学《动点问题:圆中的动点》针对演练

2018春中考数学《动点问题:圆中的动点》针对演练

第二部分 攻克题型得高分题型七 几何图形动点问题 类型一 圆的动点问题1. 如图,在△ABC 中,AB =AC =5,cosB =45,点P 为边BC 上一动点,过点P 作射线PE 交BA 的延长线于点D ,使得∠BPD =∠BAC ,以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E ,连接CE ,设BD =x ,CE =y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出它的自变量取值范围.第1题图2. 如图,在△ABC 中,∠ACB =90°,AC =8,CB =6,点D 在线段CB 的延长线上,且BD =2,点P 从点D 出发沿着DC 向终点C 以每秒1个单位的速度运动,同时点Q 从点C 出发沿着折线C -B -A 往终点A 以每秒2个单位的速度运动,以PQ 为直径构造⊙O ,设运动的时间为t(t ≥0)秒.(1)当0≤t<3时,用含t 的代数式表示BQ 的长度; (2)当点Q 在线段CB 上,求⊙O 和线段AB 相切时t 的值.第2题图3. 如图,△ABC的边AB是⊙O的直径,点C在⊙O上,已知AC =6 cm,BC=8 cm,点P、Q分别在边AB、BC上,且点P不与点A、B重合,BQ=k·AP(k>0),连接PC、PQ.(1)求⊙O的半径长;(2)当k=2时,设AP=x,△CPQ的面积为y,求y关于x的函数关系式,并写出自变量的取值范围;(3)如果△CPQ与△ABC相似,且∠ACB=∠CPQ,求k的值.第3题图4. (2017烟台)如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12 cm,BD=16 cm,动点N从点D出发,沿线段DB以2 cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1 cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t 为何值时,线段EN 与⊙M 相切?(3)若⊙M 与线段EN 只有一个公共点,求t 的取值范围.第4题图5. 如图①所示,在正方形ABCD 中,AB =1,AC ︵是以点B 为圆心,AB 长为半径的圆的一段弧,点E 是边AD 上的动点(点E 与点A ,D 不重合),过E 作AC ︵所在圆的切线,交边DC 于点F ,G 为切点.(1)求证:EA =EG ;(2)设AE =x ,FC =y ,求y 关于x 的函数关系式,并直接写出x 的取值范围;(3)如图②所示,将△DEF 沿直线EF 翻折后得△D 1EF ,连接AD 1,D 1D ,当△AD 1D 与△ED 1F 相似时,求AEFC的值.第5题图 答案1. 解:(1)如解图,作PF ⊥BD 于点F ,作AH ⊥BC 于点H ,设⊙P的半径为r.∵AB=AC=5,∴BH=CH,∴在Rt△ABH中,∵cosB=BHAB=45,∴BH=45×5=4,∴AH=3,BC=2BH=8,在Rt△ABH中,sinB=3 5,在Rt△BPF中,sinB=PFPB=35,又∵PB=BC-PC=8-Y,∴PF=35(8-r),当⊙P与AB相切时,PF=PC,即35(8-r)=r,解得r=3,即当⊙P与AB相切时,⊙P的半径为3.(2)∵∠BPD=∠BAC,∠PBD=∠ABC,∴△BDP∽△BCA,∴BPBA=BDBC,即8-r5=x8,∴r=8-58 x,作PG⊥CE于点G,如解图,则CG=EG=12 y,第1题解图 ∵PE =PC ,∴∠EPG =∠GPC =12∠EPC ,∵△BDP ∽△BCA ,AB =AC , ∴PB =PD , ∴∠DPF =12∠DPB ,∴∠GPF =12∠DPC +12∠DPB =90°,∴FP ⊥PG ,∴∠GPC =∠B =∠EPG ,在Rt △PGC 中,sin ∠GPC =CG PC =sinB =35,∴12y =35r , ∴12y =35(8-58x), ∴y =-34x +485,当P 点在C 点时,r =0,即8-58x =0,解得x =645,∴x 的取值范围为5<x<645.2. 解:(1)当0≤t<3时点Q在BC上运动此时,BQ=BC-CQ=6-2t.(2)分两种情况讨论:①当P,Q还未相遇时,如解图①,⊙O与AB的切点为E.第2题解图①由题意得:CD=8,CQ=2t,DP=t,QP=CD-CQ-DP8-3t,OE=12QP=8-3t2,BP=BC-CQ-PQ=t-2,OB=OP+BP=8-3t2+t-2=2-t2,∵⊙O与AB相切,∴OE⊥AB,∵sin∠ABC=OEOB=ACAB,∴8-3t24-t2=45,解得t=2411;②当P,Q相遇后,如解图②,⊙O与AB的切点为E,第2题解图②由题意得:BQ =6-2t ,PQ =BP -BQ =(t -2)-(6-2t)=3t -8, OE =12QP =3t -82,OB =OQ +BQ =4-t 2,∵⊙O 与AB 相切,∴OE ⊥AB , ∵sin ∠ABC =OE OB =AC AB ,∴3t -824-t 2=45,解得t =5619. 综上所述,满足条件的t 值有t =2411或5619.3. 解:(1)∵AB 是⊙O 的直径,∴∠ACB =90°, ∵AC =6,BC =8,∴AB =AC 2+BC 2=62+82=10, ∴⊙O 的半径为5;(2)如解图①,作PH ⊥BC 于H.第3题解图① ∴PH ∥AC ,∴PH AC =PBAB,∴PH 6=10-x 10,∴PH =35(10-x),又BQ=KAP,k=2∴BQ=2x,∴CQ=8-2x∴y=12·CQ·PH=12·(8-2x)·35(10-x)=35x2-425x+24(0<x<4).(3)如解图②,第3题解图②∵△CPQ与△ABC相似,∠CPQ=∠ACB=90°,∠CQP>∠B,∴只有∠PCB=∠B,∴PC=PB,∵∠B+∠A=90°,∠ACP+∠PCB=90°,∴∠A=∠ACP,∴PA=PC=PB=5,即点P与点O重合,又BQ=k·AP,AP=5∴BQ=5k,CQ=8-5k,∴△COQ∽△BCA,∴COBC=CQBA,∴58=8-5k 10,∴k =720. 4. 解:(1)由题意可得:DN =2t ,BM =t ,BN =16-2t ,BE =2t ∵四边形ABCD 是菱形,∴OB =OD =12BD =8,OA =OC =12AC =6,∴Rt △AOB 中,AB =62+82=10, 如解图①,过点M 作MQ ⊥BD 交BD 于点Q ,第4题解图①∵∠MQB =90°=∠AOB ,∠MBQ =∠ABO , ∴△MQB ∽△AOB , ∴BQ BO =BMBA , 即BQ 8=t 10, ∴BQ =45t ,∵点M 为⊙M 的圆心,MQ ⊥BF , ∴BF =2BQ =85t.又∵当N 点与B 点重合时,DN =2t =16, ∴t =8,即t 的取值范围为0<t<8;(2)当线段EN 与⊙M 相切时,则EN ⊥BE ,∠BEN =90°, ∵∠BEN =∠AOB =90°,∠EBN =∠OBA , ∴△BEN ∽△BOA ,∴BE BO =BNBA即2t 8=16-2t 10,解得t =329, ∴当t =329时,EN 与⊙M 相切;(3)当0<t ≤329时,⊙M 与线段EN 只有一个公共点.第4题解图②如解图②,当点E 在BA 延长线上且EN ⊥BD 时,⊙M 与线段EN 此时有两个公共点,Rt △BNE 中,BN =BE·cos∠ABO =2t ×45=85t.∵DN =2t ,∴85t +2t =16,∴t =409.当t >409时,EN 在⊙M 内部,此时⊙M 与EN 只有一个公共点,又∵⎩⎪⎨⎪⎧2t <16t <10,∴t <8,∴409<t<8,∴当0<t≤329或409<t<8时,⊙M与线段EN只有一个公共点.5. (1)证明:∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,AD=CD=AB=1,∴AD⊥BA,∴AD是圆B的切线,∵EG是圆B的切线,∴EA=EG;(2)解:由(1)知EA=EG,同理FG=FC.∵AE=x,FC=y∴EF=x+y,DE=1-x,DF=1-y,在Rt△DEF中,根据勾股定理,得(x+y)2=(1-x)2+(1-y)2,∴y=1-x1+x(0<x<1);(3)解:由翻折性质及题意知,第4题解图当△AD1D∽△ED1F时,∠D1AD=∠D1EF,∴∠ED 1G +∠D 1EG=∠D 1AD +∠EDD 1=90°,∴四边形ED 1FD 为矩形.又∵ED 1=ED ,∴四边形ED 1FD 为正方形.∴∠EDD 1=∠D 1AD =45°.∴D 1在AD 垂直平分线上,此时AE =ED =12,D 1E ⊥AD , 由翻折性质可知D 1E =ED =12, ∴EG =GF =12DD 1=12×22=24, 由(1)知:AE =EG ,GF =CF. ∴AE FC =EG GF=1.。

2018年中考压轴题(动点问题) 精品

2018年中考压轴题(动点问题) 精品

2018压轴题-动点问题1、(2018包头)如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B 同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、(2018齐齐哈尔)直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3(2018深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?4(2018哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5(2018河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C 出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B 匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t = 2时,AP = ,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C 时,请直接..写出t的值.6(2018河南))如图,在Rt ABC°,°,2BC=.点ACB B∠=∠=△中,9060O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;α=°时,判断四边形EDBC是否为菱形,并说明理由.(2)当90(备用图)7(2018济南)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.8(2018江西)如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.CMA D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPN M(第25题)9(2018兰州)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C →D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.10(2018临沂)数学课上,张老师出示了问题:如图1,四边形ABCD∠的是正方形,点E是边BC的中点.90∠=,且EF交正方形外角DCGAEF平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11(2018天津)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.ADFC GE 图1ADF C GE 图2 ADFC GE B图312(2018太原)问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AMBN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)N A BCDEFM 图(1) A B CDEFMN。

2018年中考数学压轴题专题解析---几何动态探究问题—动点+动面

2018年中考数学压轴题专题解析---几何动态探究问题—动点+动面

第1题图 (1)在整个运动过程中,当点 G在线段 AE上时,求 t 的值; (2)在整个运动过程中,是否存在点 P,使△ APQ是等腰三角形?若存在,求出 t 的值; 若不存在,说明理由; (3)在整个运动过程中,设△ GMN与△ AEF重叠部分的面积为 S.请直接写出 S 与 t 之间的 函数关系式以及自变量 t 的取值范围 ; (4) 在运动过程中,是否存在某一时刻 t , 使得 S: S△GMN=1:2? 若存在,求出 t 的值,若不存在, 请说明理由 .
2018 年中考数学压轴题专题解析 --- 几何动态探究问题—动点 +动面
1. 已知在矩形 ABCD中, E 为 BC边上一点, AE⊥DE, AB=12, BE=16, F 为线段 BE上一点, EF= 7,连接 AF.如图①,现有一张硬质纸片△ GMN,∠ NGM= 90°, NG= 6,MG= 8,斜边 MN 与边 BC在同一直线上,点 N与点 E 重合,点 G在线段 DE上.如图②,△ GMN从图①的位置 出发,以每秒 1 个单位的速度沿 EB向点 B 匀速移动,同时点 P 从 A点出发,以每秒 1 个单 位的速度沿 AD向点 D匀速移动,点 Q为直线 GN与线段 AE的交点,连接 PQ.当点 N到达终 点 B 时,△ GMN和点 P同时停止运动.设运动时间为 t 秒,解答下列问题:
AB与 QR在同一直线 l 上,开始时点 Q与点 A 重合,让△ PQR以 1cm/ s 的速度在直线 l 上运 动,同时 M点从点 Q出发以 1cm/ s 沿 QP运动,直至点 Q与点 B 重合时,都停止运动,设运
动的时间为
t ( s),四边形
PMBN的面积为
S(
2
cm
).
第 2 题图
(1)当 t =1s 时,求 S 的值;

最新-2018年苏州市中考压轴题专题:与圆有关的最值问题(附答案) 精品

最新-2018年苏州市中考压轴题专题:与圆有关的最值问题(附答案) 精品

与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n)为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O半径的最小值为( ).D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2018•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2018秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q 为⊙N上的任意一点,直线PQ与连心线l所夹的锐角度数为α,当P、Q在两圆上任意运动时,tanα∠的最大值为(B)43;; (D)344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B)215(C)358(D)174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A.194B.245C.5 D.6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C.2- D.28.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2018•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2= a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。

2018年中考与圆有关的动点问题

2018年中考与圆有关的动点问题

2018年中考与圆有关的动点问题1.如图,AB为⊙O的直径,AB=8,点C为圆上任意一点,OD⊥AC于D,当点C在⊙O 上运动一周,点D运动的路径长为()A.π B.2π C.3π D.4π2.如图,⊙O的半径为6,B是优弧AD上一动点,∠B=30°,AC是⊙O的切线,则CD 的最小值是()A.2 B.3 C.4 D.63.如图,AB是⊙O的一条弦,点C是⊙O的优弧AB上一动点,且∠ACB=30°,点E是AC的中点,直线EF∥AB与⊙O交于G、H两点,交BC于点F,若⊙O的半径为6,则GE+FH的最大值( )A.不存在B.6 C.8 D.94.如图,在△ABC中,AB=15,AC=9,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A.7 B.185C.14 D.3655.如图,点C是⊙O上一动点,弦AB=6,∠ACB=120°,△ABC内切圆半径r的最大值为()AB.C.6-D.6△ABC内接于⊙O,点D为劣弧AC上一动点(且与A、C不重合),则四边形ABCD的最大面积为()第1题图BA第2题图第3题图第4题图AFECB12A .2B .4 CD .7.如图,半径为2的⊙O 中,弦BC =A 是优弧BC 上的一个动点,P 点是△ABC 的内心,经过B 、C 、P 三点作⊙M ,当点A 运动时,⊙M 的半径( ) A .发生变化,随A 位置决定 B .不变,等于2 C .有最大值为D .有最小值为18.如图,AB 是⊙O 的弦,AB =6,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M 、 N 分别是AB 、BC 的中点,则MN 长的最大值是( )A .B .C .D .9.如图,A 、B 是半圆O 上的两点,MN 是直径,OB ⊥MN .若AB =4,OB =5,P 是MN 上的一动点,则PA +PB 的最小值为( )A .B .C .D第5题图第6题图第7题图第8题图第9题图第10题图第11题图BC第12题图310.在半径为7的圆O 中,AC 为其直径,点B 是圆上的定点,∠ACB =30°,点A '在AC 上运动(不与A ,C 重合),C 'B ⊥A 'B 交A 'C 的延长线于点C ',则B C '的最大值为( )A .14B .21C .D .11.如图,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,BC =D 是直线AC 上一动点,连接BD ,以AD 为直径的圆交BD 于点E ,则线段CE 长度的范围是( ) A .-+2 B .2C .2<CE <+2 D .CE <+212.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为( ) A .4π B .2π C .6π D .3π13.在矩形ABCD 中,AD =2,AB =3,点E 是AD 边的中点,点F 是AB 延长线上的一动点,将△AEF 沿EF 所在直线翻折得到△A 'EF ,连接A 'C ,则A 'C 的最小值为( )A .3 BC1 D .214.已知A 、B 为⊙O 上两点,且OB =AB =4,C 为优弧AB 上一动点(C 不与A 、B 重合),过点B 作BD ⊥BC 交直线CA 的延长线于点D ,则△ABD 面积的最大值为( ) A .B .C .D415.如图,AB 为⊙O 的直径,AB =C 为半圆AB 上一动点,以BC 为边向⊙O 作等边△BCD (点D 在直线AB 的上方),连接OD ,则线段OD 的长( )A .随点C 的运动而变化,最大值为4B .随点C 的运动而变化,最大值为C .随点C 的运动而变化,最大值为2D .随点C 的运动而变化,但无最值16.如图,⊙O 的半径是2,直线l 与⊙O 相交于A 、B 两点,M 、N 是⊙O 上的两个动点,且在直线l 的异侧,若∠AMB =45°,则四边形MANB 面积的最大值是( ) A .8 B .C .D .417.如图,Rt △ABC 内接于⊙O ,∠BCA =90°,AB =2AC =4,点P 在优弧CAB 上由点C向点B 移动,但不与点C 、B 重合,点I 为△PBC 的内心,则点I 随点P 移动所经过的路径长l 的取值范围是( ) A .l <43π B .l <23π C .0<l <43π D .0<l <23π18.如图,已知线段AB =4,C 为线段AB 上的一个动点(不与点A 、B 重合),分别以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 的半径最小值为( ) ABCD .2 第13题图CDA'E FBAD第14题图A第15题图D第16题图5第20题图19.如图,⊙O 的半径是2,AB 、CD 是⊙O 的直径,P 是BC 上任意一点,PM ⊥CD 于M ,PN ⊥AB 于N ,MN 的最大值为( ) AB .1C .2D .20.如图,等腰Rt △ABC 内接于⊙O ,AB=D 为AB 的中点,P 为⊙O 上一动点,则线段DP 的最大值为( ) A.2B.4 C .D.621.如图,正方形OABC 的边长为2.以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,则点P 运动的路径长是 ( )第17题图第18题图第19题图A.2π B.π CD.3π第21题图第22题图第23题图第24题图第25题图22.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AD=2,AB=6,以AB为直径的⊙O 切CD于点E,F在劣弧BE上运动,过点F的直线MN为⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长( )A.不变,等于9 B.随点F的运动而变化,最大值为9 C.随点F的运动而变化,最小值为9 D.随点F的运动而变化,无法确定23如图,△ABC内接于⊙O,∠A=45°,BC=4,当点D在优弧BAC上由B点运动到C 点时,弦AD的中点E运动的路径长为().A.2πB. C.2πD.第24题图第25题图24如图,在等腰Rt△ABC中,BC=AB=4,点D在以斜边AC为直径的圆上,点E在线段DB6的延长线上,EB=12BD,当点D在劣弧AB上从点A运动至点B时,点E运动的路径长是()A.2π Bc.π D 2π25如图,已知直线l经过圆心O,P是半径OM上一动点,当半径OM绕点O旋转时,总有点P到点O的距离等于点M到直线l的距离,若OM=10,则当OM绕点O旋转一周时,点P运动的路程是()A .10π B.15π C.20π D .25π7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学压轴题专题练习-----圆与动点问题
1.在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间xOy P M M Q P Q 、的距离小于或等于1,则称为图形的关联点.
P M (1)当的半径为2时,
O
①在点中,的关联点是_______________.123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭
⎝O ②点在直线上,若为的关联点,求点的横坐标的取值范围.
P y x =-P O P (2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是C x 1y x =-+x y A B 、AB 的关联点,直接写出圆心的横坐标的取值范围.
C C 2.如图,是的直径,,连接.AB O
,2AC BC AB ==AC
(1)求证:;
045CAB ∠=(2)若直线l 为的切线,是切点,在直线l 上取一点,使所在的直线与所在的直线O C D ,BD AB BD =AC 相交于点,连接.
E AD ①试探究与之间的数量关系,并证明你的结论;
AE AD ②是否为定值?若是,请求出这个定值;若不是,请说明理由.EB CD
3. 如图,动点M 在以O 为圆心,AB 为直径的半圆弧上运动(点M 不与点A B 、及
AB 的中点F 重合),连接OM .过点M 作ME AB ⊥于点E ,以BE 为边在半圆同侧作正方形BCDE ,过M 点作O 的切线交射线DC 于点N ,连接BM 、BN .
(1)探究:如左图,当M 动点在
AF 上运动时;①判断OEM MDN ∆∆ 是否成立?请说明理由;
②设ME NC k MN
+=,k 是否为定值?若是,求出该定值,若不是,请说明理由;③设MBN α∠=,α是否为定值?若是,求出该定值,若不是,请说明理由;
(2)拓展:如右图,当动点M 在 FB
上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)
4.已知二次函数y=﹣x 2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=b 2﹣2b ,问:b 为何值时,二次函数的图象与x 轴相切?14
③若二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),且x 1<x 2,与y 轴的正半轴交于点M ,以AB 为直径的半圆恰好过点M ,二次函数的对称轴l 与x 轴、直线BM 、直线AM 分别交于点D 、E 、F ,且满足
,13DE EF =求二次函数的表达式.
5.已知:是的弦,点是的中点,连接、,交于点.AB O ⊙C
AB OB OC OC AB D (1)如图1,求证:;
AD BD =(2)如图2,过点作的切线交的延长线于点,点是上一点,连接、,求证:
B O ⊙O
C M P AC AP BP .
90APB OMB -=∠∠°(3)如图3,在(2)的条件下,连接、,延长交于点,若,,求的值.DP MP MP O ⊙Q 6MQ DP =3sin 5
ABO =∠MP MQ
6.如图,⊙M 的圆心M (﹣1,2),⊙M 经过坐标原点O ,与y 轴交于点A ,经过点A 的一条直线l 解析式为:y=﹣x+4与x 轴交于点B ,以M 为顶点的抛物线经过x 轴上点D (2,0)和点C (﹣4,0).
(1)求抛物线的解析式;
(2)求证:直线l 是⊙M 的切线;
(3)点P 为抛物线上一动点,且PE 与直线l 垂直,垂足为E ,PF ∥y 轴,交直线l 于点F ,是否存在这样的点P ,使△PEF 的面积最小?若存在,请求出此时点P 的坐标及△PEF 面积的最小值;若不存在,请说明理由.
7.如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,点E在AB上,且AE=CE.(1)求证:AC2=AE•AB;
(2)过点B作⊙O的切线交EC的延长线于点P,试判断PB与PE是否相等,并说明理由;
(3)设⊙O半径为4,点N为OC中点,点Q在⊙O上,求线段PQ的最小值.
8.如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE 与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)点点同学通过画图和测量得到以下近似数据:
ɑ30°40°50°60°
β120°130°140°150°
γ150°140°130°120°
猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.
9. 如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.
(1)当∠APB=28°时,求∠B和 CM的度数;
(2)求证:AC=AB。

(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.。

相关文档
最新文档