数学考研21种常用解题思维定势(万能经典解题方法)
考研数学教你轻松应对,强行记忆这21句解题思路

考研数学教你轻松应对,强行记忆这21句解题思路第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
第三句话:在题设条件中函数f(x)在[ab]上连续,在(ab)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
二、线性代数解题的八种思维定势第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
第四句话:若要证明一组向量α1α2…αS线性无关,先考虑用定义再说。
第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。
第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
三、概率解题的九种思维定势第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。
关键:寻找完备事件第四句话:若题设中给出随机变量X~N则马上联想到标准化~N(01)来处理有关问题。
临考总结:2021考研《数学》解题思维定势

临考总结:2021考研《数学》解题思维定势2021考研已进入最后冲刺阶段,考研整理“2021考研《数学》解题思维定势”供广大考生冲刺使用。
第一部分《高数解题的四种思维定势》1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
第二部分《线性代数解题的八种思维定势》1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
第三部分《概率与数理统计解题的九种思维定势》1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。
2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。
3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。
21个数学解题技巧

21个数学解题技巧一、代数部分1. 代入法的妙处- 就像给数学式子找个替身一样。
如果有方程,比如y = 2x+1,又知道x = 3,那直接把x = 3代入方程,就像把钥匙插进锁里,“咔哒”一下,y的值就出来了,y=2×3 + 1=7,简单又直接。
2. 配方法的魔法- 这就像给代数式做个造型。
比如说x^2+6x + 5,要把它变成完全平方式。
先看x^2+6x,6x的一半是3x,那就在式子后面加上3^2再减去3^2,就变成(x + 3)^2-9+5=(x + 3)^2-4。
这样就可以轻松地求最值或者解方程啦。
3. 因式分解的窍门- 因式分解就像把一个大的数学“蛋糕”切成小块。
对于二次三项式ax^2+bx + c,如果a = 1,找两个数m和n,使得m + n=b且mn = c,那x^2+bx + c=(x + m)(x + n)。
比如x^2+5x+6,m = 2,n = 3,就可以分解成(x + 2)(x+3)。
4. 换元法的巧思- 这就像是给数学式子换件“衣服”。
假如有个式子(x^2+1)^2-3(x^2+1)+2 = 0,看起来很复杂,那就设t=x^2+1,式子就变成t^2-3t + 2 = 0,这就是个简单的二次方程啦,解出t后再把t=x^2+1代回去求出x。
5. 比例性质的活用- 比例就像数学里的“跷跷板”。
如果(a)/(b)=(c)/(d),那么ad = bc。
比如说(x)/(3)=(5)/(x),根据这个性质就得到x^2=15,然后就能求出x=±√(15)啦。
6. 绝对值的处理- 绝对值就像给数字戴了个“安全帽”,里面的数不管正负,出来都是非负的。
如果| x| = 3,那x可能是3或者-3。
要是解| x - 2|=5,就想x - 2 = 5或者x - 2=-5,这样就可以求出x = 7或者x=-3。
7. 方程组的消元术- 解方程组就像在玩消消乐。
对于二元一次方程组2x + 3y=8 3x - 2y=-1,可以通过乘以适当的数让两个方程中某个未知数的系数相同或者相反,然后相加或者相减就把这个未知数消掉了。
2013考研数学应试法宝:21个思维定势

2013考研数学应试法宝:21个思维定势笔者为广大考生整理了2013考研数学应试法宝,供广大考生参考:所谓思维定势,就是按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维思维定势路线、方式、程序、模式。
第一部分《高数解题的四种思维定势》1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,”不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则”不管三七二十一”先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则”不管三七二十一”先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则”不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
第二部分《线性代数解题的八种思维定势》1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,...,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
第三部分《概率与数理统计解题的九种思维定势》1.如果要求的是若干事件中”至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。
2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。
数学21种解题方法与技巧全汇总太实用

数学21种解题方法与技巧全汇总太实用解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:解一些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1)a某+b=0对于任意某都成立关于某的方程a某+b=0有无数个解a=0且b=0。
考研数学解题中的常见解题思路分析

考研数学解题中的常见解题思路分析数学是考研考试中的一科重点科目,解题能力对于考生取得优秀成绩至关重要。
在考研数学解题过程中,定位和运用解题思路的能力成为了考生的核心竞争力。
本文将对考研数学解题中常见的解题思路进行分析和总结,希望能对考生在备考过程中提供一些指导和参考。
一、思路分析在解题过程中,考生需要根据题目内容选择合适的解题思路。
下面将介绍一些常见的解题思路及其应用场景。
1. 推理和归纳法:该思路适用于一些需要从已知条件中推演出结论的问题。
通过观察已知条件之间的关系,考生可以运用逻辑推理、归纳法等方法得出结果。
2. 分析和比较法:该思路适用于一些需要对问题进行分析和比较的题目。
考生可以通过对题目进行拆解,并分析各个部分的特征和联系,从而找到解题的突破口。
3. 设计和构造法:该思路适用于一些需要设计和构造的题目。
考生可以通过构造对立例子、利用图形进行构造等方法,将复杂问题转化为简单问题,从而解决难题。
4. 反证法:该思路适用于一些需要进行反证和排除法的问题。
通过先假设结果不成立,然后对其进行推导和证明,最终得出结论。
5. 递归和循环法:该思路适用于一些需要通过重复操作和递推求解的问题。
考生可以通过递归、循环等方式,将复杂问题分解为简单问题,并逐步求解得出最终答案。
二、解题技巧除了选择合适的解题思路外,考生还需要掌握一些解题技巧,以提高解题效率。
1. 熟悉数学公式和定理:对于考研数学来说,熟悉各类数学公式和定理是解题的基础。
考生应该通过反复记忆和练习,掌握各类数学公式和定理的应用。
2. 善于化繁为简:在解题过程中,考生应该学会将复杂的问题化简为简单的问题。
通过观察题目的特点,找到适当的简化方法,从而解决问题。
3. 运用数学语言描述问题:考生在解题过程中需要善于运用数学语言,正确描述问题。
清晰准确的语言表达可以帮助考生更好地理解问题,从而有针对性地解决问题。
4. 反复实践和训练:解题能力的提高离不开大量的实践和训练。
考研数学常见解题思路汇总

考研数学常见解题思路汇总数学是考研考试中的一项重要科目,解题思路的熟练掌握对于顺利通过考试至关重要。
本文将对考研数学常见解题思路进行汇总,并提供一些解题技巧和方法,希望能对考生们的备考有所帮助。
一、代数与数论题型代数与数论是考研数学中的一个重点内容,题型多样,要求考生具备一定的数学知识和分析能力。
在解题时,可以根据具体题目的要求采取以下几种常见的解题思路:1. 利用代数运算性质:对于代数运算性质类的题目,可以利用代数运算的性质进行推导和计算。
比如,利用二项式定理、因式分解、平方差公式等常见的代数运算法则,简化题目并得出结果。
2. 利用数论性质:对于数论类的题目,可以利用数论性质进行分析和推导。
例如,利用素数的性质、同余定理、整除性质等,解决与数论相关的问题。
3. 利用代数方程和不等式的性质:对于代数方程和不等式类的题目,可以利用其性质来推导和求解。
例如,利用方程的根与系数的关系、方程的二次齐次性质、不等式的性质等,解决与方程和不等式相关的问题。
二、几何与概率题型几何与概率是考研数学中的另一个重点内容,要求考生具备一定的几何图形分析和推导能力。
在解题时,可以根据几何图形的特征和性质,以及概率的规律和计算方法,采取以下几种常见的解题思路:1. 利用几何图形的性质和相似三角形:对于几何类的题目,可以利用几何图形的性质、相似三角形的性质等进行分析和推导。
例如,利用圆的性质、直角三角形的性质、相似三角形的对应边比例关系等,解决与几何相关的问题。
2. 利用概率的计算方法和规律:对于概率类的题目,可以利用概率的计算方法和规律进行分析和计算。
例如,利用概率的加法原理、乘法原理、条件概率、全概率公式等,解决与概率相关的问题。
三、数学分析与微积分题型数学分析与微积分是考研数学中的另一个重要内容,要求考生具备一定的数学运算和积分计算能力。
在解题时,可以根据题目的要求和函数的性质,采取以下几种常见的解题思路:1. 利用函数的性质和求导法则:对于函数类的题目,可以利用函数的性质和求导法则进行分析和推导。
考研数学解题中常用的思维方法总结

考研数学解题中常用的思维方法总结随着社会的不断发展和科技的不断进步,考研这个话题也越来越受到人们的关注。
数学作为一门重要的科学学科,是评价一个考生数学素养的一个重要方面。
在考研数学中,常用的思维方法能够帮助考生更好地解决数学题目。
本文将对考研数学解题中常用的思维方法进行总结,以期为广大考生提供帮助。
一、递推思想递推思想是指通过已知的数值递推出未知的数值。
在考研数学中经常出现的数列递推、递归公式,都是递推思想的常见应用。
递推思想可以将一个复杂的问题分解成多个简单的步骤进行解决,这对于解题非常有帮助。
二、分类讨论分类讨论是指将一个大的问题分成多个小的问题进行分析,以便更好地解决整个问题。
在考研数学中,经常会出现各种公式和定理,这些公式和定理都有各自的适用范围和条件,考生需要根据不同情况进行分类讨论,才能得出正确的答案。
三、抽象思维抽象思维是指将事物中的一些共性抽象出来,形成一些抽象的概念,以便更好地对问题进行解决。
在考研数学中,几何与代数的结合是一个非常重要的方面,数学定理和公式中也存在很多抽象的概念。
考生需要能够进行抽象思维,才能更好地理解和应用这些抽象概念。
四、简化问题在考研数学中,有的题目很难,需要进行简化。
简化问题是指将一个复杂的问题化简成一个简单的问题,以便更好地得到解法。
例如,考生可以尝试从小数据入手,解决一些特殊情况下的问题,从而得到更好的解题思路。
五、思维的灵活性考研数学中,有的题目需要考生具备灵活的思维。
例如,有的题目会涉及到多种解法,考生需要掌握不同的方法,并灵活运用,才能得到正确的答案。
因此,考生需要保持头脑的灵活性,灵活应用各种思维方法。
六、问题分解在考研数学中,有的题目非常复杂,需要进行分步解答。
此时,考生需要将问题分解为若干部分,逐层解决,以便得到正确的答案。
问题分解是解决复杂问题的一个非常重要的思维方法。
七、思考清晰在考研数学中,有的题目需要考生进行复杂的推理和计算。
此时,考生需要保持思考的清晰性,做好计划和安排,以便有步骤地解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学解题21种思维定势
第一部分《高数解题的四种思维定势》
1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
第二部分《线性代数解题的八种思维定势》
1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E 。
2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
第三部分《概率与数理统计解题的九种思维定势》
1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。
2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式
3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。
关键:寻找完备事件组。
4.若题设中给出随机变量X ~ N 则马上联想到标准化~ N(0,1)来处理有关问题。
5.求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。
即令8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。