spss实验报告—非参数检验
SPSS的非参数检验

02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。
第七章SPSS非参数检验

二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验
第6章 SPSS非参数检验

应 用
参数检验
非参数检验
对正态总体的非 参数检验的效 率评价 0.63 0.95 0.95 0.95 0.91 没有可比较的基 础
配对样本数据 两个独立样本 多个独立样本 相关 随机性
t检验或者z检验 t检验或者z检验 方差分析(F检验) 线性相关 无可用的参数检验
符号检验 Wilcoxon检验 Wilcoxon检验 K-W检验 秩相关检验 游程检验
2
Step01:打开主菜单 选择菜单栏中的【分析】 →【非参数检验】→【旧对话框】→ 【卡方】命令,弹出【卡方检验】对话框。
Step02:选择检验变量 在【卡方检验】对话框左侧的候选变量列表框中选择一个 或几个变量,将其添加至【检验变量列表】列表框中,表示需 要进行进行卡方检验的变量。 Step03:确定检验范围 在【期望全距】选项组中可以确定检验值的范围,对应有 两个单选项。 Step04:选择期望值 在【期望值】选项组中可以指定期望值 ,对应有两个单选 项。
H0:目前三个职业的总体构成比仍然是15%、5%和80%。 H1:目前三个职业的总体构成比不再是15%、5%和80%
2. 实例操作
Step01:打开对话框 打开数据文件6-1.sav,选择菜单栏中的【分析】 →【非参 数检验】→【旧对话框】→【卡方】命令,弹出【卡方检验】对 话框。其中,“jobcat”变量表示职业类型, “1”表示办事员, “2”表示监察员,“3”表示经理。 Step02:选择检验变量 在左侧的候选变量列表框中选择“jobcat”变量作为检验变量, 将其添加至【检验变量列表】列表框中。 Step03:选择期望值 在【期望值】选项组中点选【Values】单选钮,以指定期望概率 值。接着在Values的文本框中分别输入0.8、0.05和0.15这三个 数值,并且单击【Add】按钮加以确定。 Step04:单击【确定】按钮,操作完成。
spss实验报告——非参数检验

实验报告——(非参数检验)实验目的:1、学会使用SPSS软件进行非参数检验。
2、熟悉非参数检验的概念及适用范围,掌握常见的秩和检验计算方法。
实验内容:1、某公司准备推出一个新产品,但产品名称还没有正式确定,决定进行抽样调查,在受访200人中,52人喜欢A名称,61人喜欢B名称,87人喜欢C 名称,请问ABC三种名称受欢迎的程度有无差别?(数据表自建)SPSS计算结果如下:此题为总体分布的卡方检验。
零假设:样本来自总体分布形态和期望分布没有显著差异。
即ABC三种名称受欢迎的程度无差别,分布形态为1:1:1,呈均匀分布。
观察结果,上表为200个观察数据对A、B、C三个名称(分别对应1,2,3)的喜爱的期望频数以及实际观察频数和期望频数的差。
从下表中可以看出相伴概率值为0.007小于显著性水平0.05,因此拒绝零假设,认为样本来自的总体分布与制定的期望分布有显著差异,即A、B、C三种名称受欢迎的程度有差异。
2、某村庄发生了一起集体食物中毒事件,经过调查,发现当地居民是直接饮用河水,研究者怀疑是河水污染所致,县按照可疑污染源的大致范围调查了沿河居民的中毒情况,河边33户有成员中毒(+)和均未中毒(-)的家庭分布如下:(案例数据run.sav)-+++*++++-+++-+++++----++----+----毒源问:中毒与饮水是否有关?SPSS计算结果如下:此题为单样本变量值随机检验零假设:总体某变量的变量值是随机出现的。
即中毒的家庭沿河分布的情况随机分布,与饮水无关。
相伴概率为0.036,小于显著性水平0.05,拒绝零假设,因此中毒与饮水有关。
3、某试验室用小白鼠观察某种抗癌新药的疗效,两组各10只小白鼠,以生存日数作为观察指标,试验结果如下,案例数据集为:npara1.sav,问两组小白鼠生存日数有无差别。
试验组:24 26 27 30 32 34 36 40 60 天以上对照组:4 6 7 9 10 10 12 13 16 16SPSS计算结果如下:此题为两独立样本非参数检验。
实验报告2——基于SPSS的假设检验、方差分析、非参数检验

中央财经大学实验报告实验项目名称假设检验、方差分析、非参数检验所属课程名称统计学实验类型设计型、综合型实验实验日期2014年4月成绩实验报告数据准备。
从500个人中随机抽取大约30%。
1、用SPSS Statistics软件进行参数估计和假设检验。
(以下假设检验中限制性水平设为5%)(1)计算总体中上月平均工资95%的置信区间(分析→描述统计→探索)。
下表为SPSS软件进行对“平均工资”变量进行描述统计分析所得。
从表中可以直接得到95%置信区间为【2118.79,2277.21】统计量标准误(元)均值2198.00 40.083均值的 95% 置信区间下限2118.79上限2277.215% 修整均值2202.96中值2200.00方差241002.685标准差490.920极小值800极大值3700范围2900四分位距600偏度-.042 .198(2)检验能否认为总体中上月平均工资等于2000元。
(单个样本t检验)根据题目要求,这里采用双侧假设。
零假设和备择假设为:H0=2000,H1≠2000。
由上表得,p=0.000<0.05=α,所以,拒绝原假设,即可以认为中体中上月平均工资不等于2000元(3)检验能否认为男生的平均工资大于女生。
(两个独立样本t检验)检验的零假设和备择假设为:H0:男生的平均工资不大于女生H1:男生的平均工资大于女生如上表所示,方差检验的p值等于0.092>0.05,因此不拒绝方差相等的原假设,认为男女平均工资的方差相等。
所以t检验选取方差相等的一列,其中双侧检验的p值为0.000,因此右侧检验的p值为0.000/2=0.000<0.05(显著性水平),所以拒绝原假设,因此认为男生的平均工资大于女生。
(4)一些学者认为,由于经济不景气,学生的平均工资今年和去年相比没有显著提高。
检验这一假说。
(匹配样本t检验)。
H0:μ1-μ2≤0;H1:μ1>μ2双侧检验的p值为0.932,,因此右侧检验为0.466>0.05。
SPSS操作:多个相关样本的非参数检验(CochransQ检验)

SPSS操作:多个相关样本的⾮参数检验(CochransQ检验)点击Settings→Customize tests,勾选Cochran's Q (k samples)。
点击Define Success,在Cochran's Q: Define Success对话框中,点击Combine values into success category,在Success框中填⼊1(这⾥是“成功”对应的编码,本例中即为通过体能测试,“Passed”对应的是1,所以这⾥填“1”)。
点击OK→Run,输出结果。
3.4 不符合假设4的“精确”Cochran's Q检验当不符合假设4时,需要使⽤“精确”Cochran's Q检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→K Related Samples,出现Tests for Several Related Samples对话框。
将变量initial_fitness_test、month3_fitness_test和final_fitness_test选⼊Test Variables框中。
在Test Type 下⽅去掉Friedman,然后勾选Cochran's Q。
(如果数据符合假设4,则此时点击OK,结果与3.3部分的操作结果⼀致)点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
3.5 “精确”Cochran's Q检验后的两两⽐较对于符合假设4的Cochran's Q检验(3.3部分),事后的两两⽐较将在结果解释部分展⽰(4.2部分)。
对于不符合假设4的“精确”Cochran's Q检验(3.4部分)事后的两两⽐较,可采⽤经Bonferroni法校正的多重McNemar检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
spss参与非参检验实验报告参考模板

第五章 参数检验❶单样本t 检验:(5.2)分析六级考试成绩一般平均得分是否为75;1.录入数据,全部学生的六级考试成绩显而易见服从正态分布,可用Q-Q 图,或非参检验对所抽取的样本进行正态性检验,之后进行单样本t 检验。
2.选择菜单:Analyze---Compare Means---One-Sample T Test ,再出现的窗口中,选择“六级考试成绩”到【Test Variable 】框中,在【Test Vaule 】框中输入检验值75。
单击“OK ”度10,第四列为检验p 值0.668,第五列为样本均值与检验值的差,第六列和第七列为总体均值与原假设值差的95%的置信区间,为(-7.69,5.14)。
若取显著性水平α为0.05,则p 大于α,因此应该接受原假设,认为六级考试成绩一般平均得分为75分。
95%的置信区间告诉我们有95%的把握认为六级考试成绩的均值在67.31~85.14之间。
❷两独立样本t 检验(5.3)分析有促销和无促销情况下商品的日销售额是否存在显著变化;1.录入数据,有促销和无促销情况下的日销售额可以看成两个独立总体,且日销售额可近似认为服从正态分布,可用Q-Q 图或非参检验对其正态性检验。
在以上前提下,进而可对不同情况下的日销售额进行两独立样本t 检验。
2.选择菜单:Analyze---Compare Means---Independent-Samples T Test,再出现的窗口中,选择“日销售额”到【Test Variable 】框中,选择“type ”到【Grouping Variable 】框中,按【Define Groups 】按钮定义两总体的标识值,分别在Group1与Group2中输入1,23.如上表Independent Sample Test 所示,结论分析为两步:第一步,方差齐性检验。
F 统计量的观测值为0.225,对应的p 值为0.638,若取显著性水平α为0.05,则p 大于α,可以认为两总体的方差相等。
spss参数与非参数检验实验报告

(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
——(非参数检验)
实验目的:
1、学会使用SPSS软件进行非参数检验。
2、熟悉非参数检验的概念及适用范围,掌握常见的秩和检验计算方法。
实验内容:
1、某公司准备推出一个新产品,但产品名称还没有正式确定,决定进行抽样调
查,在受访200人中,52人喜欢A名称,61人喜欢B名称,87人喜欢C 名称,请问ABC三种名称受欢迎的程度有无差别?(数据表自建)
SPSS计算结果如下:
此题为总体分布的卡方检验。
零假设:样本来自总体分布形态和期望分布没有显著差异。
即ABC三种名称受欢迎的程度无差别,分布形态为1:1:1,呈均匀分布。
观察结果,上表为200个观察数据对A、B、C三个名称(分别对应1,2,3)的喜爱的期望频数以及实际观察频数和期望频数的差。
从下表中可以看出相伴概
率值为0.007小于显著性水平0.05,因此拒绝零假设,认为样本来自的总体分布与制定的期望分布有显著差异,即A、B、C三种名称受欢迎的程度有差异。
2、某村庄发生了一起集体食物中毒事件,经过调查,发现当地居民是直接饮用
河水,研究者怀疑是河水污染所致,县按照可疑污染源的大致范围调查了沿河居民的中毒情况,河边33户有成员中毒(+)和均未中毒(-)的家庭分布如下:(案例数据run.sav)
-+++*++++-+++-+++++----++----+----
毒源
问:中毒与饮水是否有关?
SPSS计算结果如下:
此题为单样本变量值随机检验
零假设:总体某变量的变量值是随机出现的。
即中毒的家庭沿河分布的情况随机分布,与饮水无关。
相伴概率为0.036,小于显著性水平0.05,拒绝零假设,因此中毒与饮水有关。
3、某试验室用小白鼠观察某种抗癌新药的疗效,两组各10只小白鼠,以生存日数作为观察指标,试验结果如下,案例数据集为:npara1.sav,问两组小白鼠生存日数有无差别。
试验组:24 26 27 30 32 34 36 40 60 天以上
对照组:4 6 7 9 10 10 12 13 16 16
SPSS计算结果如下:
此题为两独立样本非参数检验。
(1)两独立样本Mann-Whitney U检验:
零假设:样本来自的两独立总体均值没有显著差异。
相伴概率为0.000小于显著性水平0.05,因此拒绝零假设,认为两组小白鼠的平均生存日数存在显著差异。
(2)两独立样本K-S检验:
零假设:样本来自的两独立总体分布没有显著差异。
相伴概率为0.000,小于显著性水平0.05,因此拒绝零假设,认为两组独立样本的总体分布存在显著差异。
(3)两独立样本极端反应检验:
零假设:样本来自的两独立总体分布没有显著差异。
由第二张表可以看出,跨度为10,相伴概率为0.000;截头跨度为8,相伴概率为0.000,两个相伴概率均小于显著性水平0.05,因此拒绝零假设,认为两组小白鼠的生存天数总体分布存在显著差异。
(4)两独立样本的游程检验:
零假设:样本来自的两独立总体分布没有显著差异。
可能游程数为2,相伴概率为0.000,小于显著性水平0.05,拒绝零假设,两组小白鼠的生存天数总体分布存在显著差异。
从上面4种检验结果看,两组小白鼠生存日数存在显著差别,并且试验组生存天数明显大于对照组。
4、尿铅的传统测定方法比较繁琐,现在人们希望用新方法代替原有方法,10
份样本分别采用两种方法进行了测定,结果见案例数据集npara2.sav,试分析两种方法的测定结果有无差别?
SPSS计算结果如下:
此题为两配对样本非参数检验
(1) Wilcoxon检验
零假设:样本来自的两配对样本总体的分布无显著差异。
第一张表表明10个样本中有6个样本尿铅量下降,4个尿铅量上升,平均秩分别为5.92和4.88。
第二张表中相伴概率为0.415,大于显著性水平0.05,不能拒绝零假设,认为新老方法对尿铅的测定无显著差异。
(2)符号检验
零假设:样本来自的两配对样本总体的分布无显著差异。
第一张表表明10个样本中有6个样本尿铅量下降,4个尿铅量上升。
第二张表中相伴概率为0.754,大于显著性水平0.05,不能拒绝零假设,认为新老方法对尿铅的测定无显著差异。
综上两种检验方法的结果,两种方法的测定结果无显著差别。