历年高考文科数学真题汇编+答案解析(5):立体几何

合集下载

高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)

2012-2018年新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。

高考文科数学专题5 立体几何 高考文科数学 (含答案)

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。

数学高考试题分类汇编:文科立体几何答案版

数学高考试题分类汇编:文科立体几何答案版

全国高考数学试题汇编 文科立体几何(答案解析版)[2015·安徽卷] 一个空间几何体的三视图以下列图,则该几何体的表面积为( )A .48B .32+817C .48+817D .80C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(以下列图),因此该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.[2015·北京卷] 某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )A .32B .16+16 2C .48D .16+32 2B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,因此其表面积为4×4+4×12×4×22=16+162,应选B.[2015·广东卷] 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2C 【解析】 由三视图知该几何体为四棱锥,棱锥高h =(23)2-(3)2=3,底面为菱形,对角线长分别为23,2,因此底面积为12×23×2=23,因此V =13Sh =13×23×3=2 3.[2015·湖南卷] 设图是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18C.92π+12D.92π+18 D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V =V 1+V 2=43×π×⎝⎛⎭⎫323+3×3×2=92π+18,应选D.[2015·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2D. 3B 【解析】 由俯视图知该正三棱柱的直观图为以下列图,其中M ,N 是中点,矩形MNC 1C为左视图.由于体积为23,因此设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.因此CM =3,故矩形MNC 1C 面积为23,应选B.[2015·课标全国卷] 在一个几何体的三视图中,正视图和俯视图以下列图,则相应的侧视图可以为( )图1-2D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.[2015·陕西卷] 某几何体的三视图以下列图,则它的体积为( )A .8-2π3B .8-π3C .8-2πD.2π3A 【解析】 主视图与左视图相同是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V 正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.[2015·天津卷] 一个几何体的三视图以下列图(单位:m),则该几何体的体积为________ m 3.4 【解析】 依照三视图还原成直观图,可以看出,其是由两个形状相同的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.22015·浙江卷] 若某几何体的三视图以下列图,则这个几何体的直观图可以是( )[2015·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC , ∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线, ∴EF =12AC =12×22= 2.[2015·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都订交B 【解析】 在α内存在直线与l 订交,因此A 不正确;若α内存在直线与l 平行,又∵l ⊄α,则有l ∥α,与题设相矛盾,∴B 正确,C 不正确;在α内但是l 与α交点的直线与l 异面,D 不正确.[2015·广东卷] 正五棱柱中,不相同在任何侧面且不相同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ) A .20 B .15 C .12 D .10D 【解析】 一个下底面5个点,每个下底面的点对于5个上底面的点,满足条件的对角线有2条,因此共有5×2=10条.[2015·四川卷] l 1,l 2,l 3是空间三条不相同的直线,则以下命题正确的选项是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3 C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面 D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面B 【解析】 对于A ,直线l 1与l 3可能异面;对于C ,直线l 1、l 2、l 3可能构成三棱柱三条侧棱所在直线而不共面;对于D ,直线l 1、l 2、l 3订交于同一个点时不用然共面. 因此选B.[2015·湖北卷] 设球的体积为V 1,它的内接正方体的体积为V 2,以下说法中最合适的是( )A .V 1比V 2大体多一半B .V 1比V 2大体多两倍半C .V 1比V 2大体多一倍D .V 1比V 2大体多一倍半D 【解析】 设球的半径为R ,则V 1=43πR 3.设正方体的边长为a ,则V 2=a 3.又由于2R =3a ,因此V 1=43π⎝⎛⎭⎫32a 3=32πa 3,V 1-V 2=⎝⎛⎭⎫32π-1a 3≈1.7a 3.[2015·辽宁卷] 已知球的直径SC =4,A 、B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( ) A.33 B.233 C.433 D.533C 【解析】 如图1-6,由于SC 是球的直径,因此∠SAC =∠SBC =90°,又∠ASC =∠BSC =45°,因此△SAC 、△BSC 为等腰直角三角形,取SC 中点D ,连接AD 、BD .由此得SC ⊥AD ,SC ⊥BD ,即SC ⊥平面ABD .因此V S -ABC =V S -ABD +V C -ABD =13S △ABD ·SC .由于在等腰直角三角形△SAC 中∠ASC =45°,SC =4,因此AD =2.同理BD =2. 又AB =2,因此△ABD 为正三角形,因此V S -ABC =13S △ABD ·SC =13×12×22·sin60°×4=433,因此选C.[2015·课标全国卷] 已知两个圆锥有公共底面,且两圆锥的极点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.13【解析】 如图,设球的半径为R ,圆锥底面半径为r ,则球面面积为4πR 2,圆锥底面面积为πr 2,由题意πr 2=1216πR 2,因此r =32R ,因此OO 1=OA 2-O 1A 2=R 2-34R 2=12R ,因此SO 1=R +12R =32R , S 1O 1=R -12R =12R ,因此S 1O 1SO 1=R23R 2=13.[2015·四川卷] 如图1-3,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________.图1-3 大纲文数15.G832π 【解析】 本题主要观察球的性质、球与圆柱的组合体、均值不等式的应用.如图1-4为轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,球半径R =4,则⎝⎛⎭⎫h 22+r 2=R 2,即h =2R 2-r 2.由于S =2πrh =4πrR 2-r 2=4πr 2·(R 2-r 2)≤4π⎝⎛⎭⎫r 2+R 2-r 222=2πR 2,取等号时,内接圆柱底面半径为 22R ,高为2R ,∴S 球-S 圆柱=4πR 2-2πR 2=2πR 2=32π.[2015·全国卷] 已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与BC 所成角的余弦值为________.23【解析】 取A 1B 1的中点F ,连EF ,则EF ∥BC ,∠AEF 是异面直线AE 与BC 所成的角,设正方体的棱长为a ,可得AE =32a ,AF =52a ,在△AEF 中,运用余弦定理得cos ∠AEF=23,即异面直线AE 与BC 所成角的余弦值为23.[2015·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形. (1)证明直线BC ∥EF ; (2)求棱锥F -OBED 的体积.图1-4【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,因此OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,因此G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.因此BC 是△GEF 的中位线,故BC ∥EF . (2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32. 而△OED 是边长为2的正三角形,故S △OED = 3. 因此S OBED =S △EOB +S △OED =332. 过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED 的高,且FQ =3,因此V F -OBED =13FQ ·S 四边形OBED =32.[2015·北京卷]图1-4如图1-4,在周围体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)可否存在点Q ,到周围体P ABC 六条棱的中点的距离相等?说明原由.课标文数17.G4[2015·北京卷] 【解答】 (1)证明:由于D ,E 分别为AP ,AC 的中点,图1-5 因此DE ∥PC .又由于DE ⊄平面BCP ,PC ⊂平面BCP , 因此DE ∥平面BCP .(2)由于D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 因此DE ∥PC ∥FG , DG ∥AB ∥EF ,因此四边形DEFG 为平行四边形. 又由于PC ⊥AB , 因此DE ⊥DG ,因此平行四边形DEFG 为矩形. (3)存在点Q 满足条件,原由以下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q , 且QM =QN =12EG .因此Q 为满足条件的点.[2015·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面P AD.课标数学16.G4,G5[2015·江苏卷] 本题主要观察直线与平面、平面与平面的地址关系,观察空间想象能力和推理论证能力.【解答】证明:(1)在△P AD中,由于E,F分别为AP,AD的中点,因此EF∥PD.又由于EF⊄平面PCD,PD⊂平面PCD,图1-3因此直线EF∥平面PCD.(2)连接BD,由于AB=AD,∠BAD=60°,因此△ABD为正三角形,由于F是AD的中点,因此BF⊥AD.由于平面P AD⊥平面ABCD,BF⊂平面ABCD,平面P AD∩平面ABCD=AD,因此BF⊥平面P AD.又由于BF⊂平面BEF,因此平面BEF⊥平面P AD.图1-6图1-81[2015·课标全国卷] 如图1-8,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB =60°,AB=2AD,PD⊥底面ABCD.(1)证明:P A⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.课标文数18.G5,G11[2015·课标全国卷] 【解答】(1)证明:由于∠DAB=60°,AB=2AD,由余弦定理得BD=3AD,进而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD,因此BD⊥平面P AD,故P A⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,因此BC⊥BD.图1-9故BC⊥平面PBD,BC⊥DE.则DE⊥平面PBC.由题设知PD=1,则BD=3,PB=2.依照DE·PB=PD·BD得DE=3 2.即棱锥D-PBC的高为3 2.[2015·陕西卷] 如图1-8,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)若BD=1,求三棱锥D-ABC的表面积.图1-8课标文数16.G5[2015·陕西卷] 【解答】(1)∵折起前AD是BC边上的高,∴当△ABD折起后,AD⊥DC,AD⊥DB.又DB ∩DC =D .∴AD ⊥平面BDC .∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA ,DB =DA =DC =1.∴AB =BC =CA = 2. 进而S △DAB =S △DBC =S △DCA =12×1×1=12. S △ABC =12×2×2×sin60°=32. ∴表面积S =12×3+32=3+32.2015·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面P AD .课标数学16.G4,G5[2015·江苏卷] 本题主要观察直线与平面、平面与平面的地址关系,观察空间想象能力和推理论证能力.【解答】 证明:(1)在△P AD 中,由于E ,F 分别为AP ,AD 的中点,因此EF ∥PD .又由于EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3因此直线EF ∥平面PCD .(2)连接BD ,由于AB =AD ,∠BAD =60°,因此△ABD 为正三角形,由于F 是AD 的中点,因此BF ⊥AD .由于平面P AD ⊥平面ABCD ,BF ⊂平面ABCD ,平面P AD ∩平面ABCD =AD ,因此BF ⊥平面P AD .又由于BF ⊂平面BEF ,因此平面BEF ⊥平面P AD .[2015·辽宁卷] 如图1-8,四边形ABCD 为正方形,图1-8QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值.课标文数18.G7[2015·辽宁卷] 【解答】 (1)由条件知PDAQ 为直角梯形.由于QA ⊥平面ABCD ,因此平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC ⊥AD ,因此DC ⊥平面PDAQ ,可得PQ ⊥DC .在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD . 因此PQ ⊥平面DCQ .(2)设AB =a .由题设知AQ 为棱锥Q -ABCD 的高,因此棱锥Q -ABCD 的体积V 1=13a 3. 由(1)知PQ 为棱锥P -DCQ 的高,而PQ =2a ,△DCQ 的面积为22a 2, 因此棱锥P -DCQ 的体积V 2=13a 3. 故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1.图1-61[2015·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面P AC 所成角的正弦值.图1-5课标文数19.G5,G11[2015·湖南卷] 【解答】(1)由于OA =OC ,D 是AC 的中点,因此AC ⊥OD .又PO ⊥底面⊙O ,AC ⊂底面⊙O ,因此AC ⊥PO .而OD ,PO 是平面POD 内的两条订交直线,因此AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面P AC ,因此平面POD ⊥平面P AC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面P AC .图1-6连接CH ,则CH 是OC 在平面P AC 上的射影,因此∠OCH 是直线OC 和平面P AC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12. 在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×122+14=23. 在Rt △OHC 中,sin ∠OCH =OH OC =23. 故直线OC 和平面P AC 所成角的正弦值为23.图1-7[2015·浙江卷] 如图1-7,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.(1)证明:AP ⊥BC ;(2)已知BC =8,PO =4,AO =3,OD =2,求二面角B -AP -C 的大小.课标文数20.G11[2015·浙江卷] 【解答】 (1)证明:由AB =AC ,D 是BC 中点,得AD ⊥BC ,又PO ⊥平面ABC ,得PO ⊥BC ,由于PO ∩AD =O ,因此BC ⊥平面P AD ,故BC ⊥AP .(2)如图,在平面APB 内作BM ⊥P A 于M ,连CM .由于BC ⊥P A ,得P A ⊥平面BMC ,因此AP ⊥CM .故∠BMC 为二面角B -AP -C 的平面角.在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2,在Rt △PDB 中,PB 2=PD 2+BD 2,因此PB 2=PO 2+OD 2+BD 2=36,得PB =6.在Rt △POA 中,P A 2=AO 2+OP 2=25,得P A =5.又cos ∠BP A =P A 2+PB 2-AB 22P A ·PB =13, 进而sin ∠BP A =223.故BM =PB sin ∠BP A =4 2.同理CM =4 2.由于BM 2+MC 2=BC 2,因此∠BMC =90°,即二面角B -AP -C 的大小为90°.图1-5[2015·福建卷] 如图1-5,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面P AD ;(2)若P A =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P -ABCD 的体积.课标文数20.G12[2015·福建卷] 【解答】 (1)证明:由于P A ⊥平面ABCD ,CE ⊂平面ABCD ,图1-6因此P A ⊥CE .由于AB ⊥AD ,CE ∥AB ,因此CE ⊥AD .又P A ∩AD =A , 因此CE ⊥平面P AD .(2)由(1)可知CE ⊥AD .在Rt △ECD 中,DE =CD ·cos45°=1,CE =CD ·sin45°=1.又由于AB =CE =1,AB ∥CE ,因此四边形ABCE 为矩形.因此S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52. 又P A ⊥平面ABCD ,P A =1,因此V 四棱锥P -ABCD =13S 四边形ABCD ·P A =13×52×1=56.2[2015·江西卷] 如图1-7,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D ,现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′-PBCD 的体积最大时,求P A 的长;(2)若点P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE .图1-7课标文数18.G12[2015·江西卷] 【解答】 (1)令P A =x (0<x <2),则A ′P =PD =x ,BP =2-x .由于A ′P ⊥PD ,且平面A ′PD ⊥平面PBCD ,故A ′P ⊥平面PBCD .因此V A ′-PBCD =13Sh =16(2-x )(2+x )x =16(4x -x 3).图1-8令f (x )=16(4x -x 3),由f ′(x )=16(4-3x 2)=0,得x =233. 当x ∈⎝⎛⎭⎫0,233时,f ′(x )>0,f (x )单调递加; 当x ∈⎝⎛⎭⎫233,2时,f ′(x )<0,f (x )单调递减,因此,当x =233时,f (x )获取最大值, 即:当V A ′-PBCD 最大时,P A =233. (2)证明:设F 为A ′B 的中点,连接PF ,FE .则有EF 綊12BC ,PD 綊12BC ,因此EF 綊PD ,四边形DEFP 为平行四边形,因此DE ∥PF ,又A ′P =PB ,因此PF ⊥A ′B ,故DE ⊥A ′B .[2015·山东卷] 如图1-5,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .图1-5课标文数19.G12[2015·山东卷] 【解答】证明:(1)证法一:由于D1D⊥平面ABCD,且BD⊂平面ABCD,图1-6因此D1D⊥BD.又由于AB=2AD,∠BAD=60°,在△ABD中,由余弦定理得BD2=AD2+AB2-2AD·AB cos60°=3AD2.因此AD2+BD2=AB2,因此AD⊥BD.又AD∩D1D=D,因此BD⊥平面ADD1A1.又AA1⊂平面ADD1A1,因此AA1⊥BD.证法二:由于D1D⊥平面ABCD,且BD⊂平面ABCD,图1-7因此BD⊥D1D.取AB的中点G,连接DG.在△ABD中,由AB=2AD得AG=AD,又∠BAD=60°,因此△ADG为等边三角形.因此GD=GB.故∠DBG=∠GDB,又∠AGD=60°,因此∠GDB=30°,故∠ADB=∠ADG+∠GDB=60°+30°=90°,因此BD ⊥AD .又AD ∩D 1D =D ,因此BD ⊥平面ADD 1A 1,又AA 1⊂平面ADD 1A 1,因此AA 1⊥BD .(2)连接AC ,A 1C 1.图1-8设AC ∩BD =E ,连接EA 1.由于四边形ABCD 为平行四边形,因此EC =12AC , 由棱台定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC ,因此四边形A 1ECC 1为平行四边形.因此CC 1∥EA 1,又由于EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,因此CC 1∥平面A 1BD .[2015·四川卷] 如图1-5,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于点D .(1)求证:PB 1∥平面BDA 1;(2)求二面角A -A 1D -B 的平面角的余弦值.图1-5[2015·四川卷] 【解答】 解法一:(1)连接AB 1与BA 1交于点O ,连接OD .∵C 1D ∥AA 1,A 1C 1=C 1P ,∴AD =PD ,又AO =B 1O ,∴OD ∥PB 1.图1-6又OD ⊂平面BDA 1,PB 1⊄平面BDA 1,∴PB 1∥平面BDA 1.(2)过A 作AE ⊥DA 1于点E ,连接BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A ,∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1.∴∠BEA 为二面角A -A 1D -B 的平面角.在Rt △A 1C 1D 中,A 1D =⎝⎛⎭⎫122+12=52, 又S △AA 1D =12×1×1=12×52×AE , ∴AE =255. 在Rt △BAE 中,BE =12+⎝⎛⎭⎫2552=355, ∴cos ∠BEA =AE BE =23. 故二面角A -A 1D -B 的平面角的余弦值为23.[2015·天津卷] 如图1-7,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明PB ∥平面ACM ;(2)证明AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值.图1-7课标文数17.G12[2015·天津卷]图1-8【解答】 (1)证明:连接BD ,MO .在平行四边形ABCD 中,由于O 为AC 的中点,因此O 为BD 的中点.又M 为PD 的中点,因此PB ∥MO .由于PB ⊄平面ACM ,MO ⊂平面ACM ,因此PB ∥平面ACM .(2)证明:由于∠ADC =45°,且AD =AC =1,因此∠DAC =90°,即AD ⊥AC .又PO ⊥平面ABCD ,AD ⊂平面ABCD ,因此PO ⊥AD .而AC ∩PO =O ,因此AD ⊥平面P AC .(3)取DO 中点N ,连接MN ,AN .由于M 为PD 的中点,因此MN ∥PO ,且MN =12PO =1.由PO ⊥平面ABCD ,得MN ⊥平面ABCD ,因此∠MAN 是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO =12,因此DO =52.进而AN =12DO =54.在Rt △ANM 中,tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的周围体称之为鳖臑.在以下列图的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断周围体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明原由;(Ⅱ)记阳马P ABCD -的体积为1V ,周围体EBCD 的体积为2V ,求12V V 的值. 【答案】(Ⅰ)由于PD ⊥底面ABCD ,因此PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,因此BC ⊥平面PCD . DE ⊂平面PCD ,因此BC DE ⊥. 又由于PD CD =,点E 是PC 的中点,因此DE PC ⊥. 而PC BC C =,因此DE ⊥平面PBC .周围体EBCD 是一个鳖臑;(Ⅱ)124.V V = 【解析】 试题解析:(Ⅰ)由侧棱PD ⊥底面ABCD 易知,PD BC ⊥;而底面ABCD 为长方形,有BC CD ⊥,由线面垂直的判判定理知BC ⊥平面PCD ,进而由线面垂直的性质定理可得BC DE ⊥;在PCD ∆中,易得DE PC ⊥,再由线面垂直的判判定理即可得出结论.由BC ⊥平面PCD ,DE ⊥平面PBC ,进一步可得周围体EBCD 的四个面都是直角三角形,即可得出结论;(Ⅱ)结合(Ⅰ)证明结论,并依照棱锥的体积公式分别求出12,V V ,即可得出所求结果.试题解析:(Ⅰ)由于PD ⊥底面ABCD ,因此PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,因此BC ⊥平面PCD . DE ⊂平面PCD ,因此BC DE ⊥. 又由于PD CD =,点E 是PC 的中点,因此DE PC ⊥. 而PC BC C =,因此DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知周围体EBCD 的四个面都是直角三角形,即周围体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(Ⅱ)由已知,PD 是阳马P ABCD -的高,因此11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,因此21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,由于PD CD =,点E 是PC的中点,因此2DE CE ==,于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅。

高考文科数学三年真题分类汇编 专题05 立体几何(选择题、填空题)(解析版)

高考文科数学三年真题分类汇编 专题05 立体几何(选择题、填空题)(解析版)

专题05 立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A BC D 【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =.故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国Ⅱ卷文数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC 的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 3.【2020年高考全国Ⅲ卷文数】如图为某几何体的三视图,则该几何体的表面积是A.B .C .D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.4.【2020年高考全国Ⅰ卷文数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R , 依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin60AB r =︒=,1OO AB ∴==根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.5.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 6.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.7.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱, 且三棱锥的一个侧面垂直于底面,且棱锥的高为1, 棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.8.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.9.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD , 根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒, 所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.10.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.11.【2019年高考全国Ⅱ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD , 易得直线BM ,EN 是三角形EBD 的中线,是相交直线. 过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,M F ⊥平面ABCD , MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴= BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.12.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.13.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>;在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.14.【2018年高考全国Ⅱ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为A.1722B.5C.3D.2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M 和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,=B.【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.15.【2018年高考全国Ⅱ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的数学核心素养是直观想象.16.【2018年高考全国I 卷文数】在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BBC C 所成的角为30︒,则该长方体的体积为A .8B .C .D .【答案】C【解析】在长方体1111ABCD A BC D -中,连接1BC ,根据线面角的定义可知130AC B ︒∠=,因为2AB =,所以1BC =,从而求得1CC =所以该长方体的体积为22V =⨯⨯= 故选C.【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.17.【2018年高考全国I 卷文数】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A. B .12π C.D .10π【答案】B【解析】根据题意,可得截面是边长为所以其表面积为22π2π12πS =+=,故选B.【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.18.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .8【答案】C俯视图正视图【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯= 故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.19.【2018年高考全国Ⅱ卷文数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B .C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯=,故选B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==OM ,进而得到结果,属于较难题型.20.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A BC D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A BC D 【答案】C【解析】如图,在正方体1111ABCD A BC D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.21.【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,,m n m n ⊄⊂∥αα,所以根据线面平行的判定定理得m ∥α. 由m ∥α不能得出m 与α内任一直线平行, 所以m n ∥是m ∥α的充分不必要条件,故选A. 【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.22.【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【答案】D【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.23.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【答案】C【解析】由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ==== 则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个, 故选C.【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.24.【2020年高考全国Ⅱ卷文数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题. 综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.25.【2020年高考全国Ⅲ卷文数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯= 解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.26.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.27.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.28.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,则1DE EP ⊥,1D E =,所以||EP ===,所以侧面11BC CB 与球面的交线上的点到E因为||||EF EG ==11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.29.【2019年高考全国Ⅱ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,由题意可知,CD PD CD PO ⊥⊥,=PD PO P ,CD 平面PDO ,又OD ⊂平面PDO ,CD OD ∴⊥,PD PE ==2PC =,sin sin PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,又易知PO CO ⊥,CO 为ACB ∠的平分线,451,,OCD OD CD OC ︒∴∠=∴===,又2PC =,PO ∴==【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.30.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 31.【2019年高考全国Ⅱ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A BC D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H分别为所在棱的中点,16cm 4cm AB=BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGHS =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A BC D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=, 其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.32.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 33.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.34.【2019年高考天津卷文数】若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心, 故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】本题主要考查空间几何体的结构特征以及圆柱的体积计算问题,解答时,根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.35.【2019年高考江苏卷】如图,长方体1111ABCD A BC D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .。

(整理)高考文科数学立体几何_(答案详解).

(整理)高考文科数学立体几何_(答案详解).

选择题1.(12年四川卷)如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的 一点P 满足60BOP ∠=,则A 、P 两点 间的球面距离为 ( )A. RB. 4R πC. RD. 3R π 2.(12年广东卷)某几何体的三视图如图1所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π3.(12年重庆卷)设四面体的六条棱的长分别为1,1,1,1和a 且长为a的棱与长为的棱异面,则a 的取值范围是( )A.B.C.D.4.(12年浙江卷)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) A.1cm 3 B.2cm 3 C.3cm 3 D.6cm3图1C5.(12年浙江卷)设l 是直线,αβ,是两个不同的平面 ( )A.若l ∥α,l ∥β,则α∥βB. 若l ∥α,l ⊥β,则α⊥βC. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β, l ∥α,则l ⊥β6.(12年新课标卷)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( )A .6B .9C .12D .187. 某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+ B.30+ C.56+ D .60+ 8.(12年福建卷)一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 9.(12年湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能...是( )10.(12年江西卷)若一个几何体的三视图如图所示,则此几何体的体积为 ( ) A B C DA .112 B.5 C.4 D. 9211.(12年大纲卷)已知正四棱柱1111ABCD A B C D -中,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2 BCD .1 12.(12年陕西卷)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )填空题1.(12年湖北卷)已知某几何体的三视图如图所示,则该几何体的体积为 .左视图主视图俯视图侧视图正视图俯视图2.(12年四川卷)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD ,1CC 的中点,则异面直线1A M 与DN 所成的角的大小是____________.3.(12年山东卷)如图,正方体1111D C B A ABCD -的棱长为1,E 为线段C B 1上的一点,则三棱锥1DED A -的体积为___________ .4.(12年安徽卷)某几何体的三视图如图所示,该几何体的体积是_____.5.(12年江苏卷)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.NA 1A B CC 1 A 1 侧(左)视图正(主)视图 4俯视图 5 4 26.(12年辽宁卷)一个几何体的三视图如图所示,则该几何体的体积为_______________.7.(12年辽宁卷)已知点P A B C D ,,,,是球O 表面上的点,PA ABCD ⊥平面,四边形ABCD是边长为.若PA =,则OAB ∆的面积为______________. 8.(12年大纲卷)已知正方形1111ABCD A B C D -中,,E F 分别为1BB ,1CC 的中点,那么异面直线AE 与1D F 所成角的余弦值为 .9.(12年上海卷)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 10.(12年天津卷)一个几何体的三视图如图所示(单位:m ),则该几何体的体积 3m.2.(12年山东卷)(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .3.(12年广东卷)(本小题满分13分)如图所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//,AB CD PD AD =,E 是PB 中点,F 是DC 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1,1PH AD FC ===,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 6.(12年新课标卷)(本小题满分12分) 如图,三棱柱111ABC A B C -中,侧棱垂直底面,o 90ACB ∠=,112AC BC AA ==,D 是棱1AA 的 中点.(I) 证明:平面BDC ⊥平面1BDC(Ⅱ)平面1BDC 分此棱柱为两部分,求这两部分体积的比.选择题1.【答案】A【分析】由已知可知,AOP CBD ⊥面面,∴cos cos cos AOP AOB BOP =∠∠∠,带入数据得12cos ==224AOP ∠,arccos 4AP R ∴=. 2. 【答案】C【分析】几何体是半球与圆锥叠加而成它的体积为32141π3π330π233V =⨯⨯+⨯⨯= 3.【答案】:A【分析】:如图所示,取,EF 分别为,PC AB 的中点,依题意可得PB BC ⊥,所以 GEAB FCPD H2BE ==.在BEF ∆中,BF BE <,所以2AB BF =<4. 【答案】C【分析】由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为11123132⨯⨯⨯⨯=. 5.【答案】B【分析】利用排除法可得选项B 是正确的,∵l ∥α,l ⊥β,则α⊥β.如选项A :l ∥α,l ∥β时,α⊥β或α∥β;选项C :若α⊥β,l ⊥α时,l ∥β或l β⊂;选项D :若α⊥β,l ∥α时,l ∥β或l ⊥β.6. 【答案】B【分析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,底边上高为3的等腰三角形,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B. 7. 【答案】B 【分析】从所给的三视图可以得到该几何体为三棱锥,本题所求表面积为三棱锥四个面的面积之和.利用垂直关系和三角形面积公式,可得:=10=10=10S S S S 后右左底,,,因此该几何体表面积30S =+,故选B .8. 【答案】D【分析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆.9. 【答案】D【分析】本题是组合体的三视图问题,由几何体的正视图和侧视图均相同,原图下面部分应为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C 都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面部分应为中间有条虚线的矩形..10. 【答案】C【分析】通过观察几何体的三视图可知,该几何体是一个底面为六边形(2条对边长为1,其余4),高为1的直棱柱.所以该几何体的体积为112122142V sh ⎛⎫==⨯+⨯⨯⨯⨯= ⎪⎝⎭,故选D.11. 【答案】D【分析】因为底面的边长为2,高为,AC BD ,得到交点为O ,连接EO ,1//EO AC ,则点1C 到平面BDE 的距离等于C 到平面BDE 的距离,过点C 作CH OE ⊥,则CH 即为所求,在三角形OCE 中,利用等面积法,可得1CH =,故选答案D. 12.【答案】B【分析】显然从左边看到的是一个正方形,因为割线1AD 可见,所以用实线表示;而割线1B C 不可见,所以用虚线表示.故选B .填空题1. 【答案】12π【分析】该几何体的左中右均为圆柱体,其中左右圆柱体全等,是底面半径为2,高为1的 圆柱体;中间部分是底面半径为1,高为4的圆柱体,所以所求的体积为:22π212π14=12πV =⨯⨯⨯+⨯⨯.2. 【答案】o 90【分析】方法一:连接D 1M ,易得DN ⊥A 1D 1 ,DN ⊥D 1M ,所以,DN ⊥平面A 1MD 1,又A 1M ⊂平面A 1MD 1,所以,DN ⊥A 1M ,故夹角为o 90 方法二:以D 为原点,分别以DA , DC , DD 1为x , y , z 轴,建立空间直角坐标系D —xyz .设正方体边长为2,则D (0,0,0),N (0,2,1),M (0,1,0),A 1(2,0,2)故1(0,2,1)(2,1,2)DN MA ==-, 所以, 111cos ,0DN MA DN MA DN MA <>==,故DN ⊥A 1M ,所以夹角为o 90.3. 【答案】61【分析】求1DED A -的体积,显然为定值,也就是说三棱锥的底面面积与三棱锥的高都为定值,因此,我们需要找一个底面为定值的三角形,三角形1ADD 的面积为21(为定值),而E 点到底面1ADD 的高恰为正方体的高为1(为定值),因此体积为61. 4. 【答案】56 【分析】该几何体是底面是直角梯形,高为4的直四棱柱,几何体的的体积是:()12544562V =⨯+⨯⨯=5. 【答案】6【分析】∵长方体底面ABCD 是正方形 ,∴△ABD 中BD cm ,BD 边上的高(它也是四棱锥11A BB D D -的高)∴四棱锥11A BB D D -的体积为123⨯6. 【答案】12π+【分析】由三视图可知该几何体为一个长方体和一个等高的圆柱的组合体,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,高位1,所以该几何体的体积为3411112ππ⨯⨯+⨯⨯=+7.【答案】【分析】点P A B C D O 、、、、为球内接长方体的顶点,14O OAB ∴∆球心为该长方体对角线的中点,的面积是该长方体对角面面积的,164OAB AB PA S ∆===⨯=8. 【答案】35【分析】首先根据已知条件,连接DF ,则由//DF AE 可知1DFD ∠或其补角为异面直线AE 与1D F 所成的角,设正方体的棱长为2,则可以求解得到112DF D F DD ===,再由余弦定理可得22211115543cos 2255D F DF D D DFD D F DF +-+-∠===⋅⨯.9. 【答案】π6【分析】根据该圆柱的底面周长得底面圆的半径为1=r ,所以该圆柱的表面积为:22π2π4π2π6πS rh r =+=+=.10. 【答案】30【分析】由三视图可知这是一个下面是个长方体,上面是个平躺着的底面为直角梯形的直四棱柱构成的组合体.长方体的体积为24243=⨯⨯,直四棱柱的体积是6412)21(=⨯⨯+,所以几何体的总体积为30.2. 【证明】(Ⅰ)设BD 的中点为O ,连接,OC OE , 则由BC CD CO BD =知垂直 又CE BD ⊥,所以BD OCE ⊥平面 所以BD OE ⊥,即OD 是BE 的垂直平分线BE DE =所以(Ⅱ)取AB 的中点为N ,连接MN ,DN ONM因为M 是AE 的中点,,所以//MN BE 因为ABD ∆是等边三角形,所以DN ⊥AB由o o 12030BCD CBD ∠=∠=知,所以o 90ABC ∠=,即BC ⊥AB所以ND //BC所以平面MND //平面BEC ,故DM //平面BEC3. 【解】(1)AB ⊥平面PAD ,PH ⊂面PAD PH AB ⇒⊥ 又,PH AD ADAB A PH ⊥=⇒⊥面ABCD(2)E 是PB 中点⇒点E 到面BCF 的距离1122h PH ==三棱锥E BCF -的体积1111113326212BCF V S h FC AD h ∆=⨯=⨯⨯⨯⨯=⨯= (3)过D 作DG PA G ⊥于,连接EG ,易得EG PAD ⊥面 由AB ⊥平面PAD ⇒面PAD ⊥面PAB DG ⇒⊥面PAB E P B E GP A A B P是的中点,⊥,⊥ 11//,//////22EG AB DF AB EG DF DG EF ⇒⇒⇒ 得:EF ⊥平面PAB6. 【解】(Ⅰ)由题设知1BC CC ⊥,BC AC ⊥,1CC AC C =∩,∴BC ⊥面11ACC A又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥,又∵DC BC C =∩,∴1DC ⊥面BDC , ∵1DC ⊂面1BDC ,∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,精品文档精品文档 ∴11():V V V =1:1,∴平面1BDC 分此棱柱为两部分体积之比为1:1.。

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

三年高考(2019-2021)数学(文)真题分类汇编——立体几何(解答题)(解析版)

立体几何(解答题) 专项汇编1.【2021年全国高考甲卷数学(文)】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥. 【答案】(1)13;(2)证明见解析. 【分析】(1)首先求得AC 的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论. 【详解】(1)如图所示,连结AF ,由题意可得:22415BF BC CF =+=+=,由于AB ⊥BB 1,BC ⊥AB ,1BB BC B =,故AB ⊥平面11BCC B ,而BF ⊂平面11BCC B ,故AB BF ⊥, 从而有22453AF AB BF =+=+=, 从而229122AC AF CF =-=-=,则222,AB BC AC AB BC +=∴⊥,ABC 为等腰直角三角形,111221222BCE ABC S s ⎛⎫==⨯⨯⨯= ⎪⎝⎭△△,11111333F EBC BCE V S CF -=⨯⨯=⨯⨯=△. (2)由(1)的结论可将几何体补形为一个棱长为2的正方体1111ABCM A B C M -,如图所示,取棱,AM BC 的中点,H G ,连结11,,A H HG GB ,正方形11BCC B 中,,G F 为中点,则1BF B G ⊥,又111111,BF A B A B B G B ⊥=,故BF ⊥平面11A B GH ,而DE ⊂平面11A B GH , 从而BF ⊥DE . 【点睛】求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.对于空间中垂直关系(线线、线面、面面)的证明经常进行等价转化.2.【2021年全国高考乙卷数学(文)】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积. 【答案】(1)证明见解析;(2)23. 【分析】(1)由PD ⊥底面ABCD 可得PD AM ⊥,又PB AM ⊥,由线面垂直的判定定理可得AM ⊥平面PBD ,再根据面面垂直的判定定理即可证出平面PAM ⊥平面PBD ;(2)由(1)可知,AM BD ⊥,由平面知识可知,~DAB ABM ,由相似比可求出AD ,再根据四棱锥P ABCD -的体积公式即可求出. 【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD AM ⊥, 又PB AM ⊥,PBPD P =,所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM BD ⊥, 从而~DAB ABM ,设BM x =,2AD x =, 则BM AB AB AD =,即221x =,解得22x =,所以2AD =. 因为PD ⊥底面ABCD , 故四棱锥P ABCD -的体积为()1212133V =⨯⨯⨯=. 【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB AM ⊥,所以垂线可以从,PB AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出~DAB ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积.3.【2021年全国新高考Ⅰ卷数学】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2) 36【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果; (2)先作出二面角平面角,再求得高,最后根据体积公式得结果. 【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FMEF F =,所以BC ⊥平面EFM ,即BC ⊥ME则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以BCD 为直角三角形 因为2DE EA =,1112(1)2233FM BF ∴==+= 从而EF=FM=213AO ∴=AO ⊥平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.4.【2020年高考全国Ⅰ卷文数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P −ABC 的体积. 【解析】(1)由题设可知,PA =PB = PC . 由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=.解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.5.【2020年高考全国Ⅱ卷文数】如图,已知三棱柱ABC −A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B −EB 1C 1F 的体积.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN 平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM 3PM =23AM 3EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B −EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B −EB 1C 1F 的体积为1243243⨯⨯=.【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.6.【2020年高考全国Ⅲ卷文数】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【解析】(1)如图,连结BD ,11B D . 因为AB BC =,所以四边形ABCD 为正方形, 故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥. 所以AC ⊥平面11BB D D .由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题.7.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】(1)因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥. 又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C . 又因为AB ⊂平面1ABB , 所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题. 8.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,||||OC OC OC θ⋅===⋅n |n n |因此,直线DF 与平面DBC 3. 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题. 9.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =417CH =. 从而点C 到平面1C DE 417.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.10.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.11.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4. 【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部12.【2019年高考北京卷文数】如图,在四棱锥P ABCDABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,⊥.所以BD AC所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.13.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以3DN =又DN AN ⊥,在Rt AND △中,3sin DN DAN AD ∠==所以,直线AD 与平面PAC 3【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.14.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.15.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅. 因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,22EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨-=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.。

立体几何近12年全国真题(及答案文科)

立体几何近12年全国真题(及答案文科)
又 为相交直线,所以 平面 ,由 平面 ,得 .
综上所述,总有 .
15.【解析】(Ⅰ)如图:
…………… 3分
(Ⅱ)所求多面体体积

(Ⅲ)证明:在长方体 中,
连结 ,则 .
因为 分别为 , 中点,所以 ,
从而 .又 平面 ,所以 面 .
16.【解析】(Ⅰ)因为 是等边三角形, ,
所以 ,
可得 .
如图,取 中点 ,连结 , ,
37.(2018年全国Ⅰ卷第18题)如图,在平行四边形 中, , ,以 为折痕将△ 折起,使点 到达点 的位置,且 .
(1)证明:平面 平面 ;
(2) 为线段 上一点, 为线段 上一点,且 ,求三棱锥 的体积.
38.(2018年全国Ⅱ卷第19题)如图,在三棱锥 中, ,
, 为 的中点.
(1)证明: 平面 ;
26.(2017年全国Ⅰ卷第16题)已知三棱锥 的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥 的体积为9,则球O的表面积为________.
27.(2015年全国Ⅰ卷第18题)如图四边形ABCD为菱形,G为AC与BD交点, .
( )证明:平面 平面 ;
9.(2013年全国Ⅱ卷第16题)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周
都在同一个球面上.若圆锥底面面积是这个球面面积的 ,则这两个圆锥中,体积较小者
的高与体积较大者的高的比值为______________.
10.(2017年全国Ⅰ卷第6题)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
( )若 ,
三棱锥 的体积为 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考文科数学真题汇编+答案解析专题5 立体几何(2020年版)考查频率:一般为2个小题和1个大题.考试分值:22分知识点分布:必修2一、选择题和填空题(每题5分)1.(2019全国I卷文16)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的P到平面ABC的距离为___________.【解析】如图所示,过点P作PD⊥AC,交AC于点D,作PE⊥BC,交BC于点E. 过点P作PO⊥平面ABC,交平面ABC于点O. 连接OD、OE,则PD=PE=3,CD=CE=OD=OE=1,∴PO=2,即P到平面ABC的距离为2.【考点】必修2 直线、平面垂直的判定与性质2.(2019全国II卷文7)设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】通过画图,采用排除法,很容易得到正确答案. 【答案】B【考点】必修2 直线、平面平行的判定与性质3.(2019全国II 卷文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【解析】由题意可知,该半正多面体所有顶点都在同一个正方体的表面上,由18个正方形面和8个三角形面构成,所有该半正多面体共有26个面. 并且图中的一个八边形与正方体一个面的关系如图所示. 设该半正多面体的棱长a ,则有1222=⨯+a a 12-=a【答案】26,12-【考点】必修2 空间几何体的结构4.(2019全国III 卷文8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,连接BD ,由已知可知,在△BDE 中,EN 为BD 边上的中线,BM 为DE 边上的中线,∴直线BM ,EN 在同一平面内且是相交直线.过点E 作EO ⊥CD ,交CD 于点O ,过点M 作MF ⊥CD ,交CD 于点F . 连接ON ,BF . 又∵平面ECD ⊥平面ABCD ,∴EO ⊥平面ABCD ,MF ⊥平面ABCD ,∴EO ⊥ON ,MF ⊥BF , 即△EON 与△MFB 均为直角三角形. 设ABCD 的边长为2a ,则EO =,ON a =,2MF a =,52BF a ===,∥2EN a ===,BM === ∴EN BM ≠.【答案】B【考点】必修2 直线、平面垂直的判定与性质5.(2019全国III 卷文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意可得,四棱锥O −EFGH 的底面积为2146423=12cm 2⨯-⨯⨯⨯,其高为点O 到底面BB 1C 1C的距离3cm ,因此四棱锥O −EFGH 的体积为311=312=12cm 3V ⨯⨯. 长方体1111ABCD A B C D -的体积为32=466=144cm V ⨯⨯,所以该模型的体积为312=132cm V V V =-,其所需原料的质量为1320.9=118.8 g ⨯.【答案】118.8【考点】必修2 空间几何体的表面积和体积6.(2018全国I 卷文5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A.B .12πC .D .10π【解析】由题意可知,圆柱的高22=h ,底面半径为2=r ,∥该圆柱的表面积为π12π2π22=+rh r . 【答案】B【考点】必修2 空间几何体的表面积和体积7.(2018全国I 卷文9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. B .C .3 D .2【解析】根据题意,点 M 和点 N 分别位于圆柱的上下底面的圆周上,且过这两点的圆柱的母线将圆柱底面圆周分为1:3,如图所示,由圆柱的侧面展开图可知,从 M 到 N 的路径中,最短路径的长度为【答案】B【考点】必修2 空间几何体的三视图和直观图8.(2018全国I 卷文10)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30°,则该长方体的体积为 A .8B.C.D.【解析】连接BC 1、AC 1,∥AB ∥平面BB 1C 1C ,∥则∥AC 1B 即AC 1与平面BB 1C 1C 所成的角,∥AC 1B =30°.∴在Rt △ABC 1中,3231==AB BC ,∴在Rt △BCC 1中,222211=-=BC BC CC . ∥该长方体的体积为282222=⨯⨯=V .【答案】C【考点】必修2 直线、平面垂直的判定与性质9.(2018全国II 卷文9)在正方体中,为棱的中点,则异面直线与所成角的正切值为 ABCD【解析】如图所示,连接BE ,∥AB ⊥平面CC 1B 1B ,∴AB ⊥BE.设正方体的边长为2a ,在Rt △ABE 中,则AB =2a ,a BE 5=,∴2525tan ===∠a a AB BE BAE . 1111ABCD A B C D -E 1CC AE CD∵AB ∥CD ,∴异面直线与所成角的正切值为25.【答案】C【考点】必修2 直线、平面垂直的判定与性质、异面直线10. (2018全国II 卷文16)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若∥SAB 的面积为8,则该圆锥的体积为__________.【解析】圆锥的顶点为S ,母线SA ,SB 互相垂直,∥SAB 的面积为8,可得2182=SA ,解得SA =4.SA 与圆锥底面所成角为30°,可得圆锥的底面半径为,圆锥高为2,则圆锥的体积为21π28π3=⨯⨯⨯=V .【考点】必修2 空间几何体的表面积和体积11.(2018全国III 卷文3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A【考点】必修2 空间几何体的三视图和直观图12.(2018全国III 卷文12)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为AECDA .312B .318C .324D .354【解析】如图所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. ∥3260sin 32=⋅⨯='οAB C O ,2)32(42222=-='-='O O OC O O , ∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .【答案】B【考点】必修2 空间几何体的表面积和体积13.(2017全国I 卷文6)如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是【解析】B 、C :∵AB ∥MQ ,∴AB ∥平面MNQ ;D :∵AB ∥NQ ,∴AB ∥平面MNQ ;故选A. 【答案】A【考点】必修2 直线、平面平行的判定与性质14.(2017全国I 卷文16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。

若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

【解析】由题意可知,∥SBC 和∥SAC 都是等腰直角三角形.∥平面SCA ⊥平面SCB ,∴AO ⊥平面SCB ,BO ⊥SC ,设球的半径为r ,以∥SCB 为底面,以AO 为高,得到三棱锥S-ABC 的体积为31111(2)93323SCB AO S r r r r ∆⨯⨯=⨯⨯⨯⨯==,解得3r =. ∥球O 的表面积为24π36πr =.【答案】36π【考点】必修2 空间几何体的表面积和体积; 直线、平面垂直的判定与性质15.(2017全国II 卷文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【解析】由三视图可得,直观图为一个高为10的圆柱减去一个高为6的圆柱的一半,其体积为221103π63π=63π2V =⨯-⨯⨯.【答案】B【考点】必修2 三视图、空间几何体的表面积和体积16.(2017全国II 卷文15)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .【解析】由题意可知,长方体的体对角线就是球O 的直径,所以球O 的半径2r ==, 球O 的表面积2144π4π14π4V r ==⨯=. 【答案】14π【考点】必修2 空间几何体的表面积和体积17.(2017全国III 卷文9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【解析】由题可知,圆柱的轴截面如图所示,AC=2,BC=1,故AB=3,圆柱底面圆的半径为23,所以圆柱的体积为43π1)23(π2=⨯⨯.【答案】B【考点】必修2 空间几何体的表面积和体积18.(2017全国III 卷文10)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则 A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】取C 1C 的中点F ,连接A 1F 、EF ,∥E 为棱CD 的中点,∥EF ∥DC 1. 设正方体的边长为2,于是有22EF =,219A E =,219A F =,∥∥A 1EF 不是直角三角形,∥1A E EF ⊥不成立,即11A E DC ⊥不成立. 故A 错误.同理,取BC 的中点Q ,连接A 1Q 、EQ (图中未画出),可以证明1A E BD ⊥不成立. 故B 错误. 同理,取AD 的中点M ,连接A 1M 、EM (图中未画出),可以证明1A E AC ⊥不成立. 故D 错误.连接A 1D 、B 1C ,∥11BC B C ⊥,11BC A B ⊥,∥111BC A DCB ⊥平面,又∥111A E A DCB ⊂平面,∥11BC A E ⊥. 故C 错误.【答案】C【考点】必修2 直线、平面垂直的判定与性质19. (2016全国I 卷文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径. 若该几何体的体积是28π3,则它的表面积是A. 17πB. 18πC. 20πD. 28π【解析】由三视图可得,直观图为一个球去掉18后的几何体,如图所示. 该几何体的体积是28π3,即37428ππ833r ⨯=,解得2r =,∥它的表面积 222273734πππ2π217π8424r r ⨯+=⨯+⨯=. 【答案】A【考点】必修2 三视图、空间几何体的表面积和体积20. (2016全国I 卷文11)平面 α 过正方体ABCD —A 1B 1C 1D 1的顶点A , α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A.B.C.D.【解析】如图所示,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,可知n ∥CD 1,m ∥B 1D 1,∥∥CB 1D 1是等边三角形,∴m ,n 所成角就是∥CD 1B 1=60°,∴m ,n所成角的正弦值为2. 【答案】A【考点】必修2 直线、平面平行的判定与性质21. (2016全国II 卷文4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为A. B.C. D. 【解析】正方体的体积为8,则边长为2. 正方体的体对角线为32444=++,即为球的直径,所以球的半径为3,球的表面积为π12)3(π42=⨯.【答案】A【考点】必修2 空间几何体的表面积和体积22.(2016全国II 卷文7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A. 20πB. 24πC. 28πD. 32π【解析】由三视图可得,直观图为一个圆柱和一个圆锥组成的几何体. 从图中可知,圆柱的底面半径r =2,高H =4;圆锥的底面半径r =2,高h =,母线长l =4. 由此计算该几何体的表面积为21312π323π8π4π2π2ππ4π16π+8π28πr rH rl++=+=.【答案】C【考点】必修2 三视图、空间几何体的表面积和体积23. (2016全国III卷文10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A. 18+54+【解析】由三视图可得,直观图为一个以俯视图为底面的四棱柱. 从图中可知,棱柱的两个底面面积为(36)236⨯⨯=,前后侧面的面积为(33)218⨯⨯=,左右侧面的面积为(32⨯=所以该多面体的表面积为54+【答案】B【考点】必修2 三视图、空间几何体的表面积和体积24.(2016全国III卷文11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球. 若AB∥BC,AB=6,BC=8,AA1=3,则V的最大值是A. 4πB. 9π2C. 6πD. 32π3【解析】∥AB∥BC,AB=6,BC=8,所以AC=10. 故∥ABC的内切圆半径681022r+-==.又由AA1=3,故直三棱柱ABC-A1B1C1内球的最大半径为32,此时体积V=3439ππ322⎛⎫⨯=⎪⎝⎭.【答案】B【考点】必修2 空间几何体的表面积和体积二、简答题(每题12分)25.(2019全国I 卷文19)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =. 从而点C 到平面1C DE. 26.(2019全国II 卷文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11⊥B C BE .又∥1BE EC ⊥,∴BE ⊥平面11EB C .(2)∵AE =A 1E ,AB =A 1B 1,∠BAE =∠B 1A 1E ,∴Rt ABE △∥11Rt A B E △,∴∠AEB =∠A 1EB 1 由(1)知190BEB ∠=︒.∥45AEB ∠=︒,故AE =AB=3,126AA AE ==. 如图,作1EF BB ⊥,垂足为F ,则EF ∥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.EFE27.(2019全国III 卷文19)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2, ∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)如图所示,取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG . 因为四边形BCGE 是菱形,且∠EBC =60°,得EM ⊥CG ,故CG ⊥平面DEM . 因此DM ⊥CG .在Rt △DEM 中,DE =1,EM DM =2. 所以四边形ACGD 的面积为 2×2 = 4.28.(2018全国I 卷文18)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ∥AD ,所以AB ∥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ∥平面ABC .(2)由已知可得,DC =CM =AB =3,DA= 又23BP DQ DA ==,所以BP =. 作QE ∥AC ,垂足为E ,则QE =P 13DC .由已知及(1)可得DC ∥平面ABC ,所以QE ∥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.29.(2018全国II 卷文19)如图,在三棱锥中,,,为的中点. (1)证明:平面;(2)若点在棱上,且,求点到平面的距离.P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB ,因为AB =BC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM. 故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM ==,∠ACB =45°.所以OM ,CH =.所以点C 到平面POM . 30.(2018全国III 卷文19)如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.AC 12AC 222OP OB PB +=12AC 23BC 3sin OC MC ACB OM ⋅⋅∠ABCD »CDM »CD C D AMD ⊥BMC AM P MC ∥PBD【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .31.(2017全国I 卷文18)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积. 【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .⊂»CD⊂⊄⊂(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 32.(2017全国II 卷文18)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠ 90.ABC =∠=︒(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为P ABCD -的体积.【解析】(1)在平面ABCD 内,因为∥BAD=∥ABC=90°,所以BC∥AD.又BC PAD ⊄平面,AD PAD ⊂平面,故BC∥平面PAD.(2)去AD的中点M,连结PM,CM,由12AB BC AD==及BC∥AD,∥ABC=90°得四边形ABCM为正方形,则CM∥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM∥AD,PM∥底面ABCD,因为CM ABCD⊂底面,所以PM∥CM.设BC=x,则CM=x,CD=,PM=,PC=PD=2x.取CD的中点N,连结PN,则PN∥CD,所以因为∥PCD的面积为,所以,解得x=-2(舍去),x=2,于是AB=BC=2,AD=4,PM=,所以四棱锥P-ABCD的体积.33.(2017全国III卷文19)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【解析】(1)取A C的中点O连结DO,BO.因为AD =CD ,所以AC ∥DO .又由于∥ABC 是正三角形,所以AC ∥BO .从而AC ∥平面DOB ,故AC ∥BD .(2)连结EO .由(1)及题设知∥ADC =90°,所以DO =AO .在Rt∥AOB 中,O .O 又AB =BD ,所以O ,O ∥DOB =9O °.由题设O ∥AEC 为直角三角形,所以12EO AC =. 又∥ABC 是正三角形,且AB =BD ,所以12EO BD =. 故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1. 34 (2016全国I 卷文18)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G .(I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【解析】(I )∥在平面内的正投影为,∥P ABC D .AB PD ⊥∥在平面内的正投影为,∥∥平面,故 又由已知可得,,从而是的中点.(II )在平面内,过点作的平行线交于点,即为在平面内的正投影. 理由如下:由已知可得,,又,∴,因此平面,即点为在平面内的正投影.连接,∥在平面内的正投影为,∥是正三角形的中心.由(I )知,是的中点,∥在上,故 由题设可得平面,平面,∥,因此 由已知,正三棱锥的侧面是直角三角形且,可得在等腰直角三角形中,可得∴四面体的体积 35(2016全国II 卷文19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将∥DEF 沿EF 折到∥D′EF 的位置.(I) 证明:AD ∥HD′;(II) 若AB =5,AC =6,54AE =,OD '=求五棱锥D′-ABCEF 体积. D PAB E .AB DE ⊥AB ⊥PED .AB PG ⊥PA PB =G AB PAB E PB PA F F E PAC PB PA ⊥⊥PB PC //EF PB EF PC ⊥EF ⊥PAC F EPAC CG P ABC D D ABC G AB D CG 2.3=CD CG ⊥PC PAB ⊥DE PAB //DE PC 21,.33==PE PG DE PC 6=PA 2,==DE PE EFP 2.==EF PF PDEF 114222.323=⨯⨯⨯⨯=V【解析】(I) 由已知得,,.⊥=AC BD AD CD 又由=AE CF 得AE CF AD CD =,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,∥//.'AC HD(II) 由//EF AC 得1.4==OH AE DO AD由5,6==AB AC 得 4.===DO BO ∥ 1 3.OH D H DH '===,于是2222219OD OH D H ''+=+==,故.OD OH '⊥由(I)知'⊥AC HD ,又∥ AC BD BD HD H '⊥=I ,,∥ ⊥AC 平面BHD ',于是.AC OD '⊥ 又∥ ,OD OH AC OH O '⊥=I ,∥ '⊥OD 平面.ABC 由=EF DH AC DO 得9.2=EF ∥五边形ABCFE 的面积 11969683.2224=⨯⨯-⨯⨯=S∥ 五棱锥D′-ABCEF 体积 16934=⨯⨯=V 36(2016全国III 卷文19)如图,四棱锥P -ABCD 中,P A ∥平面ABCD ,AD ∥BC ,AB=AD=AC =3,P A=BC =4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面P AB ;(II )求四面体N -BCM 的体积.【解析】(I )取BP 的中点T ,连接AT 、TN .∥ N 为PC 中点,∥TN ∥BC ,且221==BC TN . 由已知232==AD AM , 又AD ∥BC , ∥TN //=AM ,∥四边形AMNT 为平行四边形,于是MN ∥AT .∥PAB AT 平面⊂,PAB MN 平面⊄,∥MN ∥平面P AB .(II )因为P A ∥平面ABCD ,N 为PC 的中点,∥ N 到平面ABCD 的距离为221=PA . 取BC 的中点E ,连结AE . 由AB=AC =3得AE ∥BC ,且5=AE . 由AM ∥BC 得M 到BC 的距离为5,故525421=⨯⨯=BCM S ∆. ∥ 四面体N -BCM 的体积354231=⨯⨯=∆-PA S V BCM BCM N .。

相关文档
最新文档