直流稳压电源设计报告及放大电路设计报告
可调直流稳压电源设计

图1 稳压电源工作流程图2.2 可调直流稳压电源的工作原理方框图直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、消振、稳压、保护、可调七个环节来完成的〔如图2所示〕。
图2可调直流稳压电源方框图(1)电源变压器。
电源变压器,是降压变压器,它将市电220V交流电压变换成符合需要的较低的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定〔如图3所示〕。
图3 电源变压器(2)整流电路。
整流电路是利用二极管的单向导电性,把50Hz的正弦交流电变换成脉动的直流电,它由VD1,VD2,VD3,VD4构成单相全波整流电路,电路如图4所示。
在u2的正半周内,二极管VD1、VD3导通,VD2、VD4截止;u2的负半周内,VD2、VD4导通,VD1、VD3截止。
正负半周内部都有电流流过的负载电阻RL,且方向是一致的,电路的输出波形如图5所示。
图4 整流电路图 图5 整流波形图 在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即 。
电路中的每只二极管承受的最大反向电压为 (U2是变压器副边电压有效值)。
在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以到达使输出波形根本平滑的目的。
选择电容滤波电路后,直流输出电压:Uo=0.9U2,直流输出电流:Io=0.92L U R 〔Io 是变压器副边电流的有效值〕。
(3)滤波电路。
滤波电路它可以将整流电路输出电压中的交流成分大局部加以滤除,从而得到比拟平滑的直流电压,它由1C 等外围元器件构成。
(4) 稳压电路。
三端可调稳压器LM317:三端可调稳压器因具有稳定度高、适应性强、使用方便的优点,得到广泛应用。
稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化,其主要由三段集成稳压块LM317组成〔如图6所示〕。
放大电路设计与分析实验报告

放大电路设计与分析实验报告实验目的:1. 熟悉放大电路的设计和分析方法。
2. 掌握放大电路的参数计算和实验测量方法。
3. 理解各种放大电路的特点和应用场合。
实验原理:放大电路是电子电路的重要组成部分。
它可以将小信号放大到较大幅度,从而实现信号增强、波形整形、滤波等功能。
放大电路一般由一个放大器和其它元器件组成。
放大器的基本功能是将输入信号放大到一定程度,同时不改变其波形和频率。
按照输出信号的特点,放大电路可以分为音频放大电路、射频放大电路、功率放大电路等。
在放大电路中,放大器是核心部件。
一般来说,放大器的增益和频率响应是其最重要的特性。
增益是指输出电压和输入电压之比,通常用分贝(dB)表示。
频率响应是指输出信号的幅度和频率之间的关系。
在一定频率范围内,放大器的增益和频率响应应该保持稳定。
在放大电路设计中,需要注意以下几个方面:1. 输入阻抗和输出阻抗的匹配。
2. 偏置电路的设计,确保放大器的工作状态稳定。
3. 常用的放大电路拓扑结构,如共射放大电路、共基放大电路、共集放大电路等。
实验仪器:1. 双踪示波器。
2. 函数信号发生器。
3. 直流稳压电源。
4. 万用表。
5. 电阻箱、电容箱。
实验步骤:1. 搭建共射放大电路。
将三极管(NPN型)作为放大器核心部件,外加偏置电路和输入、输出电容等元器件。
其中,偏置电路应该满足三极管工作状态的要求,即基极电压为正,发射级和集电级处于正向偏置状态。
输入电容应该滤除输入信号中的直流分量,输出电容应该防止信号向下级传播时对下级线路产生影响。
将电路连接到直流稳压电源、函数信号发生器和示波器上,调整函数信号发生器的幅度和频率,记录电路的输入信号与输出信号的波形和幅度,计算电路的增益和频率响应曲线。
2. 搭建共基放大电路。
将三极管(PNP型)的基极接到地电平上,集电级接到负电源电平,发射级接到输入电源,外加输出电容和输入电容等元器件。
其中,输出电容应该防止信号向下级传播时对下级线路产生影响,输入电容应该滤除输入信号中的直流分量。
直流稳压电源课程设计报告

《直流稳压电源课程设计报告》一.课程设计目的(1)掌握直流稳压电源的组成及原理(2)掌握三端可调稳压器的使用方法(3)了解直流稳压电源主要参数二.课程设计题目描述和要求(1)稳压电源输出电压在6-18V之间连续可调,最大输出电流为Io max=1.0A(2)稳压系数S u≤0.03%(3)输出电阻R o≤0.1(4)纹波电压U orm≤5mV三.课程设计报告内容㈠直流稳压电源的组成直流稳压电源通常由电源电压、整流电路、滤波器和稳压电路等部分组成,其原理框图如图1.3.1所示㈡直流稳压电源的各部分作用1.电源变压器:将电网220V的交流电压变换成整流滤波电路所需要的交流电压u2。
变压器副边与原边的功率比为:P2/P1=η式中:η为变压器的效率。
2整流电路:将交流电压变换为单向脉动直流电压。
整流是利用二极管的单向导电性实现的。
常用的整流电路有半波整流电路和桥式整流电路等。
其电路图如图1.3.2所示。
在稳压电路中一般用4个二极管组成桥式整流电路,此时U1与交流电压u2的有效值U2的关系为:U1=(1.1~1.2)U2在整流电路中,每只二极管所承受的最大反向电压为:Urm=√2U2流过每只二极管的平均电流为:I D=0.45U2/R L桥式整流电路与半波整流电路相比较,其输出电压U提高,脉动成分减少了,所以在此选用桥式整流电路。
3滤波电路:将脉动直流电压中交流分量滤去,形成平滑的直流电压。
滤波电路可分为电容、电感和π型滤波电路。
其电路图如下1.3.3所示。
图中R为负载电阻,它为电容C提供放电通路,放电时间常数RC应满足:RC>(3~5)T/2;式中T(=20msm)为50HZ交流电压周期。
一般小功率整流滤波电路通常采用桥式整流、电容滤波电路。
4.稳压电路:其作用是当交流电网电压波动或负载变化时,保证输出直流电压的稳定。
简单的稳压电路可采用稳压管来实现,在稳压性能要求较高的场合,可采用串联反馈式稳压电路(包括基准电压、取样电路、放大电路和调整管部分)。
大学电源制作实验报告(3篇)

第1篇一、实验目的1. 理解电源的基本工作原理和组成。
2. 掌握电源制作的基本步骤和技巧。
3. 培养动手实践能力和故障排查能力。
4. 学习电源电路图的分析和设计。
二、实验原理电源是电子设备正常工作的能量供应装置,主要包括直流电源和交流电源。
本实验以制作直流稳压电源为例,介绍电源的制作原理和步骤。
直流稳压电源主要由以下部分组成:1. 整流电路:将交流电源转换为脉动直流电源。
2. 滤波电路:去除整流电路输出的脉动直流电源中的纹波,得到较为平滑的直流电源。
3. 稳压电路:使输出的直流电压稳定,不受输入电压和负载变化的影响。
三、实验器材1. 交流电源2. 二极管(整流器)3. 电容(滤波器)4. 电阻(限流器)5. 稳压二极管6. 三极管(放大器)7. 电压表8. 电流表9. 电线、连接器等四、实验步骤1. 设计电路图:根据实验要求,设计直流稳压电源的电路图,包括整流电路、滤波电路和稳压电路。
2. 搭建电路:按照电路图连接各个元件,确保连接正确无误。
3. 测试整流电路:将交流电源接入整流电路,用电压表测量输出电压,检查整流电路是否正常工作。
4. 测试滤波电路:在整流电路的基础上,接入滤波电路,用电压表测量输出电压,检查滤波电路是否有效去除纹波。
5. 测试稳压电路:在滤波电路的基础上,接入稳压电路,用电压表测量输出电压,检查稳压电路是否使输出电压稳定。
6. 调试电路:根据测试结果,对电路进行调试,使输出电压达到设计要求。
7. 记录实验数据:记录实验过程中各个电路的输出电压、电流等数据。
五、实验结果与分析1. 整流电路输出电压约为交流电源电压的有效值。
2. 滤波电路输出电压较为平滑,纹波较小。
3. 稳压电路使输出电压稳定,不受输入电压和负载变化的影响。
实验结果表明,所制作的直流稳压电源能够满足设计要求,具有一定的实用价值。
六、实验总结1. 通过本次实验,掌握了直流稳压电源的制作原理和步骤。
2. 提高了动手实践能力和故障排查能力。
单管放大电路实验报告

单管放大电路实验报告实验目的:本实验旨在通过搭建单管放大电路,了解单管放大电路的基本原理,掌握单管放大电路的工作特性,以及对单管放大电路的频率响应进行实验研究。
实验仪器与设备:1. 电源,直流稳压电源。
2. 示波器,双踪示波器。
3. 信号源,正弦波信号源。
4. 电阻,多个不同阻值的电阻。
5. 电容,多个不同容值的电容。
6. 二极管。
7. 三极管。
8. 万用表。
实验原理:单管放大电路是由一个三极管(或者场效应管)和少数几个被动器件(电阻、电容)组成的放大电路。
在单管放大电路中,三极管的基极电流小的特点决定了单管放大电路的输入电阻较高,而集电极电流大的特点决定了单管放大电路的输出电阻较低。
单管放大电路能够将输入信号放大到较大的幅度,同时保持信号波形的不失真。
实验步骤:1. 搭建单管放大电路电路图,连接好各个元器件。
2. 调节电源电压,使其符合三极管的工作电压范围。
3. 使用示波器观察输入信号和输出信号,并记录波形。
4. 改变输入信号的频率,观察输出信号的变化,并记录波形。
5. 测量输入信号和输出信号的幅度,并计算放大倍数。
6. 测量单管放大电路的输入电阻和输出电阻。
实验结果与分析:通过实验观察,我们发现单管放大电路能够将输入信号放大到较大的幅度,且输出信号的波形基本与输入信号一致。
随着输入信号频率的增加,输出信号的幅度有所下降,说明单管放大电路的频率响应存在一定的限制。
通过测量,我们得到了单管放大电路的输入电阻和输出电阻的数值,验证了单管放大电路的输入电阻较高,输出电阻较低的特性。
实验总结:本次实验通过搭建单管放大电路,深入了解了单管放大电路的工作原理和特性,掌握了单管放大电路的频率响应规律,提高了实验操作能力和数据处理能力。
同时,也加深了对电子电路原理的理解,为今后的学习和科研打下了坚实的基础。
通过本次实验,我们对单管放大电路有了更深入的了解,同时也意识到了单管放大电路的局限性,为今后的电子电路设计和应用提供了一定的参考和借鉴。
简易数控直流电压源报告

题目: 串联型直流稳压电源设计专业电子信息工程班级 09电信一班学号 090507128姓名黄志诚指导老师郭海燕摘要直流稳压电源一般由电源变压器,整流滤波电路及稳压电路组成。
变压器把高交流电变为需要的低压交流电。
整流器把交流电变为直流电。
经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。
本次设计主要采用串联型直流稳压电路,通过220V 、50HZ交流电压经电源变压器降压后,通过桥式整流VD1—VD4整流成直流电再经过滤波电容平滑直流电,减少直流电纹波系数。
最后,通过稳压器稳压,将输出电压稳定在5V。
关键词:整流、滤波、电压源、过流保护2目录1 系统设计 (3)1.1设计要求 (3)1.1.1 设计任务................................... 错误!未定义书签。
1.1.2、基本要求 (4)1.1.3、发挥部分 (4)1.1.4 测试要求................................... 错误!未定义书签。
1.1.5 系统框图................................... 错误!未定义书签。
1.2方案论证与比较 (4)1.2.1电压采样模块 (10)1.2.2 稳压模块 (10)1.2.3 过载保护模块 (11)1.2.4 最终方案 (6)2.单元电路分析 (6)2.1D/A转换模块 (6)2.1.1工作原理 (6)2.1.2 参数选择 (7)2.2电压放大模块 (7)2.2.1 工作原理 (7)2.2.2 参数选择 (7)2.3稳定电压源及电压采样模块 (8)2.3.1 工作原理 (8)2.3.2 参数选择 (8)2.4过载保护模块 (9)2.4.1工作原理 (9)2.4.2 参数选择 (9)3.软件设计 (15)3.1实现功能....................................... 错误!未定义书签。
线性可调直流稳压电源的设计
目录:.一、设计目的.二、设计任务和要求.三、电路原理分析与方案设计四、仿真过程及结果五、心得体会.六、参考文献资料.七、实物图一、目的稳压管稳压电路输出电流较小,输出电压不可调,不能满足很多场合下的应用。
串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流;在电路中引用深度电压负反馈使输出电压稳定;并且,通过改变反馈网络参数使输出电压可调。
二、设计任务与要求要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;任务:1、了解带有放大环节串联型稳压电路的电路图;2、识图放大环节串联型稳压电路的电路图;3、仿真电路并选取元件;4、安装调试带有放大环节串联型稳压电路;5、用仪器表对电路调试和测量相关;6、撰写设计报告、调试;三,电路原理分析与方案设计1、方案比较与确定基本思路:先对输入的220V 交流电压进行降压,然后就用单相桥式二极管对电压进行整流。
整流后利用电容的充放电效应,对其进行滤波,使输出电压平滑。
之后再通过稳压电路的功能使输出直流电压基本不受电网波动和负载电阻变化的影响,从而获得足够高的稳定性。
方案1:220V 交流电压经过基本部分降压整流后,将经过稳压部分对其进行稳压,稳压部分如下图,利用稳压管和三极管组成的稳压单元电路,同过D1 电压作为三极管Q1 的基准电压,电路引入电压负反馈,使电网电压波动不会对Q1 的基极电位产生很大的影响,则有U BE U B U E 可知,U BE 变化将导致发射极电流的变化,从而稳定R 两端电压,达到稳压的效果。
方案二:经过整流后,脉动电流通过滤波电路,其中滤波电路我采用RC 型滤波电路,先用电容值较大的电解电容对其进行低频滤波,靠近输出端处使用较低电容值的陶瓷电容进行高频滤波,使滤波后电压能够变得比较平滑和波动小。
集成直流稳压电源实验报告
竭诚为您提供优质文档/双击可除集成直流稳压电源实验报告篇一:模电实验报告直流稳压电源设计北京工商大学课程设计《模拟电子技术》课程实验报告集成直流稳压电源的设计专业:自动113学号:1104010318姓名:孟建瑶集成直流稳压电源的设计一、实验目的1.掌握集成直流稳压电源的实验方法。
2.掌握用变压器、整流二极管、滤波电容和集成稳压器来设计直流稳压电源的方法。
3.掌握直流稳压电源的主要性能指标及参数的测试方法。
4.为下一个综合实验——语音放大电路提供电源。
二、设计要求及技术指标1.设计一个双路直流稳压电源。
2.输出电压uo=±12V,最大输出电流Iomax=1A。
3.输出纹波电压Δuop-p≤5mV,稳压系数su≤5×10-3。
4.选作:加输出限流保护电路。
三、实验原理与分析直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成。
基本框图如下。
各部分作用:ui电源变压器整流电路滤波电路稳压电路~o直流稳压电源的原理框图和波形变换1.电源变压器T的作用是将220V的交流电压变换成整流滤波电路所需要的交流电压ui。
变压器副边与原边的功率比为p2/p1=n,式中n是变压器的效率。
2.整流电路:整流电路将交流电压ui变换成脉动的直流电压。
再经滤波电路滤除较大的波纹成分,输出波纹较小的直流电压u1。
常用的整流滤波电路有全波整流滤波、桥式整流滤波等(:集成直流稳压电源实验报告)。
3.滤波电路:各滤波电路c满足RL-c=(3~5)T/2,式中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。
4.稳压电路:常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。
二者的工作原理有所不同。
稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
它一般适用于负载电流变化较小的场合。
0~12V可调直流稳压电源设计
0~12V可调直流稳压电源电路图适合电子爱好者制作的从0V起调的稳压电源的电路如图所示。
0~12V可调直流稳压电源电路电路工作原理:由电阻R4、R5组成的采样电路将输出电压Vo的一部分送入运算放大器IC1的反相端,它与由稳压管VZ3、电阻R2和电位器RP组成的基准电压(晶体管V1、稳压管VZ1、电阻R0、R1组成的恒流源为稳压管VZ3提供稳定的电流)相比较,将比较结果送至输出端,从而控制晶体管V3的导通电压。
如果电位偏低,使Vo减小,采样电路亦使晶体管V3的c-e结电压减小,从而使Vo升高,反之亦然。
如此起到了稳定输出电压的作用。
晶体管V4和电阻R7组成过电流保护电路。
当输出电流超过额定电流(本电源为1A)时,V4导通,使晶体管V2和V3截止,输出端无电压输出,防止了电源损坏。
当输出电压小于6V,电流较大且输入电压又很高时,晶体管V3极间压差较大,会引起V3调整管功耗过大,为此本电源特别设置了电压自动转换电路,它由运算放大器IC2与电阻R8、稳压管VZ4及继电器K等组成。
稳压管VZ4与电阻R8组成IC2运算放大器的基准电压,当输出电压低于6V时,IC2输出低电平,继电器K不吸合,触点K1-1、K1-2分别接至变压器8V绕组和6V绕组稳压管;当输出电压高于6V时,IC2输出高电平,K1吸合,K1-1、K1-2分别接至变压器16V绕组和12V稳压管上。
由上可知,在输出电压低时,输人电压也低;输出电压高时,输人电压也高,从而减小V3的功耗。
电阻R9和电容C4组成继电器节能电路,可减小C2的功耗。
元器件选择:电路中变压器T选用二次带中心抽头的16V、功率为20OW的变压器。
运算放大器选用LM324单源四运算放大器。
稳压管VZ1选用4V左右的,VZ2选甲8V,VZ3a和VZ3b分别选用6V和12V的,要求稳压值准确,VZ4选用5.5~5.8V的稳压管。
晶体管V1要求β大于150,V3选用大功率NPN晶体管,型号不限,制作中要加足够的散热片。
电子电路综合设计实验报告(数控直流稳压电源设计)
电⼦电路综合设计实验报告(数控直流稳压电源设计)北京邮电⼤学电⼦电路综合设计实验实验报告实验名称:简易数控直流稳压电源的设计学院:电⼦⼯程学院班级:XXX班学号:XXXXXXXX姓名:XXX班内序号:XX2012年3⽉25⽇课题名称:简易数控直流稳压电源的设计摘要:本设计实验要求我们设计出简易数控直流稳压电源,通过⼿动调节实现输出不同电压的功能,通过电压与电流的放⼤实现较强的带负载能⼒,通过滤波电容消除纹波对直流的影响,并运⽤protel 软件进⾏仿真。
该设计实验旨在培养我们的实验兴趣与学习兴趣,提⾼实验技能与探究技能,引导我将所学所想运⽤到实际中去。
关键字:稳压电源,设计,仿真⼀、设计任务要求1.基本要求(1)设计实现⼀个简易数控直流稳压电源,设计指标及给定条件为:1) 输出电压调节范围:5V ~ 9V,步进0.5V 递增,纹波⼩于50mV;2) 输出电流⼤于100mA;3) 由预制输⼊控制输出电压递增;4) 电源为12V。
(2)设计+5V电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图(SCH)。
2.提⾼要求(1) 数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值;(2) ⽤PROTEL软件绘制电路的印刷电路板图(PCB)。
3.探究要求输出电压调节范围更宽,步进更⼩:范围:0 ~ 10 V, 步进:0.1V。
本次探究实验主要着重完成了基本要求部分的设计与探究。
⼆、设计思路、总体结构框图本实验要求设计⼀个可以充当数控直流稳压电源的电路,电路由数字控制部分、D/A 转换部分、可调稳压部分组成。
数字控制部分采⽤+/-按键来调整控制⼀可逆⼆进制计数器来预设电压值(此部分为提⾼部分),⼆进制计数器输出输⼊到D/A 转换器中,经过D/A 转换后实现输出电压的可调。
其框图如图1所⽰。
图1 系统总体结构框图三、分块电路和总体电路的设计1.第⼀部分——数字电路控制部分此部分是电路的数字控制部分,也是电路输⼊端,其电路原理图如图2所⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流稳压电源设计报告
第七组
成员:田川111308123;
晋康康111308114;
武晓芳111308131;
时间:2013.8.11
一、设计要求
设计±6V 直流稳压电源(在同一块PCB板)以及正负输出电压可调稳压电路(输出电压调节范围为±1.2~±20V,输出电流1.5~3A)。
二、系统方案比较与选择
方案一
将220v交流电经整流滤波后送入7806、7906三端稳压器变为±6v的直流电源。
方案二
将220v交流电经整流滤波后送入lm317、lm337,利用电位器阻值调节改变其输出电压,经正负输出相互补偿得到-6v~6v的可变电压的电源。
方案三
将220v交流电经整流滤波后送入lm317、lm337,利用其adj端的电阻阻值设定,输出一电压,经7806、7906后变为稳定的±6v的直流电。
方案选择:
考虑到220v交流电经变压器变换电压后,空载输出电压约为13v~14v,整流滤波后空载可达到18v~20v,高于7806,7906的输入电压,故不选方案一。
由于没有电位器,故不选方案二。
由于要求可输出±6v的电压,故可用lm317、lm337通过调节电阻,先将电压变为在7806、7906输入电压范围内的电压值,所以选择方案三。
三、设计原理
直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成,基本框图如图所示:
u I
整流与稳压基本过程
各部分的作用:
1、电源变压器T 的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui=12v 。
2、整流电路:整流电路将交流电压变换成脉动的直流电压(在直流稳压电源中常采用桥式整流电路,这里我们采用整流桥)。
再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压。
桥式整流过程
桥式过程波形变化示意图
3、滤波电路:经整流后的直流输出电压脉动性很大,不能直接使用,为减少其交流成分,常在整流电路后接滤波电路。
滤波电路的主要任务是将整流后的单向脉动直流电压中的纹波滤除掉,使其输出平滑的直流电压,这里我们采用接入滤波电容来组成滤波电路。
4、稳压电路作用是当外界因素(电网电压、负载、环境温度)发生变化能使输出直流电压不受影响,从而维持稳定的输出,常用集成稳压器,小功率稳压电源中经常使用三端集成稳压器。
常用的三端集成稳压器有固定式三端稳压器与可调式三端稳压器。
常用集成稳压器有LM317系列,LM337系列,78XX系列,79XX系列。
四、器件选择及元件清单
1、电容的选择
滤波电容C1、C2选择尽量大的电容。
C7、C8用于减小LM317、LM337输出波纹,应选用较小电容。
C5,C6,C9,C11电容用于消除7806、7906三端稳压器的自激,故选择较小电容。
2、电阻的选择
根据lm317(lm337)的输入电压大约为18v~20v,由Vo=V ref *(1+R1(R2)/R3(R4)),可计算得出芯片输出电压,根据所需输出电压约为15v-17v,考虑到R3(R4)范围为120Ω~240Ω之间,经计算电阻可得R3(R4)≈120Ω,R1(R2)≈800Ω。
3、元件清单
五、实验结果
六、误差分析:
1、元件本身存在误差。
如电阻存在5%~10%的误差,78XX、79XX 输出存在-0.2~0.2的误差,等等。
2、焊接点及导线存在微小电阻。
3、万用表测量精度以及读数存在一定误差。
七、制作过程分析:
1、布线过程
本次设计采用的是万用电路板,需要焊接搭线的地方较多,为
了避免由于线路过乱,我们根据原理图及线路简约原则,先在
电路板上布置好各个器件的大体位置,地线以及其他线的位
置,尽量不要交叉。
尽量不用跳线去连接板子各个管脚,以
便制作完成后的测试与调整。
2、考虑到设计的简约性及输入输出的压差不能太大等方面的问
题,在整流滤波输出级采用串联的方式,既节省了元件,又避
免了压差过大对电路造成的损坏。
3、焊接过程
团队合作,分工明显。
首先把设计原理图分析透彻,根据原理图将实验器件合理放置在实验电路板上,按照器件由小到大,由低到高的顺序一次焊接。
由于器件较多,焊接点比较紧密,焊接过程中,
必须时刻集中注意力,注意焊接方法,对焊点形状、大小的控制。
布线应注意整体布局,导线的走向要尽量一致,为后序检查电路提供方便。
4、测试过程
在测试前应多人检查电路,看看焊接的板子是否有短路情况。
测试的时候注意电源的接法,防止出现短路的情况。
先用万用表在各个节点进行检测,检查是否有虚焊等问题。
如果在测试过程中出现芯片发热或者有烧焦的闻道应立即拔下变压器的电源,防止发生爆炸的危险情况。
测试仪器选用万用表,测试时测量各个节点电压是否与计算值相仿。
八、设计不足及改进的方向
1、无法实现输出电压可调,若条件允许,可将R3、R4换为电位器,然后自C9、C11前引出可调输出端口,实现输出电压可调及恒定±6V同时输出。
2、位于LM317、LM337 adj端口的电容C7、C8用于减小三端稳压器的R
3、R4的波纹电压,由于在电路中接了电容,此时一旦输入端或输出端发生短路,电容中存储的电荷会通过稳压器内部的调整管和基准放大管而损坏稳压器。
为了防止在这种情况下电容的放电电流通过稳压器,在R1、R2两端并接一只二极管。
3、W317集成稳压器在没有容性负载的情况下可以稳定的工作。
但当输出端有500~5000pF的容性负载时,就容易发生自激。
为了抑制自激,在输出端接一只电容。
该电容还可以改善电源的瞬态响应。
但是接上该电容以后,集成稳压器的输入的一旦发生短路,电容将对稳压器的输出端放电,其放电电流可能损坏稳压器,故可在稳压器的输入和输出端之间,接一只保护二极管。
附录一:7806、7906芯片简介
功能如表(1):
附录二:LM317、LM337主要性能及管脚介绍
主要性能:
输出电压从﹣1.2v至﹣3.7v可调;
最大输出电流1.5A(-55°C至+150°C);
电压调整率(0.01%)/V;
负载调整率0.3%;
热调整率为(0.002%)/W; 温度系数50*10-6/℃;
77dB波纹抑制;
输出短路保护;
限流温度无关;
内部热过载保护;
100%电老化;
封装及功率容量
管脚介绍如下图
功能如表(2):
附录三:各部分原理图
LM317(LM337)系列电路图
7806(7906)系列电路图
实物图片
实验原理图
放大电路设计报告
第七组
成员:田川111308123;
晋康康111308114;
武晓芳111308131;
时间:2013.8.11
一、设计要求
利用SM4558集成运算放大器设计10倍放大功能的放大电路。
二、电路设计
(1)设计原理
为保证输入输出电压相位相同,本次设计采
用同相比例放大电路。
同相输入放大电路原理图如图所示,信号电
压通过电阻R S加到运放的同相输入端,输出电压
vo通过电阻R1和R f反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有V N= V P= V S,i1= i f
于是求得根据虚短、虚断的概念有V N= V P= V S,i1= i f;
于是求得
所以该电路实现同相比例运
算。
(2)参数计算:
由于V O=(1+R f/R1)*V S
故可计算得R f/R1=9。
考虑到若电阻阻值大,系统会较稳定,所以选择较大阻值的电阻,这里选用Rf=900k,R1=100k,Rs=100k;
(3)元件清单
(4)原理图
二、仿真、焊接与测试
1、通过软件进行仿真测试得到如下结果
2、元件的焊接与实物调试
1、将电路元件按图纸焊接到万能电路板上,然后进行接线;检查焊接电路,焊接点。
2、将所用实验仪器正负电源,信号发生器、示波器分别与实物相连接,检查接线是否有误。
3、打开电源观察显示波形,将输入波形与输出波形作比较,然后再与仿真波形比较。
4、对比较结果进行分析。
三、结果及分析
1、所得实验波形
2、误差分析
理论与实际存在误差,主要误差来自电阻阻值的误差,以及运算放大器本身不可能为理想放大器件。
附录一:SM4558运算放大器主要性能及其管脚介绍
1、主要性能
SM4558内部包括两个独立的、高增益、内部频率补偿的双运算放大器。
适用于双电源工作模式,也适用于电源电压范围很宽的单电源使用。
可以用作有源滤波器、补偿放大器、音频前置放大器、均衡放大器以及在电子仪器、仪表中用做各种线性放大器。
2、特点
无需外接频率补偿回路,内置频率补偿;
直流电压增益高(约100dB);
低输入偏置电流;
低输入失调电压和失调电流;
共模输入电压范围宽,等于电源电压范围;
单位增益带宽宽;
通道分离度好,容易散热;
电源供给有±18v和±20v两种选择。
内部管脚:。