特殊平行四边形复习课
平行四边形复习课 优课教学课件

A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等
形
正方形
一 组 邻 边 相 等
菱形
平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
新北师大版数学九年级上特殊平行四边形复习()省公开课获奖课件说课比赛一等奖课件

互平分”这一性质能够得出直角三角
形旳一种常用旳性质:直角三角形斜
边上旳中线等于斜边长旳二分
__________.
之一
┃知识归纳┃
5.矩形旳鉴定 (1)有一种角是直角旳__平__行__四__边__形___ 是矩形; (2)有三个角是直角旳___四__边__形____是 矩形; (3)对角线相等旳___平__行__四__边__形___是矩 形.
2.菱形旳鉴定措施 (1)有一组邻边相等旳___平__行__四__边__形___ 是菱形(定义); (2)对角线相互垂直旳__平__行__四__边__形____ 是菱形; (3)四边相等旳____四__边__形_____是菱形.
┃知识归纳┃
辨析:四边形、平行四边形、菱形关系如图:
┃知识归纳┃
3.菱形旳面积 (1)因为菱形是平行四边形,所以菱形 旳面积=底×高; (2)因为菱形旳对角线相互垂直平分, 所以其对角线将菱形提成4个全等旳三 角形,故菱形旳面积等于两对角线乘 积旳二分之一.
┃知识归纳┃
6.正方形旳性质 (1)正方形旳四个角都是___直__角___,四条 边___相__等____; (4)正方形旳对角线 ___相__等___且相互垂 直平分; (5)正方形既是轴对称图形,又是中心 对称图形,对称轴有_____四____条,对 称中心是对角线旳交点.
┃知识归纳┃
7.正方形旳鉴定 (1)有一组邻边相等旳_相__等___是正方形; (2)对角线___垂__直_____旳矩形是正方形; (3)有一种角是直角旳__菱__形__是正方形; (4)对角线___相__等_____旳菱形是正方形. [注意] 矩形、菱形、正方形都是平行四边 形,且是特殊旳平行四边形.矩形是有一 种内角为直角旳平行四边形;菱形是有一 组邻边相等旳平行四边形;正方形既是矩 形,又是菱形.
《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题. 【知识网络】【要点梳理】 要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】 类型一、矩形1、(常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明: (1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论. 【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,22AC+=.6810∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC FC DF +=,解得x =85,BF =DE =3.4,则DEF 1=DE AB 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F . (1)求证:△AEF≌△DEB; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线, ∴AE=DE,BD=CD , 在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=12(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C;【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=12BC,GN=12AD,∴EG=12(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.类型三、正方形5、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.【巩固练习】一.选择题1.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°3.(武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.32B232.75D24. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是()A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.207.(桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是_______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于_______.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.(昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.三.解答题17.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.18.(无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.(崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】一.选择题1.【答案】C;【解析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.2.【答案】B;【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.3.【答案】D;4.【答案】D;5.【答案】A;6.【答案】B;【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.7.【答案】B;【解析】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF∥CG,EG∥CA,求出∠BEG =∠B,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可. 10.【答案】24;11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+ 12.【答案】4;【解析】根据菱形的性质得出OA =OC ,根据三角形的中位线性质得出OE =12AB ,代入求出即可.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.【答案】13; 【解析】设BD =x ,1412,62x x ⨯==,所以边长=222313+=. 15.【答案】832cm ;43cm ;【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,BD =2AE = 43cm .16.【答案】6.【解析】∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形, ∵两张纸条的宽度都是3,∴S 四边形ABCD =AB×3=BC×3, ∴AB=BC,∴平行四边形ABCD 是菱形,即四边形ABCD 是菱形. 如图,过A 作AE⊥BC,垂足为E , ∵∠ABC=60°,∴∠BAE=90°﹣60°=30°, ∴AB=2BE,在△ABE 中,AB 2=BE 2+AE 2, 即AB 2=AB 2+32, 解得AB=2, ∴S 四边形ABCD =BC•AE=2×3=6.故答案是:6.三.解答题17.【解析】证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C, ∵在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS ), ∴BF=BE . 18.【解析】 证明:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD⊥BC,且BD=CD , ∵AE∥BC,CE∥AD,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形;(2)∵四边形ADCE 是矩形, ∴OA=OC,∴OD 是△ABC 的中位线,∴OD∥AB 且OD=12AB. 19.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB=CB ,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°, 在△ABE 和△CBE 中,,∴△ABE ≌△CBE (SAS ), ∴AE=CE .(2)解:点E 在BD 的中点时,四边形AFBE 是正方形;理由如下:由折叠的性质得:∠F=∠AEB ,AF=AE ,BF=BE , ∵∠BAD=90°,E 是BD 的中点, ∴AE=BD=BE=DE , ∵AE=CE ,∴AE=BE=CE=DE=AF=BF ,∴四边形AFBE 是菱形,E 是正方形ABCD 对角线的交点, ∴AE ⊥BD ,∴∠AEB=90°,∴四边形AFBE是正方形.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA =∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF. 即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.A DB EFOC。
北师大版数学九年级上册第一章《特殊平行四边形》复习课课件

一组邻边相等 对角线垂直 一个角是直角 三个角是直角
对角线相等 一个角是直角 对角线相等
四条边相等 一组邻边相等
一个角是直角且一组邻边相等
归纳总结
分类 四边形
2. 矩形、菱形、正方形的性质
对边
角
对角线
对称性
矩形 菱形
平行且相等
四个角 都是直角
平行且 对角相等 四边相等 邻角互补
平行且
四个角
四边相等 都是直角
平行且 对角相等 四边相等 邻角互补
平行且
四个角
四边相等 都是直角
互相平分 且相等
中心对称图形 轴对称图形
互相垂直平分
且每一条对角线 平分一组对角
中心对称图形 轴对称图形
互相垂直平分且相 等,每一条对角线
平分一组对角
中心对称图形 轴对称图形
基础练习
1. 已知:△ABC的两条高分别为BE,CF,点M为BC的中点. 求证:ME=MF.
O C
归纳总结
3. 其他性质: 四边形的中点四边形与原四边形的对角线有关
(1)当对角线不相等不垂直时,中点四边形是平行四边形 (2)当对角线相等时,中点四边形是菱形 (3)当对角线垂直时,中点四边形是矩形 (4)当对角线垂直且相等时,中点四边形是正方形
归纳总结
3. 其他性质:
等腰三角形、等边三角形的性质 含30°角的直角三角形的三边关系、等腰直角三角形的三边关系
A
E B
D F
C
典例精析
例1 如图,AD是△ABC的角平分线,线段AD的垂直平分线分别 交AB和AC于点E,F,连接DE,DF. (1)试判断四边形AEDF的形状,并证明你的结论; (2)若AE=5,AD=8,求EF的长; (3)△ABC满足什么条件时,四边形AEDF是正方形?请说明理由.
平行四边形的复习课件

平行四边形的周长等于两
倍的(底加高),即 $P =
2(text{base}
+
text{height})$。
周长计算方法
通过测量底和高的长度, 将数值代入公式计算周长 。
周长与长宽关系
在平行四边形中,周长与 长和宽有关,长和宽越长 ,周长越大。
面积与周长的关系
面积与周长的关系
面积与周长的应用
在平行四边形中,面积和周长的变化 趋势不同,面积随着长和宽的增大而 增大,而周长随着长和宽的增大而减 小。
总结词
平行四边形可以分为三种类型:矩形、菱形和正方形。
详细描述
矩形是特殊的平行四边形,它的四个角都是直角;菱形也是特殊的平行四边形 ,它的四条边长度相等;正方形是矩形和菱形的特殊情况,它的四个角都是直 角,并且四条边长度相等。
02
平行四边形的判定
定ห้องสมุดไป่ตู้法
总结词
根据平行四边形的定义进行判定。
详细描述
题目1
已知一个四边形的一组对边平 行且相等,另一组对角相等, 求证该四边形是平行四边形。
题目2
在平行四边形中,已知两条对 角线互相平分,求证该平行四
边形是矩形。
题目3
在平行四边形中,已知一组邻 边垂直且相等,求证该平行四
边形是正方形。
综合题
总结词
结合多个知识点,考察学生的 综合运用能力。
题目1
在平行四边形中,已知一组对 角相等,一条对角线平分另一 条对角线,求证该平行四边形 是菱形。
性质
总结词
平行四边形具有一些独特的性质,包括对角线互相平分、对角相等、对边相等和相对角 互补。
详细描述
平行四边形的性质包括对角线互相平分,即对角线将平行四边形分成两个相等的三角形 ;对角相等,即相对的两个角大小相等;对边相等,即相对的两边长度相等;相对角互
复习课《特殊平行四边形》教案
【设计意图】:
三道例题的选取有代表性,都是充分综合应用特殊平行四边形的性质和判定,其中例1让学生灵活应用正方形的判定定理解题;例2则矩形问题,引导学生在解决这类问题时,可以灵活的改变思路,从题目的结论入手,同培养学生的发散思维;例3是考试时经常遇到的折叠问题,通过几种折叠方法,使学生自己总结出解决此类问题的方法。
4、直角三角形的推论及三角形的中位线定理
(1)、直角三角形中斜边上的中线等于斜边的一半。
(2)、直角三角形中,300所对的直角边等于斜边的一半。
【设计意图】:
复习几种特殊平行四边形的性质定理和判定定理,为下面几何题的证明做好准备。采用小组合作的方式,共同回顾所学知识,力求学生能较快的找出解题的方法。
3、要使一个矩形成为正方形需添加的一个条件是_______________________
4、要使一个菱形成为正方形需增加的一个条件是____________________。
(三)、填空题
1、在平行四边形、直角三角形、菱形、梯形中,既是中心对称图形又是轴对称图形的是_______________。
【思维点击】:判断出三角形EFD是等腰直角三角形是解答本题的关键。
3、如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
6、若平行四边形一边长为8cm,一条对角线长为6cm,则另一条对角线长X的取值范围是_____________。
特殊平行四边形-中考数学第一轮总复习课件(全国通用)
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。
特殊的平行四边形复习课说课稿
平行四边形复习课说课稿平秋民族中学:唐宗康各位老师:大家好!今天我说课的内容是人教版数学八年级下册第十八章第二节特殊平行四边形的复习。
下面我从四个方面来谈谈我对本节课的理解和做法。
一、教材分析:1、地位与作用:本章是学生在掌握平行四边的性质和判定等有关知识.且具备初步的观察.操作等活动经验的基础上出现的。
通过本节的学习使学生清楚地理解各种特殊平行四边形的关系并掌握它们的性质与判定.进一步培养学生的合情推理能力.发展学生的逻辑思维能力与推理论证能力。
本节新课教学时共分5个教学课时.矩形性质与判定、菱形性质与判定、正方形性质、判定。
本课时是对前面5个教学课时知识内容的一次的系统复习。
本节是本章知识的重点之一.知识联系紧密.所以教学时作好认真复习.非常重要。
2、教学目标:根据中学生的心理特点与当前他们的认知基础及教学内容的特点.依据《数学课程标准》.我确定如下教学目标:知识与技能:(1)、掌握本节的知识体系.进一步理解各种特殊的平行四边形的关系并掌握它们的性质与判定。
(2)、通过设置问题探究的练习进一步培养学生的合情推理意识.增强学生的逻辑推理能力.使学生掌握说理的基本方法过程与方法:从问题出发有效组织学生独立思考.合作学习.通过综合的证明过程.体会证明的有关证明的思维方法.发展逻辑推理能力。
情感态度价值感:在活动中激发学生对数学的“好奇心”与“求知欲”.让学生在愉快的学习中不断获得成功的体验。
在数学思考活动中培养学生乐于探究、合作学习的习惯。
3、教学重点与难点:因为各种平行四边形概念交错.容易混淆.学生在应用时常会出现“张冠李戴”的现象.在应用它们的性质与判定的时候.也会常出现用错、多用、少用条件的错误。
因此我确定教学重点:各种特殊的平行四边形的性质和判定。
教学难点:各种特殊的平行四边形之间的联系和区别。
二、教法学法在许多人的印象中.复习课就是习题课。
本节课的教学设计为不落俗套.同时为让学生对学过的知识产生兴趣.能让学生在玩中学.乐中学.教学时我采用操作实践、判断归纳、探究联系为主线的探究式教学模式.充分体现老师的主导作用和学生的主体地位。
八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)
的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式
已知:正方形ABCD的对角线AC、BD相交于点O 已知:正方形ABCD的对角线AC、BD相交于点O,E是AC上 ABCD的对角线AC 相交于点 AC上 一点,过点A AG⊥EB,垂足为G AG交BD于 一点,过点A作AG⊥EB,垂足为G,AG交BD于F。 求证: 求证:OE=OF
针对上述命题,若点E AC的延长线上 AG⊥EB交EB的延 的延长线上, 针对上述命题,若点E在AC的延长线上,AG⊥EB交EB的延 长线于点G AG的延长线交BO的延长线于点 的延长线交BO的延长线于点F 长线于点G,AG的延长线交BO的延长线于点F,其它条件不 则结论“OE=OF还成立吗 如果成立,请给予证明。 还成立吗? 变,则结论“OE=OF还成立吗?如果成立,请给予证明。 如果不成立,请说明理由。 如果不成立,请说明理由。
如图,矩形ABCD的对角线AC BD交于点 ABCD的对角线AC、 交于点O 过点D 2.如图,矩形ABCD的对角线AC、BD交于点O,过点D作 DP∥OC,且 DP=OC,连结CP,试判断四边形CODP的形 DP∥OC, DP=OC,连结CP 试判断四边形CODP的形 CODP 状. A 四边形CODP CODP是菱形 解:四边形CODP是菱形 O ∵ DP∥OC, DP=OC ∴ 四边形CODP是平行四边形 P 四边形ABCD ABCD是矩形 ∵四边形ABCD是矩形 ∴CO=DO 四边形CODP CODP是菱形 ∴四边形CODP是菱形 D C B
3.
如图所示,平行四边形ABCD的对角线相 如图所示 , 平行四边形 的对角线相 交于O点 点作OE⊥ 交于 点,且AB≠BC,过O点作 ⊥AC,交 , 点作 , BC于E,如果△ABE的周长为 ,则平行四边 的周长为b, 于 ,如果△ 的周长为 的周长是( 形ABCD的周长是( C) 的周长是 A. b
A O
相信自己, 相信自己,你 是最棒的!! 是最棒的!!
B. 1.5b
C. 2b
D
D. 3b
B
E
C
(三)填空题
相信自 己,你 是最棒 的
1、菱形的周长为 菱形的周长为32cm,若有一个内角为 ,若有一个内角为120°, °
则菱形的一条较短的对角线为_____cm. 则菱形的一条较短的对角线为 8
A D
1 F 2
B
O
3
G
E C
ABCD是正方形 ∵四边形ABCD是正方形 四边形ABCD ∴∠BOE= AOF、BO= ∴∠BOE=∠AOF、BO=AO 又∵AG ⊥BE ∴∠1+∠3=90° ∴∠1+∠3=90° 又∵AC ⊥BD ∴∠2+∠3=90° ∴∠2+∠3=90° ∴∠1= ∴∠1=∠2 ∴ ΔAFO≌ΔBEO ∴OE=OF
平行 四边形
矩形
菱形
正方形
(一)判断题
1、一组对边平行,另一组对边相等的的四边形 一组对边平行, 是平行四边形。( 是平行四边形。( x ) 2、两条对角线相等的四边形是矩形 ( x ) 一组邻边相等的的矩形是正方形。( 3、一组邻边相等的的矩形是正方形。(√ ) 对角线互相垂直的四边形是菱形。( 4、对角线互相垂直的四边形是菱形。(x ) 两条对角线互相平分的四边形是平行四边形。 5、两条对角线互相平分的四边形是平行四边形。 ( ) √
在矩形ABCD ABCD中 AB=16, 1、在矩形ABCD中,AB=16,BC=8.
CБайду номын сангаас
A F E
B
变式训练
1、如图,在四边形 如图,在四边形ABCD中,E、F、G、H分别是 中 、 、 、 分别是
边AB、BC、CD、DA的中点,请判断四边形EFGH 、 、 、 的中点,请判断四边形 的中点 A 的形状,并说明理由。 的形状,并说明理由。 H
人教版八年级(下册) 人教版八年级(下册)
一起进入
平行四边形复习
四边形知识结构(定义) 四边形知识结构(定义)图
矩形
两组对边平行
四边形
平行四边形
一角为直角且一组邻边相等
正方形
菱形
关 系
图
菱形
矩形
峰 高 攀 勇
二、几种平行四边形的性质: 几种平行四边形的性质:
项目 四边形 边 角 对角线 对称性
A 如图,矩形ABCD的对角线AC、BD交 如图,矩形ABCD的对角线AC、BD交 ABCD的对角线AC 于点O 过点D DP∥OC, DP=OC, 于点O,过点D作DP∥OC,且 DP=OC, 连结CP 试判断四边形CODP的形状. CODP的形状 连结CP,试判断四边形CODP的形状. D O
D
(1)添加条件 AC=BD,则 )添加条件_______, 四边形EFGH为菱形; 为菱形; 四边形 为菱形 ⊥ (2)添加条件 AC⊥BD,则 )添加条件_______, 四边形EFGH为矩形; 为矩形; 四边形 为矩形
B
E
O
G C
F
⊥ (3)添加条件 AC⊥BD且AC=BD,则四边 )添加条件_______________, 为正方形。 形EFGH为正方形。 为正方形
在解题时,首先,应有战胜困难的决心和信心; 2、在解题时,首先,应有战胜困难的决心和信心; 其次,抓住图形中的位置关系与条件中的数量关系 数量关系; 其次,抓住图形中的位置关系与条件中的数量关系; 再次,注意每一个判断都应有充分的理由和依据. 再次,注意每一个判断都应有充分的理由和依据. 断都应有充分的理由和依据
(二)选择题
⒈矩形、菱形、正方形都具有的性质是(B ) 矩形、菱形、正方形都具有的性质是( A、对角线相等 C、对角线互相垂直 B、对角线互相平分 D、四条边都相等
⒉已知矩形的一条对角线与一边的夹角是40°,则 已知矩形的一条对角线与一边的夹角是40 两条对角线所成的锐角的度数( D ) 两条对角线所成的锐角的度数( A、50° B、60° C、70° D、80° 50° 60° 70° 80°
C
D
图一
图二
已知:正方形ABCD的对角线AC BD相交于点 ABCD的对角线AC、 3、已知:正方形ABCD的对角线AC、BD相交于点 O, AC上一点 过点A AG⊥EB,垂足为G AG交 上一点, E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD 于 F。 求证: 求证:OE=OF 证明: 证明:
A D
A
D
1
1
O
3 G C E
G
O C B E
F
2
F
B
我 是 一 名 设 计 师
4、 学校买了四棵树,准备栽在花 学校买了四棵树,
园里,已经栽了三棵(如图),现 园里,已经栽了三棵(如图),现 ), 在学校希望这四棵树能组成一个平 行四边形, 行四边形,你觉得第四棵树应该栽 在哪里? 在哪里?
衔接中考 如图,Rt△OAB的两条直角边在坐标轴上, 如图,Rt△OAB的两条直角边在坐标轴上,已知 的两条直角边在坐标轴上 ),点 ),则以点O,A,B为其 则以点O,A,B 点A(0,2),点B(3,0),则以点O,A,B为其 中三个顶点的平行四边形的第四个顶点C 中三个顶点的平行四边形的第四个顶点C的坐标 y 为_________________。
3
(-3,2)
2
A O
(3,2) B
1 2 3 4 x
-4 1
-3
-2
-1 -1 -2
(3,(3,-2)
-3
课堂小结 通过本 节课的学习, 节课的学习,你 有哪些收获 有哪些收获 ?
复习 小 结
1、掌握几种特殊平行四边形的性质和判定之间的联 、
系及区别,并会灵活运用解决有关的证明和计算问题。 系及区别,并会灵活运用解决有关的证明和计算问题。
对边平行且 相等
平行四边形
对角相等 对角线互相平分 邻角互补 四个角 对角线互相平分且相等 中心对称图形 中心对称图形
对边平行且
矩形
相等 对边平行 且四边相等
菱形
对边平行 且四边相等
正方形
都是直角 轴对称图形 对角线互相垂直平分, 对角相等 对角线互相垂直平分,且每 中心对称图形 一条对角线平分一组对角 邻角互补 轴对称图形 对角线互相垂直平分且相等, 四个角 对角线互相垂直平分且相等, 中心对称图形 每一条对角线平分一组对角 都是直角 轴对称图形
B A D
C
DAB, 2.在平行四边形ABCD中,若AE平分∠DAB, DAB AB=5cm,AD=9cm,则EC=_____ AB=5cm,AD=9cm,则EC= 4cm
B
5cm
E
3
C
A
1 9cm 2
9cm
D
链接中考
ABCD的周长为 的周长为32cm, ∠ABC的角 □ABCD的周长为32cm, ∠ABC的角 平分线交边AD所在直线于点E 平分线交边AD所在直线于点E,且 AD所在直线于点 6cm或12cm 或 AE:ED=3: ___________. AE:ED=3:2,则AB=___________.
作业布置: 作业布置: P121 P122 第10题 题 15题 第15题
谢谢大家 欢迎指导
A 3x
3X
E 2x D
A x
2x D
E
3x
B C B C
思考
折叠问题
AC折叠 折叠, 落在点E 将矩形 沿AC折叠,点D落在点E处,且 CE交AB于点 于点F AF的长 的长. CE交AB于点F,求AF的长.
D 点拨:对于折叠
问题, 问题,可以从折叠 前后的两个图形是 全等图形入手进行 分析. 分析.
三、几种特殊平行四边形的常用判定方法: 几种特殊平行四边形的常用判定方法:
条件 四边形 1、定义:两组对边分别平行的四边形 、定义: 2、两组对边分别相等的四边形 、 3、一组对边平行且相等的四边形 、 4、对角线互相平分的四边形 、 5、两组对角分别相等的四边形平行四边形 、 1、定义:有一角是直角的平行四边形 、定义: 2、三个角是直角的四边形 、 3、对角线相等的平行四边形 、 1、定义:一组邻边相等的平行四边形 、定义: 2、四条边都相等的四边形 、 3、对角线互相垂直的平行四边形 、 1、定义:一组邻边相等且有一个角是直角的平行四边形 、定义: 2、矩形 菱形 、矩形+菱形 3 两条对角线互相垂直平分且相等的四边形是正方形 两条对角线互相垂直平分且相等的四边形是正方形.