平行四边形复习课ppt课件
合集下载
平行四边形复习课件

证明线段相等的方法有哪些?
E A
B
D
C F
综合运用
一.如图,△ABC中,点O是边AC上一个动点,过 O作直线MN∥BC,设MN交∠BCA的平分线 于点E,交∠BCA的外角平分线于点F。
1. 探究:线段OE与OF的数量关系并加以证明; 2. 当点O在边AC上运动时, 四边形AECF是
矩形? 二.证明你的结论。
∴ 四边形BFDE是平行四边形
产品品鉴会活 动方案
汇报人姓名
A
D
O
边 矩形对边平行且相等;B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且互相平分;
对称性 既是中心对称图形又是轴对称图形
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
矩形的判定方法 A
D
O
B
C
1.有一个角是直角的平行四边形是矩形。
A
B
•9
4.△ABC中,D、E分别是AB、AC的中点, BC=10cm,则DE=_5__c_m__.
5. △ABC中,D、E分别是AB、AC的中点,
∠A=50°, ∠B=70°,则∠AED=_____.60°
A
A
D
E
B (4)
C
D
E
B
(5)
C
6. 如图,在周长为20cm的 ABCD中,
AB≠AD,AC,BD相交于点O,OE⊥BD
6.已知正方形ABCD中,对角线AC=10cm, P为AB上任意一点,PE⊥AC,PF⊥BD, E、F为垂足,则PE+PF=5cm 。
综合运用
已知:如图,E、F为 ABCD的对角线AC所在直线 上的两点,AE=CF,求证: BE=DF.
E A
B
D
C F
综合运用
一.如图,△ABC中,点O是边AC上一个动点,过 O作直线MN∥BC,设MN交∠BCA的平分线 于点E,交∠BCA的外角平分线于点F。
1. 探究:线段OE与OF的数量关系并加以证明; 2. 当点O在边AC上运动时, 四边形AECF是
矩形? 二.证明你的结论。
∴ 四边形BFDE是平行四边形
产品品鉴会活 动方案
汇报人姓名
A
D
O
边 矩形对边平行且相等;B
C
角 矩形的四个角都是直角;
对角线 矩形的对角线相等且互相平分;
对称性 既是中心对称图形又是轴对称图形
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
矩形的判定方法 A
D
O
B
C
1.有一个角是直角的平行四边形是矩形。
A
B
•9
4.△ABC中,D、E分别是AB、AC的中点, BC=10cm,则DE=_5__c_m__.
5. △ABC中,D、E分别是AB、AC的中点,
∠A=50°, ∠B=70°,则∠AED=_____.60°
A
A
D
E
B (4)
C
D
E
B
(5)
C
6. 如图,在周长为20cm的 ABCD中,
AB≠AD,AC,BD相交于点O,OE⊥BD
6.已知正方形ABCD中,对角线AC=10cm, P为AB上任意一点,PE⊥AC,PF⊥BD, E、F为垂足,则PE+PF=5cm 。
综合运用
已知:如图,E、F为 ABCD的对角线AC所在直线 上的两点,AE=CF,求证: BE=DF.
北师大版八年级下册数学《平行四边形的性质》平行四边形研讨说课复习课件

又∵ AB=CD,
∴ AB-AE=CD-CF. ∴ BE=DF.
B C
通过这节课的学习,你有哪些收获?还有
什么疑惑?
定义:两组对边分别平行的四边形叫做
平 行 四 边 形
性质
平行四边形. 对边相等
边 对边平行 对角相等
角
邻角互补
中心对称图形
数学思想:“化归”
谢 谢 观 看!
3 平行四边形的性质
第2课时
平行四边形的一条对角线把平行四边形分成两 个全等的三角形;
四边形问题
转化
三角形问题
A B
D C
小试牛刀: (1)在平行四边形ABCD 中,已知∠A= 130°, 则∠B=__5_0_°_ ,∠C=__1_3_0_°, ∠D= __5_0_°_; (2)平行四边形ABCD 中,∠A比∠B 大20°, 则∠C=_1_0_0_°_; (3)在平行四边形ABCD 中,AD= 30, CD= 25,则AB=_2_5___, BC=__3_0__ .
2.平行四边形ABCD的两条对角线相交于O,OA, OB,AB的长度分别为3cm、4cm、5cm, 求其它各边以及两条对角线的长度。
解:∵四边形ABCD是平行四边形 ∴AB=CD,AD=BC OA=OC,OB=OD
又∵OA=3cm, OB=4cm, AB=5cm ∴AC=6cm BD=8cm CD=5cm ∵△AOB中,32+42=52,即AO2+BO2=AB2 ∴∠AOB =90° ∴AC⊥BD ∴Rt△AOD中,OA2+OD2=AD2 ∴AD=5cm,BC=5cm,
2.记作: ABCD . 读作:平行四边形ABCD. 3.平行四边形不相邻的两个顶点连成的线段叫它的 对角线.如图线段BD. 4.平行四边形中,相对的边称为对边,
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
平行四边形的性质复习课件ppt

分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-

第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用
《平行四边形》期末复习 —初中数学课件PPT

∴△ODE≌△FCE(AAS). (2)∵△ODE≌△FCE,∴OD=FC. ∵CF∥BD,∴四边形ODFC是平行四边形. 在矩形ABCD中,OC=OD,∴ ODFC是菱形.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
第五章_平行四边形复习课_课件2--124

BC= 9
㎝;AD= 9
㎝。
2)若∠A=70°,则∠B= 110 ° 。 ∠C= 70 ° ; ∠D= 110 ° 。
3)若∠A+∠C=80°, 则∠A= 40 ° ; ∠D= 140 ° 。
7、已知, ABCD的周长是28,对角线AC,BD 相交于点O,且△OAB的周长比△OBC的周长大4, 则AB=
三.巩固练习: 1、某人到瓷砖商店去购买一种多边形 形状的瓷砖,用来铺设无缝地板.他 购买的瓷砖形状不可以是( C). (A)正三角形 (B)正四边形 (C)正八边形 (D)正六边形
2.在平行四边形ABCD中,AC=10,BD=8, 则AB的取值范围是( B ) A、2 <AB<18 C、AB>2 B、1 <AB< 9 D、AB< 9
3.平行四边形一边长为 10 ,则它的两条 对角线可以是( C ) A、6 ,8 B、8, 12
C、8, 14
D、6, 14
4、如图,已知矩形ABCD,R,P分别是DC, BC上的点,E,F分别是AP,RP的中点.当点 P在BC上从点B向点C移动而点R不动时,那么下 列结论成立的是( ). C (A)线段EF的长逐渐增大 (B)线段EF的长逐渐减少 (C)线段EF的长不变 (D)线段EF的长不能确定
例 2.已知:如图, 平行四边形的对角线AC,BD交于 点O.过点O作直线EF,分别交AD, BC于点E, F. 求证:OE=OF. D
C
E
O F
A 若已知 AD=6cm,AB=5cm,OE=2cm,则四 边形ABEF的周长是_____cm.
B
典 题 3:
例3. 已知:如图,在平行四边形ABCD中,过AC的中点O 的直线分别交CB, AD的延长线于点E, F. 求证: BE=DF. F D O A E C
八年级下册第五章平行四边形复习课件1

O是对角线AC和BD
(1)若△ABC的周长是18cm,求OC的长
4cm
(2)若△OAB的周长比△OBC的周长短4cm,求AB的长
3cm
A O B C D
9、如图在
ABCD中, E、F是对角线AC上的两点,且
AE=CF, 求证:四边形BEDF是平行四边形
A D E
O
F
B
C
变式:已知如图四边形ABCD和四边形BFDE都是 平行四边形, 求证:AE=CF
A
B
B
E
C
C
)
B
A O
D
C.1<AD<9
D.AD>0
C
12、判断题: (1)邻角互补的四边形是平行四边形. (2)一组对边平行,另一组对边相等的四边形是 平行四边形.
(3)一组对边平行, 一组对角相等的四边形是
平行四边形.
(4)对角线相等的四边形是平行四边形.
13、某人到瓷砖商店去购买一种多边形形状的瓷砖,用 来铺设无缝地板.他购买的瓷砖形状不可以是( C (A)正三角形 (C)正八边形 (B)正四边形 (D)正六边形 )
2 2
F M
●
G
●
E N
∴MG=GE,NG=GF. ∴AM=MG=GE,BN=NG=GF. ∴ GE∶GA=GF∶GB=1∶2. 同理,GD∶GC=1∶2.. ∴GE∶GA=GF∶GB=GD∶GC=1∶2.
A
D
B
本章要点聚焦
一、四边形的概念
1.定义:在同一平面内,由不在同一直线上的四条线段
首尾顺次相接组成的图形.
2.四边形的内角和与外角和均为360°.
3.四边形具有不稳定性. 4.多边形内角和定理:n边形的内角和等于(n-2)·180° 5.多边形外角和定理:n边形的外角和等于360°. 6.多边形的对角线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√
角
对角 线
❖两组对边分别平行的 四边形是平行四边形 ❖两组对边分别相等的
四边等形腰是平行四边形 ❖一梯的组形四对边边形平是行平且行相四等边形
❖两组对角分别相等的 四边形是平行四边形
❖对角线互相平分的四 边形是平行四边形
4
达标体验
3.在△ABC中,D、E是AB、
AC的中点,
DE=3cm,∠6 C=70°,那么70
平行四 ❖平行四边形的对边相等
边形的 ❖平行四边形的对角相等、对边平行
性质:
❖平行四边形的对角线互相平分
3
达标体验
2.判断下列说法的对错。
A
D
O
B
C
平行四边形的判定:
(1)∵AB∥CD,AD∥BC
√ 边 ∴四边形ABCD为平行四边形。
(2)∵AB∥CD,AD=BC
∴四边形ABCD为平行四边形。
×
(3)∵OA=OC,OB=OD, ∴四边形ABCD为平行四边形。
谈 谈 你 的 收 获
方法
知识
篇
篇
❖找平行四
❖平行四边形性质 ❖平行四边形判定
边形
❖添加辅助 线方法
❖三角形的中位线
思想 篇
❖分类讨论 思想 ❖化归思想
9
思考题
如图,已知△ABC和△ADE都是等边三角 形,点D在BC上,AB边上有一点F,且 BF=DC,连接CF,证明:CF与DE互相平行.
A
E
F
D
BC=___cm,∠AED=____°.
三角形中位线定理
B
三角形的中位线平行于三角形
的第三边,并且等于第三边的
一半.
∵DE是△ABC的中位线
∴ DE∥BC, DE 1 BC 2
位置关系 数量关系
A E C
5
能力提升
☆找平行四边形
4.已知: ABCD中,直线MN//AC,分别交DA 延长线于M,DC延长线于N,AB于P,BC于Q。 求证:PM=QN。
在ABCD中,分别为边向内作等边△ADE 和△BCF,连接BE、DF,求证:四边形 BEDF是平行四边形.
D
C
F
E
A
B
12
B
D
C
10
思想篇
变式1.如图,△ACD, △ABE,△BCF均为直线BC同 侧的等边三角形,当 AB≠AC时,证明:四边形 ADFE为平行四边形.
E D
A
F
变式2.平面上三个等边三 角形△ACE、△ABD, △BCF,两两共有一个 顶点,如图所示,求证: CD与EF互相平分
B
C
F
B
C
E
D
A
11
思考题
法一: 找两个平行 四边形
M
A
P
法二:
找一个平行四边
形+三角形全等
B
Q
D C
N
6
能力提升
分类讨论思想
5. ABCD的周长为32cm,∠ABC的角平分 线交边AD所在直线于点E,且AE:ED =3:2,则AB=__6_c_m__或__1_2_c_m___.
3x
A
E 2x D
3x
3x
x 2x A
D
E
B
1
思想
方法
篇
知识
篇
篇
2
定义:两组对边分别平行 的四边形叫做平行四边形。
A
பைடு நூலகம்
D
O
达标体验
B
C
1.已知 ABCD,若OA=1cm, OB=2cm, ∠BAC=90°
(1)CD=__3__cm;
(2)若∠CAD=30°,∠BCD=_1_2_0__°, ∠ADC=__6_0__°.
(3)AC=__2__cm,BD=__4__cm;
C
B
C
7
拓展创新
化归思想
6.如图,已知AB=AC,B是
C
AD的中点,E是AB的中点.
求证:CD=2CE.
A
E
B
D
C
法一:补短法
F
C
法二:截长法
F
法三:A构造中位E 线 B A
D
E
B
D
口诀:
要证线段倍与半,延长缩短可试验。
C
三角形中有中线,延长中线等中线。
F
三角形中两中点,连接则成中位线。
A
E
B
D
8
角
对角 线
❖两组对边分别平行的 四边形是平行四边形 ❖两组对边分别相等的
四边等形腰是平行四边形 ❖一梯的组形四对边边形平是行平且行相四等边形
❖两组对角分别相等的 四边形是平行四边形
❖对角线互相平分的四 边形是平行四边形
4
达标体验
3.在△ABC中,D、E是AB、
AC的中点,
DE=3cm,∠6 C=70°,那么70
平行四 ❖平行四边形的对边相等
边形的 ❖平行四边形的对角相等、对边平行
性质:
❖平行四边形的对角线互相平分
3
达标体验
2.判断下列说法的对错。
A
D
O
B
C
平行四边形的判定:
(1)∵AB∥CD,AD∥BC
√ 边 ∴四边形ABCD为平行四边形。
(2)∵AB∥CD,AD=BC
∴四边形ABCD为平行四边形。
×
(3)∵OA=OC,OB=OD, ∴四边形ABCD为平行四边形。
谈 谈 你 的 收 获
方法
知识
篇
篇
❖找平行四
❖平行四边形性质 ❖平行四边形判定
边形
❖添加辅助 线方法
❖三角形的中位线
思想 篇
❖分类讨论 思想 ❖化归思想
9
思考题
如图,已知△ABC和△ADE都是等边三角 形,点D在BC上,AB边上有一点F,且 BF=DC,连接CF,证明:CF与DE互相平行.
A
E
F
D
BC=___cm,∠AED=____°.
三角形中位线定理
B
三角形的中位线平行于三角形
的第三边,并且等于第三边的
一半.
∵DE是△ABC的中位线
∴ DE∥BC, DE 1 BC 2
位置关系 数量关系
A E C
5
能力提升
☆找平行四边形
4.已知: ABCD中,直线MN//AC,分别交DA 延长线于M,DC延长线于N,AB于P,BC于Q。 求证:PM=QN。
在ABCD中,分别为边向内作等边△ADE 和△BCF,连接BE、DF,求证:四边形 BEDF是平行四边形.
D
C
F
E
A
B
12
B
D
C
10
思想篇
变式1.如图,△ACD, △ABE,△BCF均为直线BC同 侧的等边三角形,当 AB≠AC时,证明:四边形 ADFE为平行四边形.
E D
A
F
变式2.平面上三个等边三 角形△ACE、△ABD, △BCF,两两共有一个 顶点,如图所示,求证: CD与EF互相平分
B
C
F
B
C
E
D
A
11
思考题
法一: 找两个平行 四边形
M
A
P
法二:
找一个平行四边
形+三角形全等
B
Q
D C
N
6
能力提升
分类讨论思想
5. ABCD的周长为32cm,∠ABC的角平分 线交边AD所在直线于点E,且AE:ED =3:2,则AB=__6_c_m__或__1_2_c_m___.
3x
A
E 2x D
3x
3x
x 2x A
D
E
B
1
思想
方法
篇
知识
篇
篇
2
定义:两组对边分别平行 的四边形叫做平行四边形。
A
பைடு நூலகம்
D
O
达标体验
B
C
1.已知 ABCD,若OA=1cm, OB=2cm, ∠BAC=90°
(1)CD=__3__cm;
(2)若∠CAD=30°,∠BCD=_1_2_0__°, ∠ADC=__6_0__°.
(3)AC=__2__cm,BD=__4__cm;
C
B
C
7
拓展创新
化归思想
6.如图,已知AB=AC,B是
C
AD的中点,E是AB的中点.
求证:CD=2CE.
A
E
B
D
C
法一:补短法
F
C
法二:截长法
F
法三:A构造中位E 线 B A
D
E
B
D
口诀:
要证线段倍与半,延长缩短可试验。
C
三角形中有中线,延长中线等中线。
F
三角形中两中点,连接则成中位线。
A
E
B
D
8