平行四边形总复习PPT课件
合集下载
2024年人教版九年级数学中考总复习《多边形与平行四边形》课件40张(共40张PPT)

___四_____.
考点演练
5. 一个多边形除一个内角外,其余内角的和为1 510°,则这
个多边形的边数是(C)Fra bibliotekA. 九
B. 十
C. 十一 D. 十二
6. 一个多边形的内角和是外角和的2倍,这个多边形的边数为
A. 五
B. 六
C. 七
(B) D. 八
7. 一个多边形的每个内角均为120°,则这个多边形是( C )
即可求得答案.
答案:C
考题再现
1. (2014广东)一个多边形的内角和是900°,则这个多边形
的边数是 A. 10
B. 9
(D)
C. 8
D. 7
2. (2015广东)正五边形的外角和等于___3_6_0_°__. 3. (2016桂林)正六边形的每个外角是___6_0____度.
4. (2014梅州)内角和与外角和相等的多边形的边数为
A. 150°
B. 130°
C. 120° D. 100°
3. (2016丹东)如图1-4-6-4,在□ABCD中,BF平分∠ABC,
交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长
为
(B )
A. 8
B. 10
C. 12
D. 14
4. (2015梅州)如图1-4-6-5,在□ABCD中,BE平分∠ABC, BC=6,DE=2,则□ABCD的周长等于___2_0____.
第一部分 教材梳理
第四章 图形的认识(一) 第6节 多边形与平行四边形
知识梳理
概念定理
1. 多边形的有关概念 (1)多边形:在平面内,由一些线段首尾顺次相接组成的图 形叫做多边形.
人教版八年级数学下册期末复习课件:平行四边形 (共47张PPT)

论的个数是
()
• A.2
• B.3
• C.4
• D.5
7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥
AB 于点 E,PF⊥AC 于点 F,M 为 EF 中点,则 AM 的最小值为
(D )
A.54
B.45
C.53
D.65
8.如图,ABCD 是正方形,E、F 分别是 DC 和 CB 的延长
∠CBF,∴BF平分∠ABC.
• (3)解:△BEF是等腰三角形.理由如下:过 点F作FG⊥BE于点G.∵AD∥BC,FG⊥BE,
BE⊥AD,∴FG∥AD∥BC.∵F为CD的中点,
∴EG=BG,∴EF=BF,∴△BEF是等腰三
• ★集训2 特殊平行四边形的性质与判定的相 关计算与证明
• 7.已知四边形ABCD中,对角线AC与BD相A 交于点O,AD∥BC,下列判断中错误的是 ()
D.4 个
(B )
• 二、填空题(每小题5分,共20分)
• 9.已知一个菱形的两条对角线的长分别为 5210和24,则这个菱形的周长为______.
• 10.【湖北武汉中考】以正方形ABCD的边 A30D°或作15等0°边△ADE,则∠BEC的度数是 _______________.
• 11.如图,矩形ABCD的对角2线0 BD的中点为 O,过点O作OE⊥BC于点E,连接OA,已知 AB=5,BC=12,则四边形ABEO的周长为 ______.
• 4.如图,在□ABCD中,E、F分别是AB、
DC边上的点,AF与DE相交于点P,BF与CE 相41交于点Q.若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为______cm2.
6.1 平行四边形的性质 课件(共29张PPT)数学北师大版八年级下册

感悟新知
解题秘方:紧扣平行四边形边的性质进行解答 .
知2-练
解:∵平行四边形的对边相等, ∴ CD=AB=5 cm, AD=BC=4 cm. ∴ ▱ ABCD 的周长 =AB+BC+CD+AD=5+4+5+4=18(cm) .
感悟新知
知2-练
2-1. [ 中考·湘潭 ] 在▱ ABCD 中(如图),连接AC,已知 ∠ BAC =40 °, ∠ ACB = 80 °,则∠ BCD = ( C)
解:S 四边形 ABFE=S 四边形 FCDE. 理由如下: ∵四边形 ABCD 是平行四边形, ∴ OA=OC, AD ∥ BC. ∴∠ 1= ∠ 2. 又∵∠ 3= ∠ 4, ∴△ AOE ≌△ COF(ASA). ∴ S △ AOE=S △ COF.
知3-练
感悟新知
又由 ▱ ABCD 得
知3-练
感悟新知
例4 如图 6-1-8,在▱ ABCD 中,对角线 AC, BD 相
知3-练
交于点 O,过点 O 作直线 EF,分别交 AD, BC 于点 E, F. 判断四边形 ABFE 的面积与四边形 FCDE 的面 积有何关系,试说明理由 .
感悟新知
解题秘方:紧扣平行四边形的对角线性质、全等 三角形的性质进行解答 .
知2-讲
特别提醒
1. 2.
从 从• 边角• 看看• ::平平行行四四边边形形的的对对角边相平等行、且邻相角等互. 补 注• 意•:•要根据推理证明的需要,合理选用平
.
行四边形的性质 .
感悟新知
知2-练
例2 [母题教材P137随堂练习T1] 如图 6-1-4,在 ABCD 中, AB=5 cm, BC=4 cm,则▱ ABCD 的周长为__1_8___cm.
平行四边形的性质复习课件ppt

分成面积相等的两部分
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
1、 通过本节课的学习,你有什么收获? 2、 平行四边形的性质共有哪些?
边 角 对角线
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
如图,把两张完全相同的平行四边形纸片叠
合在一起,在它们的中心O 钉一个图钉,将一个
平行四边形绕O旋转180°,你发现了什么?
A
B
O
D
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
结论
●1. ABCD绕它的中心O旋转180°后与自身重合,这 时我们说 ABCD是 中心对称图形,点O叫对称中心。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
猜一猜 你能证明
根据刚才的旋转,你知道平行四边形的对 它吗?
由于年迈体弱,他决定把这块土地分给他的四个孩
子,他是这样分的:
老大
老二
老四
老三
当四个孩子看到时,争论不休,都认为自己的地 少,同学们,你认为老人这样分合理吗?为什么?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
平行四边形复习课件

一组对边平行且相等的四边形是平行四边 形。
两组对角分别相等的四边形是平行四边形 。
02
平行四边形的特殊形式
矩形
01 定义
有一个角是直角的平行四边形是矩形。
02 性质
矩形的四个角都是直角,矩形的对角线相等。
03 判定
有一个角是直角的平行四边形是矩形;对角线相 等的平行四边形是矩形。
菱形
01 定义
矩形、菱形、正方形的判定方法与证明思路
正方形的判定方法与证明思路
正方形是特殊的长方形和菱形,其判 定方法有五种。
正方形的判定方法主要有五种,一是 有一组邻边相等且有一个角是直角的 平行四边形是正方形;二是有一个角 是直角的菱形是正方形;三是有一个 角是直角的矩形是正方形;四是有一 组邻边相等的矩形是正方形;五是有 一个角是直角的等腰梯形是正方形。 在证明过程中,需要结合已知条件, 通过全等三角形、平行线的性质等定 理进行证明。
2. 举例说明:例如,我们要证明四边形ABCD是平行 四边形,那么我们需要证明AB//CD且AB=CD。
总结词:如果一个四边形的一组对边平行且相 等,那么这个四边形是平行四边形。
1. 介绍利用一组对边平行且相等证明平行四边形 的方法:一组对边平行且相等的四边形是平行四 边形。
06
典型例题解析与拓展
矩形、菱形、正方形的判定方法与证明思路
01
菱形的判定方法与证明思路
02
菱形是平行四边形的一个特例,其判定方法有三种。
03
菱形的判定方法主要有三种,一是有一组邻边相等的平行 四边形是菱形;二是有一个角是直角的菱形是菱形;三是 有一组邻边相等的矩形是菱形。在证明过程中,需要结合 已知条件,通过全等三角形、平行线的性质等定理进行证 明。
第一章 特殊平行四边形 小结与复习课件(24张PPT) 北师大版九年级数学上册

九年级上册数学(北师版)
第一章 特殊的平行四边形
小结与复习
要点梳理 一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
∴四边形 CEBO 是矩形.
针对训练
3. 如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O,
△ABO 是等边三角形,AB = 4,求□ABCD 的面积.
解:∵ 四边形 ABCD 是平行四边形, A
D
∴ OA = OC,OB = OD.
O
又∵△ABO 是等边三角形,
∴ OA = OB = AB = 4,∠BAC = 60°. B
解:四边形 ABCD 是菱形. 理由如下:
过点 C 作 CE⊥AB 于点 E,CF⊥AD 于点 F.
由 AB∥CD,AD∥BC 知四边形 ABCD 是平
行四边形.
则 S□ABCD = AD ·CF = AB ·CE. 由题意知 CF = CE,∴ AD = AB.
A FD E
BC
∴ 四边形 ABCD 是菱形.
于点 O,过点 A 作 AE∥BD,过点 D 作 ED∥AC,两
线相交于点 E.
求证:四边形 AODE 是菱形.
证明:∵ AE∥BD,ED∥AC,
∴四边形 AODE 是平行四边形.
∵四边形 ABCD 是矩形,
∴ AC = BD,OA = OC = 1 AC,OB = OD = 1 BD.
第一章 特殊的平行四边形
小结与复习
要点梳理 一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
∴四边形 CEBO 是矩形.
针对训练
3. 如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O,
△ABO 是等边三角形,AB = 4,求□ABCD 的面积.
解:∵ 四边形 ABCD 是平行四边形, A
D
∴ OA = OC,OB = OD.
O
又∵△ABO 是等边三角形,
∴ OA = OB = AB = 4,∠BAC = 60°. B
解:四边形 ABCD 是菱形. 理由如下:
过点 C 作 CE⊥AB 于点 E,CF⊥AD 于点 F.
由 AB∥CD,AD∥BC 知四边形 ABCD 是平
行四边形.
则 S□ABCD = AD ·CF = AB ·CE. 由题意知 CF = CE,∴ AD = AB.
A FD E
BC
∴ 四边形 ABCD 是菱形.
于点 O,过点 A 作 AE∥BD,过点 D 作 ED∥AC,两
线相交于点 E.
求证:四边形 AODE 是菱形.
证明:∵ AE∥BD,ED∥AC,
∴四边形 AODE 是平行四边形.
∵四边形 ABCD 是矩形,
∴ AC = BD,OA = OC = 1 AC,OB = OD = 1 BD.
《认识平行四边形》PPT-完美版

•
1、学生自读。指名读。
•
2、理解重点词语:
•
3、有感情地朗读、背诵。
•
课外再搜集一些鲁迅先生的名言。
•
趣味语文
•
1、过渡:鲁迅先生的童年发生过许多 故事, 这节课 我们就 来读一 个鲁迅 巧对先 生的故 事。
•
2、学生自读。指名读。
•
周樟寿的对子妙在哪里?他为什么对 得好?
•
文人巧对对联的故事还有很多,课后 搜集此 类故事 ,与同 学们交 流。
《认识平行四边形》PPT-完美版
典题精讲
照下面的样子做一做。
课件PPT
你发现了什么?
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
典题精讲
形状改变了, 边的长短没变
长方形的对边相 等,平行四边形
的对边也相等
《认识平行四边形》PPT-完美版
课件PPT
《认识平行四边形》PPT-完美版 《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
第五单元 四边形的认识
第 3 课时 认识平行四边形
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
学习目标
课件PPT
1、认识四边形,能辨认平行四边形。
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
情景导入
课件PPT
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
《认识平行四边形》PPT-完美版
•
1、谈谈心目中的பைடு நூலகம்迅
•
(1)学了本单元的课文,我们被鲁迅 先生的 才学和 人格魅 力所折 服,这 节课我 们就来 谈谈自 己心目 中的鲁 迅。
《平行四边形》期末复习 —初中数学课件PPT

∴△ODE≌△FCE(AAS). (2)∵△ODE≌△FCE,∴OD=FC. ∵CF∥BD,∴四边形ODFC是平行四边形. 在矩形ABCD中,OC=OD,∴ ODFC是菱形.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
6.如图M-55-10,四边形ABCD是正方形,E,F分别是DC和CB的 延长线上的点,且DE=BF,连接AE,AF,EF. (1)求证:△ADE≌△ABF; (2)若BC=8,DE=3,求△AEF的面积.
21.如图M-55-22,在矩形ABCD中(AD>AB),点E是BC上
一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不
一定正确的是
( B)
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD-DF
22.如图M-55-23,在△ABC中,CD⊥AB于
点D,BE⊥AC于点E,F为BC的中点,DE=5,
(1)证明:∵四边形ABCD是矩形, ∴AD∥BC,AD=BC. ∵E,F分别是AD,BC的中点, ∴AE= AD,CF= BC. ∴AE=CF. ∴四边形AFCE是平行四边形.
综合提升
20.如图M-55-21,在菱形ABCD中,对角线AC,BD相交于点O, BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为( D ) A.4 B.4.8 C.2.4 D.3.2
14.如图M-55-16,在△ABC中,已知AB=8, ∠C=90°,∠A=30°,DE是中位线,则DE 的长为____2____.
15. 已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个 菱形的边长为____5______cm. 16. 如图M-55-17,矩形ABCD的对角线AC=8 cm,∠AOD=120°, 则AB的长为_____4_____cm.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形复习集锦
一般的平行四边形
菱形
四 边
平行四边形 特 殊 的 平行四边形
一般梯形
矩形 正方形
形梯
形
等腰梯形
特殊梯形 直角梯形
一般四边形
D
C 文字语言叙述
几何符号表述
O
①两组对边互相平行∵在在 四AB边CD形中 ABCD中
A
平
B
性质
②③两一组组对 对边 边分 平别 行相 且等 相等 ∴四A∠AO边ABBA形=∥=∠COACDCBCD是
形
C. 矩形的对角线相等
D. 对角线相等的四边形是矩形
A 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则
BD的长为(
)
A.4
B.3
C.2
D.1
3.如图矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,
B 则矩形的对角线AC的长是(
)
A.2
B.4
C.2 3 D.4 3
F
D
B
C
B
C
证法1:∵四边形ABCD是平行四 边形
∴BC=AD,∠1=∠2 在△BCE与△DAF中
BC=AD
证法2: 连接BD,交AC于点O, 连接DE,BF
∵四边形ABCD是平行四边形
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
定义:有一组邻边相等的平行四边形是菱形
⑴菱形是特殊的平行四边形,具有 D
性质 平行四边形的所有性质
⑵菱形的特殊性质:
A
菱
①菱形的四条边都相等
O
C
②菱形的对角线互相垂直平分 B
每一条对角线平分一组对角
形
③菱形是轴对称图形;有两
条对称轴
⑴四条边都相等的四边形
判别 ⑵对角线互相垂直平分的四边形 菱 ⑶有一组邻边相等的平行四边形 形
(1)求证:△BDF≌△CDE; (2)当AB=AC时,试判断四边形BFCE的形状,
并说明理由。
典例1 如图,E,F是平行
四边形ABCD的对角线AC上
的点,CE=AF,请你猜想:
A
D
BE与DF有怎样的关系? E
并对你的猜想加以证明
F
B
C
A
2
E 3
4
1F
D 猜想: BE∥DF, BE=DF
A E
o
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
典例2 如图1,2所示,将一张长方形的纸片 对折两次后,沿图3中的虚线AB剪下, 将△AOB完全展开. (1)画出展开图形,判断其形状, 并证明你的结论;
(2)若按上述步骤操作,展开图形 是正方形时,请写出△AOB应满足的条件.
D
C
O
性质 A
B
Байду номын сангаас
菱形的所有性质
正
⑴正方形同时具有 矩形的所有性质
方
⑵正方形是轴对称图形;有4条对称轴
形
⑴先判定四边形是矩形;
判别 再判定这个矩形是菱形
⑵先判定四边形是菱形; 再判定这个菱形是矩形
双基训练:
D 1.下列命题中,真命题是 (
)
A.两条对角线垂直的四边形是菱形
B.对角线垂直且相等的四边形是正方形
行
④两组对角分别相等 ABA∠CAOBDDB=∥=∠BBODCCD
四
⑤对角线互相平分
边
①两组对边分别平行的
平
形
②两组对边分别相等的 四 行
判别 ③一组对边平行且相等的 边 四
④两组对角分别相等的 ⑤对角线互相平分的
形边 形
定义:有一个内角是直角的平行四边形是矩形
⑴矩形是特殊的平行四边形,具有 平
性质 行四边形的所有性质 D
⑷对角线互相垂直的平行四边形
双基训练:
1、已知菱形的周长是12cm,那么它的边长是_4_c__m__. 60° 2、菱形ABCD中∠BAD=60度,则∠ABD=_______.
3边、长菱是形的两5条cm对角线长. 分别为6cm和8cm,则菱形的
4、若菱形的边长为1cm,其中一个内角为60°,
则它的面积S = 3 cm 2 。 2
且MA=NC,问BM和DN存在 怎样的关系?说明理由。 证明:
4、已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D, AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一 个正方形?并给出证明.
MM
AA
EE
NN
BB
DD
CC
5、如图,在△ABC中,D是BC边的中点,E、F分别 在AD及其延长线上,CE∥BF,连接BE、CF 。
(1)展开图如图所示,它是菱形. 证明:由操作过程可知 OA=OC,OB=OD, ∴ 四边形ABCD是平行四边形. 又∵ OA⊥OB,
即AC⊥BD, ∴ 四边形ABCD是菱形.
(2)△AOB中,∠ABO=45° (或∠BAO=45°或OA=OB).
典例3 如图,在平行四边形ABCD中,
AB //CD,M、N在直线AC上,
第3题图
第4题图
4.如图,四边形ABCD的对角线互相平分,要使它变为矩
D 形,需要添加的条件是(
)
A.AB=CD B.AD=BC
C.AB=BC
D.AC=BD
5.已知AB、CD是⊙O的两条直径,则四边形
D ADBC一定是(
)
A.等腰梯形 B.正方形 C.菱形 D.矩形
6.如图,已知矩形ABCD中,E是AD上的一点,F 是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩 形ABCD的周长为32cm,求AE的长.
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
D 2.正方形具有而菱形不具有的性质是( )
A.四条边都相等 B.对角线相等
C.对角线平分一组对角
D.对角线垂直且互相平分
3、如图,边长为2 cm的正方形ABCD的顶点B在x轴上,C 在y轴上,且∠OBC = 30°,求A、D两点的坐标 。
C
⑵矩形的特殊性质:
矩
①矩形的四个角都是直角 ②矩形的两条对角线相等
A
O B
形
③矩形是轴对称图形;有两
条对称轴
⑴有三个角都是直角的四边形
⑵对角线互相平分且相等的四边形 判别 ⑶有一个角是直角的平行四边形
矩 形
⑷对角线相等的平行四边形
双基训练:
D 1.下列命题中错误的是(
)
A. 平行四边形的对边相等 B. 两组对边分别相等的四边形是平行四边
D 5、菱形具有而矩形没有的是( )
A.对角线相等
B.对角线互相平分
C.一组对边平行,另一组对边相等 D.对角线互相垂直
D 6、能判定一个四边形是菱形的条件是( )
A.对角线互相平分且相等 B.对角线互相垂直且相等 C.邻边相等 D.对角线互相垂直平分
定义:或一组有邻一边个相内等角的是矩直形角叫的正菱方形形叫正方形
一般的平行四边形
菱形
四 边
平行四边形 特 殊 的 平行四边形
一般梯形
矩形 正方形
形梯
形
等腰梯形
特殊梯形 直角梯形
一般四边形
D
C 文字语言叙述
几何符号表述
O
①两组对边互相平行∵在在 四AB边CD形中 ABCD中
A
平
B
性质
②③两一组组对 对边 边分 平别 行相 且等 相等 ∴四A∠AO边ABBA形=∥=∠COACDCBCD是
形
C. 矩形的对角线相等
D. 对角线相等的四边形是矩形
A 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则
BD的长为(
)
A.4
B.3
C.2
D.1
3.如图矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,
B 则矩形的对角线AC的长是(
)
A.2
B.4
C.2 3 D.4 3
F
D
B
C
B
C
证法1:∵四边形ABCD是平行四 边形
∴BC=AD,∠1=∠2 在△BCE与△DAF中
BC=AD
证法2: 连接BD,交AC于点O, 连接DE,BF
∵四边形ABCD是平行四边形
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
定义:有一组邻边相等的平行四边形是菱形
⑴菱形是特殊的平行四边形,具有 D
性质 平行四边形的所有性质
⑵菱形的特殊性质:
A
菱
①菱形的四条边都相等
O
C
②菱形的对角线互相垂直平分 B
每一条对角线平分一组对角
形
③菱形是轴对称图形;有两
条对称轴
⑴四条边都相等的四边形
判别 ⑵对角线互相垂直平分的四边形 菱 ⑶有一组邻边相等的平行四边形 形
(1)求证:△BDF≌△CDE; (2)当AB=AC时,试判断四边形BFCE的形状,
并说明理由。
典例1 如图,E,F是平行
四边形ABCD的对角线AC上
的点,CE=AF,请你猜想:
A
D
BE与DF有怎样的关系? E
并对你的猜想加以证明
F
B
C
A
2
E 3
4
1F
D 猜想: BE∥DF, BE=DF
A E
o
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
典例2 如图1,2所示,将一张长方形的纸片 对折两次后,沿图3中的虚线AB剪下, 将△AOB完全展开. (1)画出展开图形,判断其形状, 并证明你的结论;
(2)若按上述步骤操作,展开图形 是正方形时,请写出△AOB应满足的条件.
D
C
O
性质 A
B
Байду номын сангаас
菱形的所有性质
正
⑴正方形同时具有 矩形的所有性质
方
⑵正方形是轴对称图形;有4条对称轴
形
⑴先判定四边形是矩形;
判别 再判定这个矩形是菱形
⑵先判定四边形是菱形; 再判定这个菱形是矩形
双基训练:
D 1.下列命题中,真命题是 (
)
A.两条对角线垂直的四边形是菱形
B.对角线垂直且相等的四边形是正方形
行
④两组对角分别相等 ABA∠CAOBDDB=∥=∠BBODCCD
四
⑤对角线互相平分
边
①两组对边分别平行的
平
形
②两组对边分别相等的 四 行
判别 ③一组对边平行且相等的 边 四
④两组对角分别相等的 ⑤对角线互相平分的
形边 形
定义:有一个内角是直角的平行四边形是矩形
⑴矩形是特殊的平行四边形,具有 平
性质 行四边形的所有性质 D
⑷对角线互相垂直的平行四边形
双基训练:
1、已知菱形的周长是12cm,那么它的边长是_4_c__m__. 60° 2、菱形ABCD中∠BAD=60度,则∠ABD=_______.
3边、长菱是形的两5条cm对角线长. 分别为6cm和8cm,则菱形的
4、若菱形的边长为1cm,其中一个内角为60°,
则它的面积S = 3 cm 2 。 2
且MA=NC,问BM和DN存在 怎样的关系?说明理由。 证明:
4、已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D, AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一 个正方形?并给出证明.
MM
AA
EE
NN
BB
DD
CC
5、如图,在△ABC中,D是BC边的中点,E、F分别 在AD及其延长线上,CE∥BF,连接BE、CF 。
(1)展开图如图所示,它是菱形. 证明:由操作过程可知 OA=OC,OB=OD, ∴ 四边形ABCD是平行四边形. 又∵ OA⊥OB,
即AC⊥BD, ∴ 四边形ABCD是菱形.
(2)△AOB中,∠ABO=45° (或∠BAO=45°或OA=OB).
典例3 如图,在平行四边形ABCD中,
AB //CD,M、N在直线AC上,
第3题图
第4题图
4.如图,四边形ABCD的对角线互相平分,要使它变为矩
D 形,需要添加的条件是(
)
A.AB=CD B.AD=BC
C.AB=BC
D.AC=BD
5.已知AB、CD是⊙O的两条直径,则四边形
D ADBC一定是(
)
A.等腰梯形 B.正方形 C.菱形 D.矩形
6.如图,已知矩形ABCD中,E是AD上的一点,F 是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩 形ABCD的周长为32cm,求AE的长.
C.两条对角线相等的四边形是矩形
D.两条对角线相等的平行四边形是矩形
D 2.正方形具有而菱形不具有的性质是( )
A.四条边都相等 B.对角线相等
C.对角线平分一组对角
D.对角线垂直且互相平分
3、如图,边长为2 cm的正方形ABCD的顶点B在x轴上,C 在y轴上,且∠OBC = 30°,求A、D两点的坐标 。
C
⑵矩形的特殊性质:
矩
①矩形的四个角都是直角 ②矩形的两条对角线相等
A
O B
形
③矩形是轴对称图形;有两
条对称轴
⑴有三个角都是直角的四边形
⑵对角线互相平分且相等的四边形 判别 ⑶有一个角是直角的平行四边形
矩 形
⑷对角线相等的平行四边形
双基训练:
D 1.下列命题中错误的是(
)
A. 平行四边形的对边相等 B. 两组对边分别相等的四边形是平行四边
D 5、菱形具有而矩形没有的是( )
A.对角线相等
B.对角线互相平分
C.一组对边平行,另一组对边相等 D.对角线互相垂直
D 6、能判定一个四边形是菱形的条件是( )
A.对角线互相平分且相等 B.对角线互相垂直且相等 C.邻边相等 D.对角线互相垂直平分
定义:或一组有邻一边个相内等角的是矩直形角叫的正菱方形形叫正方形