同步发电机励磁控制实验

合集下载

同步发电机运行与控制实验报告

同步发电机运行与控制实验报告

欢迎共阅广西大学电气工程学院发电机运行实验报告同步发电机运行与控制对象,型号额定功率7.5kW额定电压DC220V 额定电流41A 额定转速1500r/min 额定励磁电压DC220V额定励磁电流0.98A(5、6、7号机组为0.5A) 同步发电机型号T2-54-55额定功率5kW额定电压AC400V(星接)额定电流9.08A额定功率因数0.8空载励磁电流2.9A额定励磁电流5A直流电动机-同步发电机组接线如图一所示。

发电机通过空气开关2QS和接触器2KM可与系统并列,发电机机端装有电压互感器1TV和电流互感器1TA,供测量、同期用,系统侧装有单相电压互感器2TV作同期开关通过(从变1(1(2(3(4)三相桥式整流模块SCR-T的作用(整流,供给电动机运行),电动机调速方法(调励磁或电枢电压);(5)电抗器DK的作用;(滤除高次谐波,使电动机转速变硬)(6)分流器3FL的作用和原理;(精密电阻,通过测量其上的压降得到直流电流)(7)3QS和1KM的联锁接线和作用;(8)熟悉控制屏上电动机的操作设备及仪表。

2)同步发电机的接线(1)发电机定子回路接线,2QS和2KM的作用;(2)电压互感器1TV、2TV和电流互感器1TA的作用和接线;(3)发电机的励磁方式,4QS的作用和接线;(4)发电机电压的建立和调节,励磁变压器CB的作用和接线;(5)SCR-L直流输出端并接一只二极管的作用;(续流二极管,防止失控现象的发生)(6)3KM的作用,其常闭触点串Rm接励磁线圈的作用;(灭磁)(7)机组速度测量的原理;(8)三相组合式同期表的作用、外部结构和背后接线;(9)熟悉控制屏上发电机的操作设备及仪表。

12UAB345)将6比;UAB7U DC =0.54V,UAC=134.7V(二)空载试验将4QS扳向他励,发电机为他励励磁方式,合上2QS给上他励电源,操作3SA开关放到SCR位置,SCR放手动,使3KM合闸,用万用表检测励磁变压器CB两侧电压是否正常;U AB =396.7V,UBC=404.0V,UCA=397.1VU ab =39.83V,Ubc=39.90V,Uca=39.88V1)旋转电位器2WR缓慢升高发电机电压,观察表计的指示是否正常,三相电压是否平衡;注意:在升压过程中当机端电压低于300V时,频率表指针可能打到头,这是正常现象,待电压升至300V以上时指针会回到正常值。

同步发电机工作原理试验

同步发电机工作原理试验

同步发电机工作原理试验实验目的:了解同步发电机的工作原理,掌握其电磁感应原理。

实验仪器:同步发电机、励磁电源、电动机、电流表、电压表、转速计、示波器。

实验步骤:1.确保实验仪器已正确连接,同步发电机的励磁电源以及机械传动系统已稳定。

2.打开励磁电源,并逐渐增加其输出电流,观察同步发电机的电压和电流变化情况。

3.使用示波器观察同步发电机的电压和电流波形,记录不同励磁电流下的波形特点。

4.测量同步发电机的转速,并以一定速率调节电动机的转速,观察同步发电机的电压和电流变化情况。

5.断开励磁电源,记录并观察同步发电机的电压和电流变化情况。

实验原理:1.励磁电源:通过外部励磁电源的提供,将直流电流经过旋转定子绕组,形成磁场。

2.电机的同步关系:励磁电源产生的磁场与旋转定子绕组的磁场形成共同的旋转磁场。

同步发电机的转子以同步速度旋转,与旋转磁场保持同步。

3.感应电动势:在同步发电机的定子绕组中,由于转子的旋转产生的磁场的改变,导致定子绕组中产生感应电动势。

这个感应电动势驱动电流通过负载。

4.转子电流:由于负载的存在,导致同步发电机中存在转子电流。

转子电流与定子产生的磁场相互作用,形成力矩,维持同步发电机的稳定转动。

实验结果:在励磁电流逐渐增加的情况下,同步发电机的电压和电流逐渐增加,但维持在一个相对稳定的数值。

通过示波器观察同步发电机的电压和电流波形,可以发现它们是正弦曲线,在电流达到峰值时电压为零。

随着电动机转速的变化,同步发电机的电压和电流也发生了变化。

当转速改变时,同步发电机的电压和电流都会产生相应的波动。

当励磁电源断开时,同步发电机的电压和电流都会迅速降为零。

实验结论:同步发电机是一种基于电磁感应原理工作的发电机。

励磁电源产生的磁场与旋转定子绕组的磁场形成共同的旋转磁场,在同步发电机的电机同步情况下旋转。

因此,当负载存在时,同步发电机会产生感应电动势,并通过负载输出电能。

同步发电机的电压和电流都是随着励磁电流和转速的变化而变化的。

同步发电机励磁调节及励磁系统实验

同步发电机励磁调节及励磁系统实验

同步发电机励磁调节及励磁系统实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。

二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。

励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。

图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。

可供选择的励磁方式有两种:自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自380V市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。

电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。

6同步发电机励磁系统动态试验

6同步发电机励磁系统动态试验
1.4、发电机他励100%Ugn起励试验波形记录(采用通道1电流闭环手动模
式):(1)起励过程测量录波;(2)他励100%Ugn励磁温度测试;(3)他
励100%Ugn灭磁开关压降测试; (4)他励100%Ugn功率柜参数记录;(5)他励 100%Ugn功率柜阻容检查记录;(6)他励25%和100%逆变、跳闸试验录波等
2.1、空载升压和短路升流试验
机组大修后,需要进行发电机空载升压(100%Ug)和短路升流(100% Ig)试验,励磁设备需要提供可以调节的转子电流,可以采用它励备用 励磁,也可以将机组励磁系统由自励改为它励,此时励磁调节器ECR模 式运行,励磁设备零起升流。 在发电机他励升流升压试验之前, 建议进行一次励磁大电流试验,即
(1)10%Ifn电流闭环起励试验;(2)±5%Ifn电流闭环阶跃响应试验;(3) 100%Ugn下电流闭环逆变试验;(5)100%Ugn自动起励试验;(6)
±10%Ugn电压阶跃响应试验;(7)100%Ugn额定机端电压逆变试验;(8)
通道切换试验;(9)自动和手动运行方式转换试验;(10)电压给定值整定 范围及变化速度测试等。
注意:上述试验是励磁试验,除了进行常规试验和录波外,要有进行下列试验:
(1)100%Ugn功率柜参数记录;(2)自励100%Ugn转子电压波形;(3) 自励100%Ugn阳极电压波形;(4)100%Ugn功率柜阻容电阻温度等。
1.3、励磁现场动态试验大纲(3)
1.7、V/Hz特性试验和V/Hz限制试验, V/Hz未动作记录发电机电压稳定性, V/Hz动作,记录限制正确性。 1.8、故障模拟试验,包括模拟起励失败、100%机端电压模拟PT1断线、 100%机端电压模拟PT2断线、模拟交流输入电源分别消失、模拟直流输 入电源分别消失、模拟功率柜风机分别电源消失或切换、模拟励磁内部和

电力系统分析综合实验四:同步发电机励磁控制实验

电力系统分析综合实验四:同步发电机励磁控制实验

课程名称:电力系统分析综合实验指导老师:成绩:实验名称:同步发电机励磁控制实验实验类型:同组同学:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务2.了解自并励励磁方式和他励励磁方式3.熟悉三相全控整流、逆变的工作波形;观察出发脉冲及其相位移动4.了解微机励磁调节器的基本控制方式5.掌握励磁调节器的基本使用方法二、实验内容和原理同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成了一个闭环反馈控制系统,成为励磁控制系统。

励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。

实验用的励磁控制系统示意图如上图所示。

可供选择的励磁方式有两种:自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自380V市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒UF (保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90︒;当正常停机或事故停机时,调节器使控制角α大于90︒,实现逆变灭磁。

三、主要仪器设备(1)WL-04B微机励磁调节器;(2)HGWT-03B微机准同期控制器;(3)TSG-03B微机调速装置(4)微机保护装置;(5)模拟实验台四、操作步骤与实验方法1.同步发电机起励实验同步发电机的起励有三种:恒UF方式起励,恒α方式起励和恒IL方式起励。

电力系统自动化-实验二 同步发电机励磁控制实验

电力系统自动化-实验二   同步发电机励磁控制实验

实验二 同步发电机励磁控制实验1.本次实验的目的和要求1)、了解微机励磁调节器的几种控制方式及其各自特点。

2)、了解强励的作用,掌握励磁电压上升速度和强励倍数等几个概念。

3)掌握可控励磁发电系统励磁系统电路原理及其工作特性。

2.实践内容或原理1)微机励磁调节器的几种控制方式及其各自特点励磁调节器具有四种控制方式:恒发电机电压U g ,恒励磁电流I e ,恒给定电压U R 和恒无功Q 。

其中,恒U R 为开环控制,而恒U g ,恒I e 和恒Q 三种控制方式均采用PID 控制,PID 控制原理框图如图2-3-1所示,系统由PID 控制器和被控对象组成,PID 算法可表示为:()()-()e t r t c t = (1)(){()1/() [()]/}P I D u t K e t T e t dt T d e t dt =+⎰+ (2)其中:u(t )—调节计算的输出; K P —比例增益;T I —积分常数; T D —微分常数。

因上述算法用于连续模拟控制,而此处采用采样控制,故对上述两个方程离散化,当采样周期T 很小时,用一阶差分代替一阶微分,用累加代替积分,则第n 次采样的调节量为:0(){()/() /[()- (-1)]}P I D u n K e n T T e i T T e n e n u =+∑++ (3)式中:u 0—偏差为0时的初值。

则第n-1次采样的调节量为:0(-1){(-1)/() /[(-1)- (-2)]}P I D u n K e n T T e i T T e n e n u =+∑++ (4)两式2-3-3和2-3-4式相减,得增量型PID 算法,表示如下:()()- (-1) [()- (-1)]()[()-2(-1)(-2)]P I D u n u n u n K e n e n K e n K e n e n e n ∆==+++ (5) 式中:K P —比例系数;K I —积分系数, I P IT K K T =; K D —微分系数, D D P TK K T =每种控制方式对应一套PID 参数(K P 、K I 和K D ),可根据要求设置,设置原则:比例系数加大,系统响应速度快,减小误差,偏大,振荡次数变多,调节时间加长,太大,系统趋于不稳定;积分系数加大,可提高系统的无差度,偏大,振荡次数变多;微分系数加大,可使超调量减少,调节时间缩短,偏大时,超调量较大,调节时间加长。

电力系统自动控制技术2个实验

电力系统自动控制技术2个实验

电力系统自动控制技术2个实验实验一同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。

准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。

正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。

它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。

线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。

它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。

准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。

当所有条件均满足时,在整定的越前时刻送出合闸脉冲。

三、实验项目和方法(一)机组启动与建压1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。

调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮;3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮;4.励磁调节器选择它励、恒UF 运行方式,将“手动励磁”调到0后,合上“励磁开关”,调节“增磁”/“减磁”按钮使数码显示管上的给定电压Ug 参数为380V ;5.把实验台上“同期方式”开关置“断开”位置;6.合上系统电压开关和线路开关QF 1,QF 3,检查系统电压接近额定值380V ;7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;松开“灭磁”按钮,“灭磁”指示灯灭。

同步发电机励磁控制系统实验报告

同步发电机励磁控制系统实验报告

同步发电机励磁控制系统实验摘要:本课题主要针对如何提高和维持同步发电机运行的稳定性,是保证电力系统安全、经济运行,及延长发电机寿命而进行的同步发电机励磁方式,励磁原理,励磁的自动控制进行了深入的解剖。

发电机在正常运行时,负载总是不断变化的,而不同容量的负载,以及功率因数的不同,对发电机励磁磁场的作用是不同的,对同步发电机的内部阻抗压降也是不一样的。

为了保持同步发电机的端电压稳定,需要根据负载的大小及负载的性质调节同步发电机的励磁电流,因此,研究同步发电机的励磁控制具有十分重要的应用价值。

本课题主要研究同步发电机励磁控制在不同状态下的情况,同步发电机起励、控制方式及其相互切换、逆变灭磁和跳变灭磁开关灭磁、伏赫实验等。

主要目的是是同学们加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;了解自并励励磁方式和它励励磁方式的特点;了解微机励磁调节器的基本控制方式。

关键词:同步发电机;励磁控制;它励第一章文献综述1.1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。

励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。

发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。

我国电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。

1.2同步发电机励磁系统的分类与性能1.2.1 直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。

其中直流发电机称为直流励磁机。

直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。

直流励磁机励磁系统又可分为自励式和它励式。

自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。

二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。

励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。

图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。

可供选择的励磁方式有两种:自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自380V市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。

电力系统稳定器――PSS是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。

三、实验项目和方法(一)不同α角(控制角)对应的励磁电压波形观测(1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;(2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器面板“它励”指示灯亮;(3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面板上的“恒α”指示灯亮;(4)合上励磁开关,合上原动机开关;(5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。

注意:微机自动励磁调节器上的增减磁按钮键只持续5秒内有效,过了5秒后如还需要调节,则松开按钮,重新按下。

实验时,调节励磁电流为表1规定的若干值,记下对应的α角(调节器对应的显示参数为“CC”),同时通过接在Ud+、Ud-之间的示波器观测全控桥输出电压波形,并由电压波形估算出α角,另外利用数字万用表测出电压Ufd和U AC,将以上数据记入下表,通过Ufd,U AC和数学公式也可计算出一个α角来;完成此表后,比较三种途径得出的α角有无不同,分析其原因。

(6)调节控制角大于90度但小于120度,观察全控桥输出电压波形,与课本所画波形有何不同?为什么?(7)调节控制角大于120度,观察全控桥输出电压波形,与课本所画波形有何不同?为什么?(二)同步发电机起励实验同步发电机的起励有三种:恒U F方式起励,恒α方式起励和恒I L方式起励。

其中,除了恒α方式起励只能在它励方式下有效外,其余两种方式起励都可以分别在它励和自并励两种励磁方式下进行。

恒U F方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪系统电压起励”的两种起励方式。

设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳定在手动设定的电压水平上;跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人工不能干预,起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为85%~115%额定电压;“跟踪系统电压起励”方式是发电机正常发电运行默认的起励方式,而“设定电压起励”方式通常用于励磁系统的调试试验。

恒I L方式起励,也是一种用于试验的起励方式,其设定值由程序自动设定,人工不能干预,起励后的发电机电压一般为20%额定电压左右;恒α方式起励只适用于它励励磁方式,可以做到从零电压或残压开始由人工调节逐渐增加励磁,完成起励建压任务。

1.恒U F方式起励步骤(1)将“励磁方式开关”切到“微机自励”方式,投入“励磁开关”;(2)按下“恒U F”按钮选择恒U F控制方式,此时恒U F指示灯亮;(3)将调节器操作面板上的“灭磁”按钮按下,此时灭磁指示灯亮,表示处于灭磁位置;(4)启动机组;(5)当转速接近额定时,(频率≥47Hz),将“灭磁”按钮松开,发电机起励建压。

注意观察在起励时励磁电流和励磁电压的变化(看励磁电流表和电压表)。

录波,观察起励曲线,测定起励时间,上升速度,超调,振荡次数,稳定时间等指标,记录起励后的稳态电压和系统电压。

上述的这种起励方式是通过手动解除“灭磁”状态完成的,实际上还可以让发电机自动完成起励,其操作步骤如下:(1)将“励磁方式开关”切到“微机自励”方式,投入“励磁开关”;(2)按下“恒U F ”按钮选择恒U F 控制方式,此时恒U F 指示灯亮;(3)使调节器操作面板上的“灭磁”按钮为弹起松开状态(注意,此时灭磁指示灯仍然是亮的);(4)启动机组;(5)注意观察,当发电机转速接近额定时(频率≥47Hz ),灭磁灯自动熄灭,机组自动起励建压,整个起励过程由机组转速控制,无需人工干预,这就是发电厂机组的正常起励方式。

同理,发电机停机时,也可由转速控制逆变灭磁。

改变系统电压,重复起励(无需停机、开机,只需灭磁、解除灭磁),观察记录发电机电压的跟踪精度和有效跟踪范围以及在有效跟踪范围外起励的稳定电压。

按下灭磁按钮并断开励磁开关,将“励磁方式开关”改切到“微机它励”位置,恢复投入“励磁开关”(注意:若改换励磁方式时,必须首先按下灭磁按钮并断开励磁开关!否则将可能引起转子过电压,危及励磁系统安全。

)本励磁调节器将它励恒U F 运行方式下的起励模式设计成“设定电压起励”方式(这里只是为了试验方便,实际励磁调节器不论何种励磁方式均可有两种恒U F 起励方式),起励前允许运行人员手动借助增减磁按钮设定电压給定值,选择范围为0~110%额定电压。

用灭磁和解除灭磁的方法,重复进行不同设定值的起励试验,观察起励过程,记录设定值和起励后的稳定值。

2.恒I L 方式起励步骤(1)将“励磁方式开关”切到“微机自励”方式或者“微机它励”方式,投入“励磁开关”;(2)按下“恒I L ”按钮选择恒I L 控制方式,此时恒I L 指示灯亮;(3)将调节器操作面板上的“灭磁”按钮按下,此时灭磁指示灯亮,表示处于灭磁位置;(4)启动机组;(5)当转速接近额定时(频率>=47Hz ),将“灭磁”按钮松开,发电机自动起励建压,记录起励后的稳定电压。

起励完成后,操作增减磁按钮可以自由调整发电机电压。

3.恒α方式起励步骤(1)将“励磁方式开关”切到“微机它励”方式,投入“励磁开关”;(2)按下恒α按钮选择恒α控制方式,此时恒α指示灯亮;(3)将调节器操作面板上的“灭磁”按钮按下,此时灭磁指示灯亮,表示处于灭磁位置;(4)启动机组;(5)当转速接近额定时(频率>=47Hz ),将“灭磁”按钮松开,然后手动增磁,直到发电机起励建压;(6)注意比较恒α方式起励与前两种起励方式有何不同。

四、实验报告要求1、︒=120α图1直流励磁电压Ud 图2 A 相电压Ua图3 A 、C 两相线电压Uac 图4触发信号2、︒=90α图5直流励磁电压Ud 图6 A 相电压Ua图7 A 、C 两相线电压Uac 图8触发信号3、︒=60α图9直流励磁电压Ud 图10 A 相电压Ua图11 A、C两相线电压Uac 图12触发信号五、思考题1.三相可控桥对触发脉冲有什么要求?答:六个晶闸管的触发脉冲按顺序,依次相差60°;共阴极组的脉冲依次差120°,共阳极组也依次相差120°;同一相的上下两个桥臂脉冲相差180°。

2.为什么在恒α方式下,必须手动“增磁”才能起励建压?答:恒α方式是一种开环控制方式,没有闭环反馈,只限于他励方式下使用。

3.比较恒UF方式起励、恒IL方式起励和恒α方式起励有何不同?答:恒UF方式为保持机端电压稳定,恒IL方式为保持励磁电流稳定,恒α方式为保持控制角稳定。

其中,恒α方式是一种开环控制方式,只限于他励方式下使用。

4.逆变灭磁与跳励磁开关灭磁主要有什么区别?答:若发电机利用全控桥进行逆变灭磁,必须使最小逆变角大于换流角及晶闸管关断角之和,而跳励磁开关是由相应的继保装置检测到某种值超过负荷整定值范围时,迅速关断。

六、心得体会通过本次实验,我更深入理解了同步发电机准同期并列原理和准同期并列条件以及同步发电机励磁调节原理和励磁控制系统的基本任务,我掌握了微机准同期控制器及模拟式综合整步表的使用方法和励磁调节器的基本使用方法以及常用励磁限制器的作用,我还了解了同步发电机准同期并列过程和自并励励磁方式和它励励磁方式的特点、微机励磁调节器的基本控制方式以及电力系统稳定器的作用;观察强励现象及其对稳定的影响。

通过这次自动装置实验及老师的讲解,使我对自动装置这门课都有了新的认识。

之前觉得这门课很抽象,甚至有点无聊。

在实验中改变了我一直以来的认识。

发现自动装置在现代电力系统有着很重要的作用和很高的地位。

在现代化、自动化程度越来越高的电力系统中,对传统的设备提出了更高的要求,要求性能越来越好,自动化程度也越来越重要。

虽然实验室有限,不能每个人都能亲自参与全程实验,但是在老师的悉心指导和同学热烈讨论下,我们还是有很大的收获。

总之,这次实验不仅丰富了我的理论知识、提高了我的实际动手能力,还让我明白了团队合作的重要性,这对我以后进一步深入学习和走入工作岗位都有很大的帮助。

相关文档
最新文档